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Abstract. LetH be a complex separable Hilbert space. A von Neumann algebraM ⊆ B(H) is said to be
standard if there is a conjugation C on H such that CMC =M′. In this paper we determine which type I
von Neumann algebras are standard.

1. Introduction

The Tomita-Takesaki Modular theory is one of the most important developments in the study of von
Neumann algebras, revealing a very precise and intimate connection between a von Neumann algebra and
its commutant, along with a canonical one-parameter group of outer automorphisms. This theory was first
developed by M. Tomita [16], and was carefully and thoroughly explained, clarified, and refined by M.
Takesaki [14].

Throughout this paper, we denote by H a complex separable Hilbert space, and by B(H) the algebra
of all bounded linear operators on H . Recall that a map C on H is called an antiunitary operator if C is
conjugate linear, invertible and ⟨Cx,Cy⟩ = ⟨y, x⟩ for all x, y ∈ H ; if, in addition, C−1 = C, then C is called a
conjugation.

Theorem 1.1 (Tomita-Takesaki). LetM ⊆ B(H) be a von Neumann algebra with a cyclic and separating vector.
Then there exists a conjugation C onH and a collection {∆it : t ∈ R} of unitary operators in B(H) satisfying

(i) CMC =M′;
(ii) {∆it : t ∈ R} defines a one parameter group of automorphisms forM.

This theory made possible the great advances in the 1970s by Connes et al. on the classification of factors
[4]. Inspired by that, Haagerup [9] proposed the definition of a standard form of a von Neumann algebra.

Definition 1.2. A von Neumann algebraM ⊆ B(H) is said to be standard if there exsits a conjugation C on H
such that CMC =M′; if, in addition, there exsit a self-dual cone P ⊆ H such that

(i) Cξ = ξ for any ξ ∈ P;
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(ii) TCTCP ⊆ P for any T ∈ M;
(iii) CTC = T∗ for any T ∈ Z(M) (the center ofM).

Then the quadruple (M,H ,C,P) is called a standard form ofM.

By [9], any von Neumann algebra is isomorphic to a von Neumann algebra M in a standard form
(M,H ,C,P); and if M1 ⊆ B(H) is a standard von Neumann algebra, then one can choose C1 on H and
P1 ⊆ H such that (M1,H ,C1,P1) is a standard form ofM1. Hence it is natural to ask the following question.

Question 1.3. Which von Neumann algebras are standard?

Clearly,M is standard if and only ifM′ is standard. By Theorem 1.1, ifM is a von Neumann algebra
with a cyclic and separating vector, then M is standard. Note that a von Neumann algebra may not be
standard, for example, ifM = B(Cn) for n ≥ 2, then CMC =M , CIn =M

′ for any conjugation C on Cn.

Definition 1.4. Let M ⊆ B(H) be a von Neumann algebra. If C is a conjugation on H , then we call CMC a
transpose ofM.

The notion “transpose” for von Neumann algebras is in fact a generalization of that for matrices. Assume
thatM ⊆ B(H) is a von Neumann algebra and C is a conjugation onH . Then there exists an orthonormal
basis (ONB, for short) {en} ofH such that Cen = en for all n (see [5, Lemma 1]). Choose an operator A ∈ CMC
with A = CTC for T ∈ M. Note that T∗ has the matrix representation [ai, j] with respect to {en}, where
ai, j = ⟨T∗e j, ei⟩. And

⟨Aei, e j⟩ = ⟨CTCei, e j⟩ = ⟨CTei, e j⟩

= ⟨Ce j,Tei⟩ = ⟨e j,Tei⟩

= ⟨T∗e j, ei⟩.

Thus the matrix representation of A with respect to {en} is exactly the transpose of T∗’s matrix [ai, j]. So,
given a von Neumann algebraM ⊆ B(H), a transpose ofM is obtained fromM by transposing the matrix
of each T ∈ Mwith respect to some ONB.

Remark 1.5. (i) A von Neumann algebra may have more than one transpose; however, any two transposes of a
von Neumann algebra are unitarily equivalent. In fact, ifM ⊆ B(H) is a von Neumann algebra and C,D are
conjugations onH , then U := CD is unitary and

U∗(CMC)U = (DC)(CMC)(CD) = DMD;

that is, CMC and DMD are unitarily equivalent.
(ii) Each von Neumann algebra M is anti-isomorphic to its transpose Mt = CMC. In fact, X 7→ CX∗C is the

corresponding anti-isomorphism. Connes [2, 3] constructed von Neumann factors of type II1 and type III which
are not anti-isomorphic to themselves. This shows that a von Neumann algebra may not be a transpose of itself.
However, each type I von Neumann algebra is a transpose of itself (see Remark 2.3).

Here we provide more examples of standard von Neumann algebras.

Lemma 1.6. LetM1 andM2 be von Neumann algebras. IfM′

1 �M
t
2, where � denotes unitary equivalence, then

M1 ⊕M2 is standard.

Proof. Without loss of generality, we assume thatM1,M2 ⊆ B(H) are von Neumann algebras withM′

1 �
M

t
2. Then there exists a conjugation C0 and a unitary operator U onH such that UM′

1U∗ = C0M2C0.
Let D = C0U. Then D is an antiunitary operator onH . Set

C =
[

0 D−1

D 0

]
H

H
.

Then C is a conjugation on H ⊕ H , and one can check that C(M1 ⊕M2)C = M′

1 ⊕M
′

2, i.e., M1 ⊕M2 is
standard.
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By the preceding lemma, we haveA′⊕At is standard for any von Neumann algebraA ⊆ B(H). Hence,
it is natural to ask whether each standard von Neumann algebraM is of the form A′ ⊕ At for some von
Neumann algebraA ⊆ B(H). In general, this is not the case. In fact, ifM = {A ⊕ A : A ∈ B(C2)}, then one
can check thatM is standard (see Corollary 2.7); however,M can not be written asA′ ⊕At.

The main result of this paper is the following theorem, which provides a canonical decomposition of
standard type I von Neumann algebras.

Theorem 1.7. IfM is a von Neumann algebra of type I, thenM is standard if and only ifM is unitarily equivalent
to a direct sum of von Neumann algebras of the form (some of the summands may be absent)

(i) A ⊗ B(K ) ⊗ CI, where A is a maximal abelian von Neumann algebra and I is the identity operator on some
Hilbert spaceK ; and

(ii) A′ ⊕At, whereA is a von Neumann algebra.

It is well known that every von Neumann algebraM can be uniquely decomposed into the direct sum
of type I, type II and type III von Neumann algebras, that is, M = MI ⊕MII ⊕MIII. We will show that
M is standard if and only if each ofMI,MII andMIII is standard (see Proposition 3.3). Furthermore, we
will show that if G is a locally compact group, then the group von Neumann algebra R(G) is standard (see
Examples 3.7).

Our approach to Question 1.3 is inspired by the study of complex symmetric operators. Recall that
an operator T ∈ B(H) is called a complex symmetric operator (CSO) if CT∗C = T for some conjugation C on
H . The study of complex symmetric operators was initiated by Garcia and Putinar [5, 6] and has received
much attention in the last decade (see [7, 8, 10] for references). In [8, Thm. 1.6], Guo and Zhu obtained a
decomposition theorem of CSOs, which describes the block structure of complex symmetric operators and
inspires the present study.

2. Proof of Theorem 1.7

This section is devoted to the proof of Theorem 1.7. We first recall some basic definitions and results
concerning the classification of von Neumann algebras. More details can be found in [15].

A von Neumann algebraM is said to be of type I if every nonzero central projection inM majorizes a
nonzero abelian projection inM. If there is no nonzero finite projection inM, that is,M is purely infinite,
then it is said to be of type III. IfM has no nonzero abelian projection and every nonzero central projection
inMmajorizes a nonzero finite projection ofM, then it is said to be of type II. IfM is finite and of type II,
then it is said to be of type II1. IfM is of type II and has no nonzero central finite projection, thenM is said
to be of type II∞.

Lemma 2.1 ([15, Cor. 2.24]). LetM be a von Neumann algebra. Then

(i) M is of type I if and only ifM′ is of type I;
(ii) M is of type II if and only ifM′ is of type II;

(iii) M is of type III if and only ifM′ is of type III.

Suppose that M ⊆ B(H) is a von Neumann algebra of type I. Then there is an orthogonal family of
central projections {Zα} such that

∑
α Zα = I and Zα is the greatest α-homogeneous central projection in

M. SinceM′ is of type I, one can see thatM′ can also be decomposed by an orthogonal family of central
projections {Z′α} such that

∑
α Z′α = I and Z′α is the greatest α-homogeneous central projection inM′. Note

that the centerZ(M) ofM coincides with the center ofM′. Therefore, {Zα} and {Z′α} are both inZ(M). Put

Zα,β = ZαZ′β.

We can obtain a finer partition {Zα,β} of the identity. Therefore, Takesaki [15] obtained the following
description of the spatial type of a von Neumann algebra of type I.
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Lemma 2.2 ([15, Thm. 1.31]). A von Neumann algebraM of type I has the unique decomposition

M � Σ⊕α,β(Aα,β ⊗ B(Hα) ⊗ CIβ),

and
M
′ � Σ⊕α,β(Aα,β ⊗ CIα ⊗ B(Hβ)),

whereAα,β is a maximal abelian von Neumann algebra andHα (resp. Hβ) is an α-dimensional (resp. β-dimensional)
Hilbert space.

Throughout the rest of this paper, we denote Mα,β = Aα,β ⊗ B(Hα) ⊗ CIβ, where Aα,β is a maximal
abelian von Neumann algebra, Hα is an α-dimensional Hilbert space, and Iβ is the identity operator on
some β-dimensional Hilbert space.

Remark 2.3. Mt
α,β =Mα,β. In fact, without loss of generality, we can assume Aα,β = L∞(X, µ). Let C1, C2, C3 be

conjugations on L2(X, µ),Hα,Hβ, respectively. Then C := C1⊗C2⊗C3 is a conjugation onH := L2(X, µ)⊗Hα⊗Hβ
and

CMα,βC =Mα,β.

Proposition 2.4. M′

α,β �Mξ,η if and only ifAα,β � Aξ,η, α = η and β = ξ.

Proof. “⇐=”. IfAα,β � Aξ,η and α = η, β = ξ, thenAα,β � Aβ,α. It follows that

M
′

α,β = Aα,β ⊗ CIα ⊗ B(Hβ) �Mβ,α.

“=⇒”. Without loss of generality, we can assume that

Aα,β = L∞(Xα,β, µα,β)

and
Aξ,η = L∞(Xξ,η, µξ,η).

Note that
Mα,β = L∞(Xα,β, µα,β) ⊗ B(Hα) ⊗ CIβ,

Mξ,η = L∞(Xξ,η, µξ,η) ⊗ B(Hξ) ⊗ CIη,

and
M
′

α,β = L∞(Xα,β, µα,β) ⊗ CIα ⊗ B(Hβ).

SinceM′

α,β �Mξ,η and the unitary isomorphism “ � ” preserves the center ofM′

α,β and the center ofMξ,η,
it follows immediately that L∞(Xα,β, µα,β) � L∞(Xξ,η, µξ,η). Hence we haveAα,β � Aξ,η and α = η, β = ξ.

Corollary 2.5. IfAα,β � Aβ,α, thenMα,β ⊕Mβ,α is standard.

Corollary 2.6. Mα,β is standard if and only if α = β.

Corollary 2.7. Let Hα and Hβ be Hilbert spaces with dimHα = α and dimHβ = β. Let Nα,β = B(Hα) ⊗ CIβ.
ThenNα,β is standard if and only if α = β.

Now we are going to give the proof of Theorem 1.7.
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Proof. [Proof of Theorem 1.7] Without loss of generality, we assume that M ⊆ B(H) is a von Neumann
algebra of type I. The sufficiency is obvious by Lemma 1.6 and Corollary 2.6.

For the necessity, note thatM is a von Neumann algebra of type I and, by Lemma 2.2,M has the unique
decomposition

M � Σ⊕(α,β)∈ΛMα,β,

where Λ ⊆ {1, 2, · · · ,∞} × {1, 2, · · · ,∞}.
Since M is standard, there exists a conjugation C on H such that CMC = M′. Let Zα be the greatest

α-homogeneous central projection inM. Then CZαC is the greatest α-homogeneous central projection in
CMC =M′. Hence, Z′α = CZαC and

CZα,βC = CZαZ′βC = Z′αZβ = ZβZ′α = Zβ,α.

It follows that
C{Zα,β}C = {Zα,β}.

Let Zτ(α,β) denote CZα,βC. Then τ : Λ → Λ is an involutive map. The rest of this proof is divided into
two cases.

Case 1. τ(α, β) = (α, β).
It follows that CZα,β = Zα,βC. Hence C = Cα,β ⊕D for some conjugation Cα,β on the underlying space of

Mα,β and some conjugation D on its orthogonal complement; moreover,

Cα,βMα,βCα,β = CZα,βMC = Zα,βCMC = Zα,βM′ =M′

α,β,

that is, Mα,β is standard. By Corollary 2.6, we have α = β. Hence Mα,β = A ⊗ B(K ) ⊗ CI, where A is a
maximal abelian von Neumann algebra and I is the identity operator onK .

Case 2. τ(α, β) = (ξ, η) , (α, β).
In this case, we have CZα,βC = Zξ,η and CZξ,ηC = Zα,β. Let Z = Zα,β ⊕ Zξ,η. Then CZC = Z, CZ = ZC and

C has the decomposition C = C0 ⊕ C1 relative to the decompositionH = ran Z ⊕ ran (I − Z); moreover,

C0 =

[
0 D−1

D 0

]
Hα,β

Hξ,η
,

where D is antiunitary. Note that

C0(Mα,β ⊕Mξ,η)C0 = CZMC = ZCMC =M′

α,β ⊕M
′

ξ,η

and
C0(Mα,β ⊕Mξ,η)C0 = D−1

Mξ,ηD ⊕DMα,βD−1.

It follows thatM′

α,β = D−1
Mξ,ηD and EM′

α,βE = (ED−1)Mξ,η(DE) for any conjugation E on the underlying
space ofMα,β. Since DE is unitary, we conclude thatM′

α,β �M
t
ξ,η. That is,Mα,β ⊕Mξ,η � (M′

α,β)
′
⊕ (M′

α,β)
t.

This completes the proof.

Corollary 2.8. LetM be a finite dimensional von Neumann algebra. ThenM is standard if and only ifM = ⊕i∈ΛMi,
where eachMi satisfies either (i)Mi �Mn(C)(n), or (ii)Mi � (Mn(C)(k)

⊕Mk(C)(n)), where n , k.

3. More standard von Neumann algebras

This section is devoted to constructing standard von Neumann algebras. We first recall the type
decomposition theorem for von Neumann algebras.

Lemma 3.1 ([15, Thm. 1.19]). Every von Neumann algebraM can be uniquely decomposed into the direct sum of
type I, type II1, type II∞ and type III von Neumann algebras.
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The decomposition is constructed as follows. Let {Ei} be a maximal family of centrally orthogonal
abelian projections inM and E =

∑
i Ei. Put ZI be the smallest central projection inM majorizing E. Then

MZI is of type I, and there is no nonzero abelian projection inM(I − ZI). Let {F j} be a maximal family of
centrally orthogonal finite projections inM(I − ZI) and F =

∑
j F j. Then F is finite. Put ZII be the smallest

central projection in M majorizing F. Then MZII has no nonzero abelian projection and every nonzero
central projection Z inMZII majorizes a finite projection ZF , 0. HenceMZII is of type II. By the maximality
of {F j}, ZIII := I − ZI − ZII does not majorize a nonzero finite projection, so MZIII is of type III. Note that
ZI + ZII + ZIII = I. Let {Zk} be a maximal family of orthogonal central finite projections in MZII. Put
ZII1 =

∑
k Zk and ZII∞ = ZII−ZII1 . It follows thatMZII1 is of type II1 andMZII∞ is of type II∞. Thus we obtain

the direct sum decomposition
M =MZI ⊕MZII1 ⊕MZII∞ ⊕MZIII.

Note that ZII = ZII1 + ZII∞ . Then we have

M =MZI ⊕MZII ⊕MZIII.

DenoteMI =MZI,MII =MZII andMIII =MZIII.

Remark 3.2. Assume a von Neumann algebraM ⊆ B(H) has the direct sum decomposition

M =MI ⊕MII ⊕MIII

respective to the central projections ZI, ZII and ZIII constructed above. If C is a conjugation onH , then CZIC, CZIIC
and CZIIIC are the central projections for which CMC can be uniquely decomposed into the direct sum of type I, type
II and type III von Neumann algebras, that is,

CMC = CMIC ⊕ CMIIC ⊕ CMIIIC.

Thus we reduce the problem of whether a von Neumann algebra is standard to several special cases.

Proposition 3.3. IfM ⊆ B(H) is a von Neumann algebra, thenM is standard if and only if each ofMI,MII and
MIII is standard.

Proof. The sufficiency is obvious. It suffices to prove the necessity. In fact, ifM is standard, then there exists
a conjugation C onH such that CMC =M′. DenoteN = CMC. It follows from

M =MI ⊕MII ⊕MIII

that
M
′ =M′

I ⊕M
′

II ⊕M
′

III;

moreover,M′

I is of type I,M′

II is of type II, andM′

III is of type III.
On the other hand, by Remark 3.2,N = CMC is uniquely decomposed into

N = CMIC ⊕ CMIIC ⊕ CMIIIC.

Since CMC = M′, by the uniqueness of the decomposition of N , we have M′

I = CMIC. Hence MI is
standard. Similarly,MII andMIII are standard.

Now we are going to consider a special class of von Neumann algebras.

Proposition 3.4. Let M = ⊕i∈ΛMi, where each Mi is a factor von Neumann algebra. Then the following are
equivalent:

(i) M is standard;
(ii) there is an involutive map τ : Λ→ Λ such thatM′

i �M
t
τ(i) for all i and, in particular,Mi is standard whenever

τ(i) = i;
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(iii) there is a partition Λ = ∪ j∈ΓΛ j of Λ such that cardΛ j ≤ 2 and ⊕i∈Λ jMi is standard for all j ∈ Γ.

Proof. Without loss of generality, we assume thatM ⊆ B(H).
(i) =⇒ (ii). Since M is standard, there exists a conjugation C on H such that CMC = M′. Since

M = ⊕i∈ΛMi, we haveM′ = ⊕i∈ΛM
′

i and Z(M) = ⊕i∈Λ(Mi ∩M
′

i ). Let Pi denote the identity ofMi. Note
that CZ(M)C = Z(M). Then, for each i ∈ Λ, there is a unique τ(i) ∈ Λ such that CPiC = Pτ(i). Since
X 7→ CXC is involutive, one can see that τ : Λ→ Λ is an involutive map.

Now we fix some i ∈ Λ. Note that CPiC = Pτ(i) and CPτ(i)C = Pi. Let P = Pi ⊕ Pτ(i). Then CPC = P,
CP = PC and C has the decomposition C = C0 ⊕ C1 relative to the decomposition H = ran P ⊕ ran (I − P);
moreover,

C0 =

[
0 D−1

D 0

]
Hi
Hτ(i)
,

where D is antiunitary. Note that

C0(Mi ⊕Mτ(i))C0 = CPMC = PCMC =M′

i ⊕M
′

τ(i)

and
C0(Mi ⊕Mτ(i))C0 = D−1

Mτ(i)D ⊕DMiD−1.

HenceM′

i = D−1
Mτ(i)D and EM′

i E = (ED−1)Mτ(i)(DE) for any conjugation E on the underlying space ofMi.
Since DE is unitary, we conclude thatM′

i �M
t
τ(i). If τ(i) = i, thenM′

i �M
t
i , that is,Mi is standard.

(ii) =⇒ (iii). Clearly, τ induces a partition Λ = ∪ j∈ΓΛ j of Λ, where each Λ j has the form {k, τ(k)} for some
k ∈ Λ. By Lemma 1.6, ⊕i∈Λ jMi is standard for each j ∈ Γ.

(iii) =⇒ (i). SinceM = ⊕ j∈Γ(⊕i∈Λ jMi), it follows immediately thatM is standard.

Now we are going to give an example of standard von Neumann algebra.
The group measure space construction, as a special case of the W∗-crossed product, is the earliest

non-type I factor construction and was used for the first time by Murray and von Neumann [11–13].
Recall the definition of the W∗-crossed product as follows (see [1, 15] for further details). Given a von

Neumann algebra A ⊆ B(H) and a group G, denote by Aut(A) the set of all automorphisms of A. A
homomorphism α : G → Aut(A) is called an action of G on A. Suppose that G is countable and discrete.
Consider R := H ⊗ l2(G) as the square summable functions from G intoH .

Define the representations π : A→ B(R) and u : G→ B(R) as follows, for ξ ∈ R, a ∈ A, 1, h ∈ G,

(π(a)ξ)(1) = α−1
1 (a)(ξ(1))

and
(u(1)ξ)(h) = ξ(1−1h).

It is clear that G gets mapped into the unitary group ofB(R). A straightforward computation yields that

u(1)π(a)u(1)∗ = π(α1(a))

for any a ∈ A, 1 ∈ G.
In fact,

u(1)π(a)u(1)∗ξ(h) = π(a)u(1)∗ξ(1−1h)
= α−1

1−1h(a)(u(1)∗ξ(1−1h))

= α−1
h α1(a)(ξ(h))

= π(α1(a))ξ(h)

for any ξ ∈ R and h ∈ G.
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Definition 3.5. The von Neumann algebra generated by π(A) and u(G) is called the crossed product of A by G
with respect to α, denoted by R(A,G, α). WhenA = C, we denote it by R(G) and call it the group von Neumann
algebra of G.

We know that if G is a discrete group and only have infinite conjugacy classes (ICC, for short), thenR(G)
is a type II1 factor [1, III.3.3.7].

Let G be a locally compact group with the left Haar measure µ and a modular function ∆ on G. Let u
(resp. v) be the left (resp. right) regular representation of G on L2(G, µ) defined by

[u(1) f ](h) = f (1−1h)

and
[v(1) f ](h) = ∆(1)

1
2 f (h1)

for f ∈ L2(G) and 1 ∈ G.
Assume R(G) and L(G) are the von Neumann algebras generated by {u(1) : 1 ∈ G} and {v(1) : 1 ∈ G}

respectively. Then R(G)′ = L(G).

Remark 3.6. (i) For 1 ∈ G and f ∈ L2(G), we have∫
G

f (1h)dµ(h) =
∫

G
f (h)dµ(h)

and
∆(1)

∫
G

f (h1)dµ(h) =
∫

G
f (h)dµ(h).

(ii) Let ν(E) = µ(E−1) for E ⊆ G. Then ν is a right Haar measure and dν(h) = ∆(h−1)dµ(h). It follows that∫
G

f (h)dν(h) =
∫

G
f (h−1)dµ(h)

and ∫
G

f (h−1)∆(h−1)dµ(h) =
∫

G
f (h)dµ(h).

Example 3.7. Assume that G is a locally compact group. Then R(G) is standard. In fact, let C be the conjugation on
L2(G) defined by

C f (1) = ∆(1−1)
1
2 f (1−1).

Then, for f ∈ L2(G) and 1, h ∈ G,

(Cu(1)C f )(h) = ∆(h−1)
1
2 (u(1)C f )(h−1)

= ∆(h−1)
1
2 (C f )(1−1h−1)

= ∆(h−1)
1
2∆(h1)

1
2 f (h1)

= ∆(1)
1
2 f (h1)

= (v(1) f )(h).

That is, Cu(1)C = v(1) for any 1 ∈ G. It follows that R(G) is standard.

Example 3.8. Let G be a discrete ICC group. Then R(G) is a type II1 factor which is standard. Since

(R(G) ⊗ B(H))′ = L(G) ⊗ CI

is not isomorphic to R(G) ⊗ B(H). It follows that R(G) ⊗ B(H) is a type II∞ factor which is not standard.
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We end this section with some remarks on standard von Neumann algebras of type II and type III.
Note that there exist standard type II (resp. type III) von Neumann algebras, sinceA′ ⊕At is a standard

type II (resp. type III) von Neumann algebra if A is a von Neumann algebra of type II (resp. type III).
However, due to the complexity of the structure of type II and type III von Neumann algebras, it is difficult
for us to determine whether each standard type II (resp. type III) von Neumann algebra is of the form
A
′
⊕A

t.
By the following lemma, in order to characterize the structure of standard type II von Neumann algebras,

it suffices to consider finite von Neumann algebras. Recall that a von Neumann algebra M is said to be
finite, if the identity ofM is a finite projection inM. If every nonzero central projection Z ∈ M is infinite,
thenM is said to be properly infinite. If ZIII = 0 in Lemma 3.1, thenM is said to be semifinite.

Lemma 3.9 ([15, Prop.1.40]). IfM is a properly infinite but semifinite von Neumann algebra, then there exists an
orthogonal family {zα}, indexed by infinite cardinals no greater than cardM, of central projections with

∑
α zα = I,

and a family {Nα} of finite von Neumann algebras such that

Mzα � Nα ⊗ B(Hα),

where dimHα = α and zα may be zero. This family {zα} is unique whileNα is not unique. IfM is σ-finite, then for
any finite projection f with z( f ) = I,

M �M f ⊗ B(H0),

where dimH0 = ℵ0.
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