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Available at: http://www.pmf.ni.ac.rs/filomat

Coefficient inequality for a novel bi-univalent function subclass
associated with Krawtchouk polynomials

Halit Orhana, Murat Çağlarb,∗, Hava Arıkana
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Abstract. In this research, we present and study a new subclass of bi-univalent functions related to the
Krawtchouk polynomials that meet subordination requirements seen in the open unit disk, a symmetric
domain. We derive estimates for the Fekete-Szegö inequality

∣∣∣a3 − γa2
2

∣∣∣ and the Taylor-Maclaurin coeffcients
|a2| , |a3| for this new subclass.

1. Introduction

LetA stand for the class of functions, where each member of the class has the form

Υ (ξ) = ξ +
∞∑

k=2

akξ
k, (ξ ∈D), (1)

which are analytic in D = {ξ ∈ C : |ξ| < 1}.
The symbol S designates a subclass of A consisting of members that are univalent in D. For any

univalent function Υ ∈ A, the Koebe one-quarter theorem [7] ensures the existence of a disk in the image
of Dwith a radius of 1/4. Consequently, an inverse function Υ−1 is satisfied for every univalent function Υ

Υ−1 (Υ (ξ)) = ξ, (ξ ∈ D) and Υ
(
Υ−1 (ω)

)
= ω, (|ω| < r0(Υ), r0(Υ) ≥

1
4

).

InD, we say that Υ ∈ A is bi-univalent if Υ and Υ−1 are univalent. Λ represents the class of bi-univalent
functions defined on the unit disk D. Due to the fact that Υ ∈ Λ has the summary of the Maclaurin series
by (1), a calculation reveals that ϱ = Υ−1 has the expansion

ϱ (ω) = Υ−1 (ω) = ω − a2ω
2 +

(
2a2

2
− a3

)
ω3 + . . . . (2)
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We understand that the class Λ is not empty. For instance, the functions

Υ1 (ξ) =
ξ

ξ − 1
, Υ2 (ξ) =

1
2

log
1 + ξ
1 − ξ

, Υ3 (ξ) = − log (1 − ξ)

with their respective inverses

Υ−1
1 (ω) =

ω
1 + ω

, Υ−1
2 (ω) =

e2ω
− 1

e2ω + 1
, Υ−1

3 (ω) =
eω − 1

eω

belong to Λ. Also, the Koebe function does not belong to Λ.
The analysis of the subclasses of the analytic and bi-univalent functions was actually revived in a pio-

neering work by Srivastava et al. [20],[21]. In their subsequent research, Srivastava et al. [22] obtained sharp
inequalities for a class of novel convex functions defined by Gregory polynomials. They further advanced
the field by solving coefficient bounds, the Fekete-Szegö problem, and the second Hankel determinant
for symmetric function classes of analytic and bi-univalent functions involving Euler polynomials [23].
Additionally, Srivastava et al. [24] introduced new general subclasses of m-fold symmetric bi-univalent
functions using the m-fold Ruscheweyh derivative operator, providing estimates on initial coefficients and
Fekete-Szegö inequalities for these classes. Srivastava et al. [25] also derived the estimates on the initial
Taylor-Maclaurin coefficients for functions in analytic and bi-concave function classes connected with the
combination of the binomial series and the confluent hypergeometric function.

Assume that the analytic functions in D are Υ and ϱ. We say that Υ is subordinate to ϱ and denoted by

Υ(ξ) ≺ ϱ(ξ) (ξ ∈ D) ,

if there exists a Schwarz function ω, which is analytic in Dwith ω(0) = 0 and |ω(ξ)| < 1 (ξ ∈ D) such that

Υ(ξ) = ϱ (ω(ξ)) (ξ ∈ D) .

If ϱ is a univalent function in D, then

Υ(ξ) ≺ ϱ(ξ)⇔ Υ(0) = ϱ(0) and Υ(D) ⊂ ϱ(D).

In [16], Loewner’s approach is used to find the Fekete-Szegö inequality for the coefficients of Υ ∈ S:∣∣∣a3 − γa2
2

∣∣∣ ≤ 1 + 2 exp
(
−2γ
1 − γ

)
for 0 ≤ γ < 1.

As γ→ 1−, the inequality
∣∣∣a3 − a2

2

∣∣∣ ≤ 1 is obtained. The coefficient functional

Fγ(Υ) = a3 − γa2
2

for normalized analytic functions Υ in the open unit disk D is crucial in geometric function theory. The
Fekete-Szegö problem involves maximizing the absolute value of this functional.

The Fekete-Szegö inequalities [9], introduced in 1933, have intrigued scholars studying univalent func-
tions [8], [13], [17], [29], and similarly, bi-univalent functions have yielded such inequalities. Recent studies
continue to explore this topic, with notable contributions from [1], [4], [31]. For instance, Ali et al. [2]
explored the second Hankel determinant and Fekete-Szegö functional using the q-Salagean derivative
operator; Srivastava et al. [26] estimated Fekete-Szegö inequalities and Hankel determinants for certain
analytic functions involving the Hohlov operator; Srivastava et al. [27] obtained coefficient estimates
for subclasses related to Gegenbauer polynomials; and Srivastava et al. [28] studied a new subclass of
normalized analytic functions using quantum calculus and solved Fekete-Szegö type problems.

For q ∈ (0, 1). The q-derivative (or q-difference) operator, introduced by Jackson [11], [12], is defined as

∂qΥ(ξ) =
{ Υ(ξ)−Υ(qξ)

(1−q)ξ , if ξ , 0
Υ′(0), if ξ = 0

. (3)
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We note that

lim
q→1

∂qΥ(ξ) = Υ′(ξ)

if Υ is differentiable at ξ. From (3), we decude that for function Υ ∈ A

∂qΥ(ξ) = 1 +
∞∑

k=2

[k]q akξ
k−1, (4)

where [k]q is given by

[k]q =
1 − qk

1 − q
, [0]q = 0 (5)

and the q-factorial is given by

[k]q! =


1, k = 0

k∏
r=1

[r]q , k ∈N
. (6)

As q→ 1−, we obtain [k]q → k. If we choose the function l(ξ) = ξk, while q→ 1−, we can thus have

∂ql(ξ) = ∂qξ
k = [k]q ξ

k−1 = l′(ξ),

where the ordinary derivative is denoted by l′.
Classical orthogonal polynomials of a discrete variable are crucial in applied and computational math-

ematics, probability theory, statistics, physics, and technology. The study of Krawtchouk polynomials and
their generalizations, as part of orthogonal polynomials of a discrete variable, has seen significant success
across these fields [19].

The most common types of orthogonal polynomials found in applications are the classical varieties
(Hermite, Laguerre, and Jacobi polynomials). We include [1]-[6], [10], [14], [30] for a recent relationship
between geometric function theory and the classical orthogonal polynomials.

The Krawtchouk polynomials [15] are defined of for any prime power ρ, positive integer and k =
0, 1, 2, ....n, which are described by

Kk
(
x; n, ρ

)
= Kk (x) =

k∑
j=0

(−1) j (ρ − 1
)k− j

(
x
j

)(
n − x
k − j

)
, (7)

In [15], the generating series of Krawtchouk polynomials is given as below:

(
1 +

(
ρ − 1

)
ξ
)n−x (1 − ξ)x =

∞∑
k=0

Kk
(
x; n, ρ

)
ξk. (8)

Here ξ is a formal variable.
Krawtchouk polynomials [15] are discrete orthogonal polynomials associated with the binomial distri-

bution, introduced by Mykhailo Kravchuk.
From (8), the following expression is obtained for ρ = 2 and n ≥ 2:

Φ (x,n; ξ) = (1 + ξ)n−x (1 − ξ)x =

∞∑
k=0

Kk (x; n) ξk, ξ ∈ D, x = 1, 2, ..., (9)

The Taylor-Maclaurin series expansion for the function Φ (x,n; ξ) is as follows:

Φ (x,n; ξ) = 1 +K1 (x; n) ξ2 +K2 (x; n) ξ3 +K3 (x; n) ξ4 + · · · +Kk−1 (x; n) ξn + . . . , (10)
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where

K0 (x; n) = 1, K1 (x; n) = −2x + n, K2 (x; n) = 2x2
− 2nx +

(
n
2

)
, (11)

K3 (x; n) = −
4
3

x3
− 2nx2

−

(
n2
− n +

2
3

)
x +

(
n
3

)
.

In this work, using Krawtchouk polynomials, we define and investigate a new subclass of bi univalent
functions.

2. Coefficient Bounds of the ClassMΛ
(
x, n, q;Φ

)
We present new subclasses of bi-univalent functions that are subordinate to the Krawtchouk polynomi-

als.

Definition 2.1. We assert that Υ belonging to Λ is said to be in the class MΛ
(
x,n, q;Φ

)
, for x = 0, 1, 2, ... and

n ≥ 2, if the following subordinations hold:

∂qΥ(ξ) ≺ Φ (x,n; ξ) (12)

and

∂qϱ(ω) ≺ Φ (x,n;ω) , (13)

ξ,ω ∈ D, Φ is given by (11), and ϱ = Υ−1 is given by (2).

Lemma 2.2. ([18, p.172])Suppose ω(ξ) =
∑
∞

k=1 ωkξk, ξ ∈ D, is an analytic function in D such that |ω(ξ)| < 1,
ξ ∈ D. Then,

|ω1| ≤ 1, |wk| ≤ 1 − |ω1|
2, k = 1, 2, 3, . . . .

Theorem 2.3. Let Υ ∈ Λ given by (1) be in the classMΛ
(
x,n, q;Φ

)
. Then,

|a2| ≤
|K1 (x; n)|

√
K1 (x; n)√∣∣∣[3]qK

2
1 (x; n) − [2]2

qK2 (x; n)
∣∣∣ , (14)

and

|a3| ≤
|K1 (x; n)|

[3]q
+
K

2
1 (x; n)

[2]2
q

. (15)

Proof. Let Υ ∈ MΛ
(
x,n, q;Φ

)
and ϱ = Υ−1. We have the following from the definition in formulas (12) and

(13)

∂qΥ(ξ) = Φ (x,n; υ (ξ)) (16)

and

∂qϱ(ω) = Φ (x,n; ν (ω)) , (17)

where the analytical υ and ν functions have the form

υ (ξ) = c1ξ + c2ξ
2 + . . . , (18)

ν (ω) = d1ω + d2ω
2 + . . . , (19)
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and υ (0) = 0 = ν (0), |υ(ξ)| < 1, |ν (ω)| < 1, ξ,ω ∈ D. It follows that, from Lemma 2.2, that∣∣∣c j

∣∣∣ ≤ 1,
∣∣∣d j

∣∣∣ ≤ 1,where j ∈N. (20)

If we replace (18) and (19) in (16) and (17), respectively, we obtain

∂qΥ(ξ) = 1 +K1 (x; n) υ (ξ) +K2 (x; n) υ2 (ξ) + . . . , (21)

and

∂qϱ(ω) = 1 +K1 (x; n) ν (ω) +K2 (x; n) ν2 (ω) + . . . . (22)

In view of (1) and (2), from (21) and (22), we obtain

1 + [2]q a2ξ + [3]q a3ξ
2 + ...

= 1 +K1 (x; n) c1ξ +
[
K1 (x; n) c2 +K2 (x; n) c2

1

]
ξ2 + ...

and

1 − [2]q a2ω + [3]q

(
2a2

2 − a3

)
ω2 + ...

= 1 +K1 (x; n) d1ω +
[
K1 (x; n) d2 +K2 (x; n) d2

1

]
ω2 + ....

It gives rise to the following relationships:

[2]q a2 = K1 (x; n) c1, (23)

[3]q a3 = K1 (x; n) c2 +K2 (x; n) c2
1, (24)

and

− [2]q a2 = K1 (x; n) d1, (25)

[3]q

(
2a2

2 − a3

)
= K1 (x; n) d2 +K2 (x; n) d2

1. (26)

From (23) and (25), it follows that

c1 = −d1, (27)

and

2 [2]2
q a2

2 = K
2
1 (x; n)

(
c2

1 + d2
1

)
. (28)

By adding (24) to (26), yields

2 [3]q a2
2 = K1 (x; n) (c2 + d2) +K2 (x; n)

(
c2

1 + d2
1

)
. (29)

We get that by replacing the value of
(
c2

1 + d2
1

)
from (28) on the right side of (29),

a2
2 =

K1 (x; n) (c2 + d2)K2
1 (x; n)

2 [3]qK
2
1 (x; n) − 2 [2]2

qK2 (x; n)
. (30)

From (20) for c2 and d2 we get (14). Furthermore, by deducting (26) from (24), we arrive at

2 [3]q

(
a3 − a2

2

)
= K1 (x; n) (c2 − d2) +K2 (x; n)

(
c2

1 − d2
1

)
. (31)

Then, in view of (28) and (31), we obtain

a3 =
K

2
1 (x; n)

2 [2]2
q

(
c2

1 + d2
1

)
+
K1 (x; n)

2 [3]q
(c2 − d2).

Once again applying (20), for the coefficients c1, d1, c2, d2, we deduce (15).
The proof is thus finished.
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Based on Theorem 2.3, we can derive the subsequent outcome for q = 1.

Corollary 2.4. Let Υ ∈ Λ given by (1) belong to the classMΛ (x,n, 1;Φ). Then,

|a2| ≤
|K1 (x; n)|

√
K1 (x; n)√∣∣∣3K2

1 (x; n) − 4K2 (x; n)
∣∣∣

and

|a3| ≤
|K1 (x; n)|

3
+
K

2
1 (x; n)

4
.

For functions in the class MΛ
(
x,n, q;Φ

)
, we prove the following Fekete–Szegö inequality using the

values of a2
2 and a3.

Theorem 2.5. Let Υ ∈ Λ given by (1) be in the classMΛ
(
x,n, q;Φ

)
. Then,

∣∣∣a3 − γa2
2

∣∣∣ ≤ 
|K1(x;n)|

[3]q
, if

∣∣∣h (
γ
)∣∣∣ ≤ 1

2[3]q
,

2 |K1 (x; n)|
∣∣∣h (
γ
)∣∣∣ , if

∣∣∣h (
γ
)∣∣∣ ≥ 1

2[3]q
,

where

h
(
γ
)
=

(1 − γ)K2
1 (x; n)

2 [3]qK
2
1 (x; n) − 2 [2]2

qK2 (x; n)
.

Proof. From (30) and (31),

a3 − γa2
2 = K1 (x; n)

 c2

2 [3]q
−

d2

2 [3]q
+

(1 − γ)K2
1 (x; n) c2

2 [3]qK
2
1 (x; n) − 2 [2]2

qK2 (x; n)

+
(1 − γ)K2

1 (x; n) d2

2 [3]qK
2
1 (x; n) − 2 [2]2

qK2 (x; n)


= K1 (x; n)

[(
h
(
γ
)
+

1
2 [3]q

)
c2 +

(
h
(
µ
)
−

1
2 [3]q

)
d2

]
,

where

h
(
γ
)
=

(1 − γ)K2
1 (x; n)

2 [3]qK
2
1 (x; n) − 2 [2]2

qK2 (x; n)
.

Therefore, given (20), we conclude that the required inequality holds.
The proof is thus finished.

Based on Theorem 2.5, we can derive the subsequent outcome for q = 1.

Corollary 2.6. Let Υ ∈ Λ given by (1) belong to the classMΛ (x,n, 1;Φ). Then,∣∣∣a3 − γa2
2

∣∣∣ ≤ {
|K1(x;n)|

3 , if
∣∣∣h (
γ
)∣∣∣ ≤ 1

6 ,
2 |K1 (x; n)|

∣∣∣h (
γ
)∣∣∣ , if

∣∣∣h (
γ
)∣∣∣ ≥ 1

6 ,

where

h
(
γ
)
=

(1 − γ)K2
1 (x; n)

2
(
3K2

1 (x; n) − 4K2 (x; n)
) .
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3. Coefficient Bounds of the Class S∗
Λ

(
x, n, q;Φ

)
Definition 3.1. We assert that Υ belonging toΛ is said to be in the class S∗

Λ

(
x,n, q;Φ

)
, for x = 0, 1, 2, ... and n ≥ 2,

if the following subordinations hold:

ξ∂qΥ(ξ)
Υ(ξ)

≺ Φ (x,n; ξ) (32)

and

ω∂qϱ(ω)
ϱ(ω)

≺ Φ (x,n;ω) (33)

ξ,ω ∈ D, Φ is given by (11), and ϱ = Υ−1 is given by (2).

Theorem 3.2. Let Υ ∈ Λ given by (1) be in the class S∗
Λ

(
x,n, q;Φ

)
. Then,

|a2| ≤
|K1 (x; n)|

√
K1 (x; n)

q
√∣∣∣K2

1 (x; n) −K2 (x; n)
∣∣∣ (34)

and

|a3| ≤
|K1 (x; n)|
q
(
1 + q

) + K2
1 (x; n)

q2 . (35)

Proof. Let Υ ∈ S∗
Λ

(
x,n, q;Φ

)
and ϱ = Υ−1. We have the following from the definition in formulas (32) and

(33)

ξ∂qΥ(ξ)
Υ(ξ)

= Φ (x,n; υ (ξ)) (36)

and

ω∂qϱ(ω)
ϱ(ω)

= Φ (x,n; ν (ω)) (37)

where the analytical υ and ν functions have the form

υ (ξ) = c1ξ + c2ξ
2 + . . . , (38)

ν (ω) = d1ω + d2ω
2 + . . . , (39)

and υ (0) = 0 = ν (0), |υ(ξ)| < 1, |ν (ω)| < 1, ξ,ω ∈ D. It follows that, from Lemma 2.2, that∣∣∣c j

∣∣∣ ≤ 1,
∣∣∣d j

∣∣∣ ≤ 1,where j ∈N. (40)

If we replace (38) and (39) in (36) and (37), respectively, we obtain

ξ∂qΥ(ξ)
Υ(ξ)

= 1 +K1 (x; n) υ (ξ) +K2 (x; n) υ2 (ξ) + . . . , (41)

and

ω∂qϱ(ω)
ϱ(ω)

= 1 +K1 (x; n) ν (ω) +K2 (x; n) ν2 (ω) + . . . . (42)
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In view of (1) and (2), from (41) and (42), we obtain

1 + qa2ξ + q
((

1 + q
)

a3 − a2
2

)
ξ2 + ...

= 1 +K1 (x; n) c1ξ +
[
K1 (x; n) c2 +K2 (x; n) c2

1

]
ξ2 + ...

and

1 − qa2ω + q
((

1 + 2q
)

a2
2−

(
1 + q

)
a3

)
ω2 + ...

= 1 +K1 (x; n) d1ω +
[
K1 (x; n) d2 +K2 (x; n) d2

1

]
ω2 + ....

It gives rise to the following relationships:

qa2 = K1 (x; n) c1, (43)

q
[(

1 + q
)

a3 − a2
2

]
= K1 (x; n) c2 +K2 (x; n) c2

1, (44)

and

−qa2 = K1 (x; n) d1, (45)

q
[(

1 + 2q
)

a2
2−

(
1 + q

)
a3

]
= K1 (x; n) d2 +K2 (x; n) d2

1. (46)

From (43) and (45), it follows that

c1 = −d1, (47)

and

2q2a2
2 = K

2
1 (x; n)

(
c2

1 + d2
1

)
. (48)

By adding (44) to (46), yields

2q2a2
2 = K1 (x; n) (c2 + d2) +K2 (x; n)

(
c2

1 + d2
1

)
. (49)

We determine that, by replacing the value of
(
c2

1 + d2
1

)
from (48) on the right side of (49),

a2
2 =
K1 (x; n) (c2 + d2)K2

1 (x; n)

2q2
(
K2

1 (x; n) −K2 (x; n)
) . (50)

From (40) for c2 and d2 we get (34). In addition, if we subtract (46) from (44), we obtain

2q
(
1 + q

) (
a3 − a2

2

)
= K1 (x; n) (c2 − d2) +K2 (x; n)

(
c2

1 − d2
1

)
(51)

Then, in view of (48) and (51), we obtain

a3 =
K

2
1 (x; n)

2q2

(
c2

1 + d2
1

)
+
K1 (x; n)
2q

(
1 + q

) (c2 − d2).

Once again applying (40), for the coefficients c1, d1, c2, d2, we deduce (35).
The proof is thus finished.

Based on Theorem 3.2, we can derive the subsequent outcome for q = 1.
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Corollary 3.3. Let Υ ∈ Λ given by (1) belong to the class S∗
Λ

(x,n, 1;Φ). Then

|a2| ≤
|K1 (x; n)|

√
K1 (x; n)√∣∣∣K2

1 (x; n) −K2 (x; n)
∣∣∣

and

|a3| ≤
|K1 (x; n)|

2
+K2

1 (x; n) .

For functions in the classS∗
Λ

(
x,n, q;Φ

)
, we prove the following Fekete–Szegö inequality using the values

of a2
2 and a3.

Theorem 3.4. Let Υ ∈ Λ given by (1) be in the class S∗
Λ

(
x,n, q;Φ

)
. Then,

∣∣∣a3 − γa2
2

∣∣∣ ≤


|K1(x;n)|
q(1+q) , if

∣∣∣ψ (
γ
)∣∣∣ ≤ 1

1+q ,

|K1(x;n)||ψ(γ)|
q , if

∣∣∣ψ (
γ
)∣∣∣ ≥ 1

1+q ,

where

ψ
(
γ
)
=

(1 − γ)K2
1 (x; n)

q
(
K2

1 (x; n) −K2 (x; n)
) .

Proof. From (50) and (51),

a3 − γa2
2 =

K1 (x; n)
2q

 c2

1 + q
−

d2

1 + q
+

(1 − γ)K2
1 (x; n) c2

q
(
K2

1 (x; n) −K2 (x; n)
)

+
(1 − γ)K2

1 (x; n) d2

q
(
K2

1 (x; n) −K2 (x; n)
) 

=
K1 (x; n)

2q

[(
ψ

(
γ
)
+

1
1 + q

)
c2 +

(
ψ

(
γ
)
−

1
1 + q

)
d2

]
,

where

ψ
(
γ
)
=

(1 − γ)K2
1 (x; n)

q
(
K2

1 (x; n) −K2 (x; n)
) .

Therefore, given (40), we conclude that the required inequality holds.
The proof is thus finished.

Based on Theorem 3.4, we can derive the subsequent outcome for q = 1.

Corollary 3.5. Let Υ ∈ Λ given by (1) belong to the class S∗
Λ

(x,n, 1;Φ). Then,

∣∣∣a3 − γa2
2

∣∣∣ ≤ {
|K1(x;n)|

2 , if
∣∣∣ψ (

γ
)∣∣∣ ≤ 1

2 ,
|K1 (x; n)|

∣∣∣ψ (
γ
)∣∣∣ , if

∣∣∣ψ (
γ
)∣∣∣ ≥ 1

2 ,

where

ψ
(
γ
)
=

(1 − γ)K2
1 (x; n)

K2
1 (x; n) −K2 (x; n)

.
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4. Coefficient Bounds of the Class CΛ
(
x, n, q;Φ

)
Definition 4.1. We assert that Υ belonging toΛ is said to be in the class CΛ

(
x,n, q;Φ

)
, for x = 0, 1, 2, ... and n ≥ 2,

if the following subordinations hold:

1 +
ξ∂2

qΥ(ξ)

∂qΥ(ξ)
≺ Φ (x,n; ξ) (52)

and

1 +
ω∂2

qϱ(ω)

∂qϱ(ω)
≺ Φ (x,n;ω) , (53)

ξ,ω ∈ D, Φ is given by (11), and ϱ = Υ−1 is given by (2).

Theorem 4.2. Let Υ ∈ Λ given by (1) be in the class CΛ
(
x,n, q;Φ

)
. Then,

|a2| ≤
|K1 (x; n)|

√
K1 (x; n)√

[2]q

∣∣∣[3]qK
2
1 (x; n) − [2]qK

2
1 (x; n) − [2]qK2 (x; n)

∣∣∣ , (54)

and

|a3| ≤
|K1 (x; n)|
[2]q [3]q

+
K

2
1 (x; n)

[2]2
q

. (55)

Proof. Let Υ ∈ CΛ
(
x,n, q;Φ

)
and ϱ = Υ−1. We have the following from the definition in formulas (52) and

(53)

1 +
ξ∂2

qΥ(ξ)

∂qΥ(ξ)
= Φ (x,n; υ (ξ)) (56)

and

1 +
ω∂2

qϱ(ω)

∂qϱ(ω)
= Φ (x,n; ν (ω)) , (57)

where the analytical υ and ν functions have the form

υ (ξ) = c1ξ + c2ξ
2 + . . . , (58)

ν (ω) = d1ω + d2ω
2 + . . . , (59)

and υ (0) = 0 = ν (0), |υ(ξ)| < 1, |ν (ω)| < 1, ξ,ω ∈ D.
It follows that, from Lemma 2.2, that∣∣∣c j

∣∣∣ ≤ 1,
∣∣∣d j

∣∣∣ ≤ 1,where j ∈N. (60)

If we replace (58) and (59) in (56) and (57), respectively, we obtain

1 +
ξ∂2

qΥ(ξ)

∂qΥ(ξ)
= 1 +K1 (x; n) υ (ξ) +K2 (x; n) υ2 (ξ) + . . . , (61)

and

1 +
ω∂2

qϱ(ω)

∂qϱ(ω)
= 1 +K1 (x; n) ν (ω) +K2 (x; n) ν2 (ω) + . . . . (62)
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In view of (1) and (2), from (61) and (62), we obtain

1 + [2]q a2ξ +
(
[2]q [3]q a3 − [2]2

q a2
2

)
ξ2 + ...

= 1 +K1 (x; n) c1ξ +
[
K1 (x; n) c2 +K2 (x; n) c2

1

]
ξ2 + ...

and

1 − [2]q a2ω +
(
[2]q

(
2 [3]q − [2]q

)
a2

2 − [2]q [3]q a3

)
ω2 + ...

= 1 +K1 (x; n) d1ω +
[
K1 (x; n) d2 +K2 (x; n) d2

1

]
ω2 + ....

It gives rise to the following relationships:

[2]q a2 = K1 (x; n) c1, (63)

[2]q [3]q a3 − [2]2
q a2

2 = K1 (x; n) c2 +K2 (x; n) c2
1, (64)

and

− [2]q a2 = K1 (x; n) d1, (65)

[2]q

(
2 [3]q − [2]q

)
a2

2 − [2]q [3]q a3 = K1 (x; n) d2 +K2 (x; n) d2
1. (66)

From (63) and (65), it follows that

c1 = −d1, (67)

and

2 [2]2
q a2

2 = K
2
1 (x; n)

(
c2

1 + d2
1

)
. (68)

By adding (64) to (66), yields

2 [2]q

(
[3]q − [2]q

)
a2

2 = K1 (x; n) (c2 + d2) +K2 (x; n)
(
c2

1 + d2
1

)
(69)

We determine that, by replacing the value of
(
c2

1 + d2
1

)
from (68) on the right side of (69),

a2
2 =

K1 (x; n) (c2 + d2)K2
1 (x; n)

2 [2]q

(
[3]qK

2
1 (x; n) − [2]qK

2
1 (x; n) − [2]qK2 (x; n)

) . (70)

From (60) for c2 and d2 we get (54).
In addition, if we subtract (66) from (64), we obtain

2 [2]q [3]q

(
a3 − a2

2

)
= K1 (x; n) (c2 − d2) +K2 (x; n)

(
c2

1 − d2
1

)
. (71)

Then, in view of (68) and (71), we obtain

a3 =
K

2
1 (x; n)

2 [2]2
q

(
c2

1 + d2
1

)
+
K1 (x; n)
2 [2]q [3]q

(c2 − d2).

Once again applying (60), for the coefficients c1, d1, c2, d2, we deduce (55).
The proof is thus finished.

Based on Theorem 4.2, we can derive the subsequent outcome for q = 1.
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Corollary 4.3. Let Υ ∈ Λ given by (1) belong to the class CΛ (x,n, 1;Φ). Then,

|a2| ≤
|K1 (x; n)|

√
2K1 (x; n)

2
√∣∣∣K2

1 (x; n) − 2K2 (x; n)
∣∣∣

and

|a3| ≤
|K1 (x; n)|

6
+
K

2
1 (x; n)

4
.

For functions in the classCΛ
(
x,n, q;Φ

)
, we prove the following Fekete–Szegö inequality using the values

of a2
2 and a3.

Theorem 4.4. Let Υ ∈ Λ given by (1) be in the class CΛ
(
x,n, q;Φ

)
. Then,

∣∣∣a3 − γa2
2

∣∣∣ ≤ 
|K1(x;n)|
[2]q[3]q

, if
∣∣∣φ (

γ
)∣∣∣ ≤ 1

2[2]q[3]q
,

2 |K1 (x; n)|
∣∣∣φ (

γ
)∣∣∣ , if

∣∣∣φ (
γ
)∣∣∣ ≥ 1

2[2]q[3]q
,

where

φ
(
γ
)
=

(1 − γ)K2
1 (x; n)

2 [2]q

(
[3]qK

2
1 (x; n) − [2]qK

2
1 (x; n) − [2]qK2 (x; n)

) .
Proof. From (70) and (71),

a3 − γa2
2 = K1 (x; n)

[
c2

2 [2]q [3]q
−

d2

2 [2]q [3]q

+
(1 − γ)K2

1 (x; n) c2

2 [2]q

(
[3]qK

2
1 (x; n) − [2]qK

2
1 (x; n) − [2]qK2 (x; n)

)
+

(1 − γ)K2
1 (x; n) d2

2 [2]q

(
[3]qK

2
1 (x; n) − [2]qK

2
1 (x; n) − [2]qK2 (x; n)

) 
= K1 (x; n)

[(
φ

(
γ
)
+

1
2 [2]q [3]q

)
c2 +

(
φ

(
γ
)
−

1
2 [2]q [3]q

)
d2

]
,

where

φ
(
γ
)
=

(1 − γ)K2
1 (x; n)

2 [2]q

(
[3]qK

2
1 (x; n) − [2]qK

2
1 (x; n) − [2]qK2 (x; n)

) .
Therefore, given (60), we conclude that the required inequality holds.

The proof is thus finished.

For q = 1, we obtain the following result from Theorem 4.4.

Corollary 4.5. Let Υ ∈ Λ given by (1) belong to the class CΛ (x,n, 1;Φ). Then,∣∣∣a3 − γa2
2

∣∣∣ ≤ {
|K1(x;n)|

6 , if
∣∣∣φ (

γ
)∣∣∣ ≤ 1

12 ,
2 |K1 (x; n)|

∣∣∣φ (
γ
)∣∣∣ , if

∣∣∣φ (
γ
)∣∣∣ ≥ 1

12 ,

where

φ
(
γ
)
=

(1 − γ)K2
1 (x; n)

4
(
K2

1 (x; n) − 2K2 (x; n)
) .
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5. Conclusions

In this paper, we introduced and investigated a new subclass of bi-univalent functions in the open unit
disk defined by Krawtchouk polynomials and satisfies subordination conditions. Furthermore, we obtain
upper bounds for |a2| , |a3| and Fekete-Szegö inequality

∣∣∣a3 − γa2
2

∣∣∣ for functions in this subclass.
Also, the approach presented here has been extended to establish new subfamilies of bi-univalent func-

tions with the other special functions. The related outcomes may be left to the the researchers for practice.
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