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The solutions of the Sylvester-like quaternion matrix equation
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Abstract. In this paper, we discuss the Sylvester-like quaternion matrix equation AX¢ + X°B = 0, where
e € {I,C},6 € {t,#} and I,C,t,» denote the identity mapping, involutive automorphism, involutive anti-
automorphism and transpose, involutive automorphism and anti-automorphism and transpose, respec-
tively. Firstly, we transform the given equation into the new equation AY® + Y°B = 0 with complex
coefficient matrices Av, B and unknown quaternion matrix Y by utilizing the regularity of the matrix pencil
(A, B®), where A= PAQ and B = Q%BP% with P, Q being two nonsingular quaternion matrices. Secondly,
we decouple the transformed equation into some systems of small-scale equations in terms of Kronecker
canonical form of (A', 73-*"3). Moreover, we also show that the solution can be gotten in terms of P,Q, the
Kronecker canonical form of (Av, §£5) and the two nonsingular quaternion matrices which transform (Z, Bed)
into its Kronecker canonical form. Thirdly, we determine the dimension of the solution space of the equation
in terms of the sizes of the blocks arising in the Kronecker canonical form. Moreover, we give the necessary

and sufficient condition for the existence of the unique solution. Finally, we also present a concrete example
to demonstrate the process of calculating the solution of the considered matrix equation.

1. Introduction

Throughout this paper, we will adopt the following notations. Let R and C denote the real and complex
fields, respectively. For the complex z = a + bi, we will use Re(z), Im(z) and z to denote its real part 4,
imaginary part b and complex conjugate a — bi, respectively. Let i = a + bi + ¢j + dk denote a quaternion,
where a,b,c,d € R and i,j, k are three imaginary units with

2 =7 =k*=-1,ij = —ji = k,jk = —kj = i, ki = —ik =j.
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Let IH denote the set of all quaternions. & = a — bi — ¢j — dk denotes the quaternion conjugate of . Obviously,
h = a+bi+ (c + di)j. Let C(h) and Cj(h) denote the first complex a + bi and the second complex c + di of ,
respectively. Then, h = C(h) + Cj(h)j. Let F">" denote the set of all m X n matrices whose elements belong
to IF, where F € {IR,C,H}. Let I, denote the identity matrix of order #, and it is also abbreviated as I if the
size is clear from the contents. Let A, AT, A* and A™! denote the conjugate, transpose, transpose conjugate
and the inverse matrix of the complex matrix A, respectively. We use I to denote the identity mapping. e;
denotes the vector whose i-th component is 1 and the remaining components are zero, and its dimension
can be obtained from the contents. For a set S, we use |S| to denote its cardinality.

An involutive automorphism of F is a bijection a — a© of IF onto itself, satisfying
@+ b)€ = a® + b, (ab)© = ab%, (%) = a4, foralla,beF.
An involutive anti-automorphism of [F is a bijection a — a° of [F onto itself, satisfying
(a+0b)° =a®+0°ab)° =b°a®, (a°)° =a, foralla,beTF.

The above definitions can be seen in [3H5]. Obviously, the complex conjugate is not only an involutive
automorphism, but also an involutive anti-automorphism of C. Besides, the quaternion conjugate is an
involutive anti-automorphism of IH.

For each quaternion matrix A over [F, we define
AT = (AT, A" = ((AS)°)T.
In this paper, we will consider the Sylvester-like quaternion matrix equation
AX: +X°B =0, (1)

where ¢,6 € {I, C, 1, #}, and the sizes of A and B will be determined according to the contexts and the specific
situations.

We have three important observations about the notations ¢, 0 € {I, C,t,%}. Firstly, if F = R, then both
the involutive automorphism and anti-automorphism are identity mappings, and {I, C, t,*} = {I, T}, thus
g,0 € {I, T}. Secondly, if F = C, then the complex conjugate is not only an involutive automorphism, but

also an involutive anti-automorphism. So A€ := A is the complex conjugate of A, A" = A* := (A)" is the
complex conjugate and transpose of A. Finally, if F = H, then, for h = a + bi + ¢j + dk, each involutive
automorphism is either the identity mapping I, or h = C(h) — Cj(h)j = a + bi — ¢j — dk, and each involutive
anti-automorphism is either 1  C(h) + Cj(h)j = a —bi + ¢j + dk, or h h= C(h) = G(h)j = a — bi — ¢j — dk,
see [3}4]. Based on the above observations, for h = a + bi + ¢j + dk, we define

W= a + bi + ¢ + dk,

W = a+bi—cj—dk,
h® :=a—-bi+c+dk,

and
A'f = (AO)T/A* = ((AC)O)T.

Then h = (h®)° =a—bi—cj—dkand A* = (A)T. The above statements can be found in [4].

Hodges [7] firstly studied the matrix equation ATX+XTA = 0in which simultaneously involves X and its
transpose X in 1957. From then on, more and more scholars were devoted to exploring its variants in which
simultaneously involves X and its transpose X in the real field or its conjugate transpose X" in the complex
field, see [1} 9, [11} [13H15] [17H19] [2TH25]. More specifically, Terdn et al. [13|[18] researched AX + XTB =Cin
the real field. Moreover, Terdn et al. [17,[19, 23] also studied AX + X*B = C in the complex field and gave the
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dimensions of the solution spaces of AX+X"B = 0and AX+X"B = 0, respectively. Chiang et al. [1] presented
solvability conditions and stable numerical methods for AX + X*B* = C and its special cases AX + X*"A* = C
and its generalization AXB*+CX*D* = E. Besides, Wang et al. [9,[15]24}25] devised two iterative algorithms
for the minimal Frobenius norm least squares solution of AXB + CX™D = 0. Liang et al. [11] extended the
corresponding results to the systems A;XB; + C,X'D; = M;,i = 1,2. Teran et al. [21,22] gave the necessary
and sufficient conditions for the existence of a unique solution of AXB + CX*D = 0 in the complex field.
Besides, Song et al. [14] devised an iterative algorithm for the generalization );_; A;XB; + ijl CiX'D;=E
in the complex field.

With the proposal of quaternions, many scholars were beginning to extend corresponding results about
matrix equations from the complex field to the set of quaternions, see [2, 3, 5 18, [10] 12 26129]. More
specifically, Yuan et al. [8] 26129] studied the quaternion matrix equation AXB + CXD = E. Liet al. [12]
proposed an efficient algorithm for the reflexive solution of the quaternion matrix equation AXB+CX*D = E.
Jiang et al. [10] characterized the existence of the solutions and also drew the closed-form solutions for the

quaternion matrix equation X — AXB = C in sense of j-conjugate. Futorny et al. [5] gave Roth’s solvability
criteria for the quaternion matrix equations AX — X®B = C and X — AX®B = C in sense of involutive
automorphism. Besides, Dmytryshyn et al. [2] extended Roth’s criteria to the systems A; Xy M; — N;X,B; =
C,i=1,2,---,s with unknown X1, X5, --- , X; over a field of characteristic not 2 in which #/,i” € {1,2,--- ,t}
and Xf’ € {Xp/,XiT,,,X;,,}. Besides, Dmytryshyn et al. [3] also extended the criterion to the generalized
systems

AXSM; = NiX0iBi = Ci, i, €{1,2,+++ s}, )
where ¢;,0; € {I,C, 1,+}. Evidently, all of the aforementioned systems are special cases of . Though
they gave the necessary and sufficient conditions for solvability, the uniqueness of solution has not been
presented. So it is necessary to consider the dimension of the solution space of the corresponding homo-
geneous systems. Based on this motivation, Terdn et al. [18}[19] considered the dimensions of the solution
spaces of AX + XTA = 0 and AX + X*A = 0. Moreover, Teran et al. [16},20] also gave the dimensions of the
solution spaces of AX + XTB = 0 and AX + BXT = 0 in the real field, AX + X'B = 0 and AX + BX* = 0 in
the complex field, respectively. Dong et al. [4] gave the dimension of the solution space of the quaternion
matrix equation AX® + BX® = 0 for ¢ € {I,C},6 € {t,#}. Wimmer et al. [6, 23] also pointed out that the
aforementioned homogeneous equations played an important part in the symmetric or hermitian solution
of a linear matrix equation. To the best of our knowledge, the solution space of the quaternion matrix
equation AX¢ + X°B = 0 has not been researched yet. In this paper, we mainly concentrate on it. The results
of others will be presented in follow-up researches.

Next, we discuss for several different combinations of ¢,6. The first combination: if e = 6 = I or
¢ =6 = C, then (1) becomes AX + XB = 0 or AX® + X®B = 0. By letting Y = X¢, AX® + X®B = 0 has the form
AY + YB = 0. Thus, (1) can be transformed into the matrix equation of the form AX + XB = 0. The second
combination: if ¢ = 0 = t or ¢ = § = *, then (1) becomes A(X°)T + (X°)TB = 0 or A(X®)*)T + ((X©)*)"B = 0.
By letting Y = (X°)T or Y = ((X%)°)7, the two equations have the same form AY + YB = 0. Thus, (1) can also
be transformed into the matrix equation of the form AX + XB = 0. The third combination: if e = 1,6 = C or
e =C,56 =1, then (1) becomes AX + XEB = 0 or AX® + XB = 0. Obviously, can be transformed into the
matrix equation of the form AX + XEB = 0. The fourth combination: if e = 1,0 = *or ¢ = %, 6 = 1, then
becomes A(X°)T + ((X°)6)TB = 0 or A((X*)®)T + (X°)TB = 0. By letting Y = (X°)T or Y = ((X°)%)7, the two
equations can be transformed into AY + YEB = 0. Thus (1) can also be transformed into the matrix equation
of the form AX + X®B = 0.

Based on the above discussions, the quaternion matrix equation (1)) can be transformed into the quater-
nion matrix equation of the form AX + XB = 0 or AX + X*B =0 or

AX¢ +X°B =0, (3)

where A € H™",B € H™", X € H™", ¢ € {I,C},6 € {t,+. The quaternion matrix equation AX + XB = 0
has been studied by many scholars, see [4, 26-29]. The equation AX + X¢B = 0 will be researched in other
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papers. In this paper, we mainly concentrate on (3).

The remaining parts are organized as follows. Section 2 presents some preliminary works. In Section 3}
we transform (3) into a quaternion matrix equation with complex coefficients, and also give the relationship
between the original solution and that of the transformed equation. Besides, Section [3|also decouples the
transformed equation into some subsystems of small-scale equations in terms of Kronecker canonical form.
In Section [d, we give our main results about the dimension of the solution space of (3). More specifically,
Subsection4.Tjand [4.2]give the dimensions of the solution spaces of the subsystems in terms of single blocks
and pairs of blocks arising in Kronecker canonical form, respectively. Section [5| gives the necessary and
sufficient condition for the existence of a unique solution. Moreover, Section[6| presents a concrete example
to demonstrate the process of calculating the solution of the matrix equation AX¢ + X°B = C. Finally, Section
[7]gives our conclusions and lines of future work.

2. Preliminaries

Lemma 2.1. [4, 18] If A € H™", then A is similar to a complex Jordan normal form matrix | € C™" with diagonal
elements of the form a + bi witha € R,b > 0.

Definition 2.2. [8] Let A, B € H™". If there exists Ay € R such that A + AyB is a nonsingular quaternion matrix,
then (A, B) is called a linear reqular matrix pencil.

Theorem 2.3. [8] Let A,B € H™". If (A, B) is a linear reqular matrix pencil, then there exists two nonsingular
quaternion matrices P, Q € H™" such that PAQ and PBQ are two complex matrices.

Lemma 2.4. [4] Let A € H™®,B € H*", ¢ € {I,C}, 6 € {t,*}. Then
(1) (AB)® = A*B¢,(AB)® = BYA?;
(2) (A%)? = (A®)¢; In following statements, we define A := (A¢)°, A% := (A%)¢;
(3) (A5)E = A, (A% = A;
(4) For the square quaternion matrix A, A is nonsingular if and only if A® is nonsingular if and only if A¢ is
nonsingular; Furthermore,
(A=A, @A) = AT

In following statements, we will use A~ and A~ to denote (A®)~! and (A*)™!, respectively.

Lemma 2.5. [3] Let X € H™" be such that X = AXB, where A € H™™,B € H"™". If at least one of A and B is
nilpotent, then X = 0.

Lemma 2.6. Let A,B € H™", ¢ € {I,C}, 6 € {1, +}. If the matrix product of A® and B® is commutative and at least
one of A and B is nilpotent, then the quaternion matrix equation X¢ + AX°B = 0 has the unique trivial solution
X=0.

Proof. It is obvious that the solution X must satisfy X¢ = ~AX°B. Taking (-)¢ and then (-)°, we can get
Xé — _BS(SX{AHS.

Substituting this into the original identity, we get X¢ = AB®®X?A®B. Taking ()¢, we have
X = A*B°XA°B".

If A (or B) is nilpotent, then A¢ (or B®) is also evidently nilpotent. Furthermore, A?B° is also nilpotent
because of A¢B® = BSA¢. The result is immediate from Lemma O

Definition 2.7. [4, [16]] If there exists two nonsingular complex matrices M € C™",N € C™" such that M(A +
AB)N = C+ AD, where A,B,C,D € C"™", A € C, then the two matrix pencils A + AB and C + AD are called strictly
equivalent.
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Theorem 2.8 (Kronecker canonical form). [4,[16H20] Each complex matrix pencil A+ AB with A,B € C"™", A €
C is strictly equivalent to a direct sum of blocks of the following matrix pencils:

(1) Right singular blocks:

Al
Al
Ly= .
A1
A Vg
(2) Left singular blocks: LT, where Ly, is a right singular block.
(3) Finite blocks: [i(u) + ALy, where Ji(u) is a Jordan block of size k X k associated with p € C, i.e.,

u 1
u o1
Je(w) = -
u o1

F jxk
(4) Infinite blocks: Ny, := I, + AJ,(0).

The pencil is uniquely determined, up to permutation of blocks, and is called as the Kronecker canonical form
(KCF) of A+ AB.

Let

A — K . T . , B — t. T
¢ 0 1 ¢ 10
01 Px(p+1) 190 PX(P+1)
Ay and By can be partitioned into A, = (Lp(O) e(p) and By = (Lp 0¢), respectively. Obviously, Ly =
Ay + ABg. If there exists some block Ji(—u) + Al with k > 0 in the KCF of A + AB, then u € C s called as an
eigenvalue of A + AB.

3. Transforming AX¢ + X°B = 0 into a quaternion matrix equation with complex coefficients

Theorem 3.1. Assume that A € H™",B € H™", ¢ € {I,C},5 € {t,+}. Let (A, B®) be a reqular quaternion matrix
pencil, and P, Q be two nonsingular quaternion matrices such that PAQ = A and Q*BP% = B are two complex
matrices. Then Y is a solution of the quaternion matrix equation AY¢ + Y°B = 0 if and only if X = Q°YP isa

solution of the quaternion matrix equation AX® + X°B = 0. As a consequence, the solution spaces of both equations
are isomorphic via Y + Q°YP™ = X.
Proof. Let X = Q°YP~?, and then taking (-)¢ and (-)°, respectively, we obtain

X¢ = dep—éflxﬁ — P—lyéQEﬁ — P_1Y6Q5£.
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By A = PAQ and B = Q*BP%, we have

AY + Y°B = PAQY* + Y°QBP®*
= PAQY*P~%P% 4 pp~ly? Q% Bpo*
= P(AQY*P~% + P~1Y?Q%B)P®*
= P(AX¢ + X°B)P%.

Since P and P* are nonsingular, AY* + Y°B = 0 if and only if AX¢ + X°B = 0. The mapping Y > Q°YP is
clearly linear and invertible, so it is an isomorphism. [J

Theorem . 1| points out that (3) can be transformed into a quaternion matrix equation AY¢ +YB =0
with complex coefficient matrices A B. Let A + AB® = S(A + /\BSO)T be the Kronecker canonical form of
(A, B#%), where S, T are two nonsmgular complex matrices. By taking again advantage of Theorem . we
can obtain that Z is the solution of AZ¢ + Z°B = 0 if and only if Y = TZS is the solution of AY* + Y°B = 0.
In other words, there exists a bijection between the solution of AZ¢ + Z9B = 0 and that of AY* + Y°B = 0.
This bijection is Z > T¢Z5~°. Thus, the solution spaces of AZ¢ + Z°B = 0 and AY¢ + Y°B = 0 are isomorphic
viaZ - T¢ZS™ =Y. Then X = Q*YP™? = Q¢T¢ZS°P~° = (QT)¢Z(P~!S71)°. Thus, after getting the solution
7 of AZ¢ + 7°B = 0, we can obtain the solution X of (3) in terms of the two nonsingular quaternion matrices
P,Q and the two nonsingular complex matrices S, T. BEieﬂy, we can obtain the solution of (3) in terms of
four nonsingular matrices P, Q, S, T and the KCF of (A, B®).

Theorem 3.2. Let A = APA D - DA ;and B = B1®B, ®--- & By be two block-diagonal matrices in C™".
Let X = [Xij]’szl be partitioned conformally with the partition of A and B. Then the quaternion matrix equation

AX¢ + X°B=0is equivalent to following several subsystems of the quaternion matrix equations:
(i) d matrix equations:

AXE+X2Bi=0, for i=1,2,---,d, (4)
together with
(ii) d(d D subsystems of 2 matrix equations with 2 unknown matrices X;j and Xj:

A,-Xf].+X;?iB,- =0, a o
for i,j=1,2,---,d and i <. (5)

A]}(‘g + XbB] =0,
Jt 1

Theoremnls a generalization of Lemma 2.3 in [16]. Similar to the notations in [4} [16]], we will denote
the vector space of solutions of the equations @) by S(A; + AB), ie.,

S(A; + AB®) := {X;; € H™"A; X, + X3B; = 0}.
Besides, we will also denote the solution spaces of the subsystems @ by S(A; + AB, A + /\B}ﬁb)l ie,

S(Ai + AB?, A + AB;f’) = {(X;, X;) € HP" x H"A XS + X;?Bi =0,A;X{ + X?B; = 0}.

4. The dimension of the solution space of AX? + X°B = 0

Theorem 4.1. Let A € H™", B € H™™ be two quaternion matrices, and let (A, B“S) be a regular matrix pencil. Let
P, Q be two nonsingular quaternion matrices such that PAQ = A and Q%BP% = B are two complex matrices. Let
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the KCF of the matrix pencil A + AB® be

1’4\+ /\/B?“5 =L¢1 (&) L¢,2 D--- GBL%
Ly, L, @@L
&N, &N, ® - &N,
® (Ji, (1) + Al,) @ (Ji, (u2) + All,) © -+ - © (Ji, (us) + Al).

Then the real dimension of the solution space of (3) depends only on A + AB®, and can be computed as

—d;ght+d* +d* +d* +d* +d*

fin right,right fin,fin right,left +d;

*
Total right,co right, fin + doo ,fin’
whose summands are given by:

1. The real dimension due to the equations (4)) corresponding to the right singular blocks:
4
d:ght = Z ¢i‘
i=1

2. The real dimension due to the equations (4) corresponding to the finite blocks:

YRk)+ YL ki+ Y(ki—1)+ X2k + 1)+ Y (ki — 1)
iEIl iEIZ iEI3 i€14 i€ls
=2 ki+ Y ki+ Y k)+ Y ki+ Y ki— |+l -5, fore=C,06=xore=L06=t1,
d* — i€l i€l i€ly i€l, i€ls
S Y @k + Y ki+ LRk + 1)+ Y2k -1+ Y (k—1)
i€l i€l i€l i€ly i€ls
=2 ki+ Y ki+ Y k)+ Y ki+ Y ki+ |l =4l -5, fore=C,o6=tore=L06=x,
i€l Z€13 i€ly i€l 1615
where
10 = /),

i€ Iol pi = 1 and k; is even},

i€lp|lui =1, and k; is odd},
iely| = —1, and k; is odd},
i€l y =1 with Im(u;) # 0, and k; is odd}.

{1,
={i
{i €I yl p; = 1with Im(y;) # 0, and k; is even},
{i
{i
{i

3. The real dimension due to the subsystems (5) involving a pair of right singular blocks:

p

d;ght rzght Z (Cf)r + (z)])

ij=Li<j
4. The real dimension due to the subsystems (5] involving a pair of finite blocks:

d*

fin,fin — ZZ mln{kz(kz + 1),k](k] + 1)},

where the sum is taken over all pairs Ji,(pi) + M, Jk; (1) + Aly, of blocks in A + AB such that i < jand yfy]‘? =1
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5. The real dimension due to the subsystems () involving a right singular block and a left singular block:

Do =4 Z(T]j -¢i—-1),
ij

where the sum is taken over all pairs Ly, LrT“ of blocks in A + AB such that nj—¢i>1
6. The real dimension due to the subsystems (b)) involving a right singular block and an infinite block:

rzght o 4¢ Z Ui.

7. The real dimension due to the subsystems (B) involving a right singular block and a finite block:

nght fin — 4(;[) Z ki.

8. The real dimension due to the subsystems (5] involving an infinite block and a finite block:

d*

oo, fin

_ ZZ minf{u;(u; + 1), k]'(k]‘ + 1)},

where the sum is taken over all pairs Ny, Jx, (1) + Aly; of blocks in A + AB with pj=0.

The proof of Theorem [4.T|can be completed by Lemmas below in Subsections

4.1. Dimensions of the solution spaces of the equations corresponding to single blocks

Lemma 4.2 (Right singular block). The real dimension of the solution space of

ApX +X°BY =0 (6)
is

dim S(Ly) = 4¢.
The solution can be completely determined by the first row elements x; € H,i=1,2,--- ,¢ of X.

Proof. Set X = [x;j] € HO*D*¢_ Then @ becomes

€ € . 0 o ... o
Yo Y2 2¢> 1 Xy xgﬂ
£ € .. 0 o ...
31 Y32 3¢> o X2
. . + . . - Orpxqb- (7)
. e e Y S
Yor11 Xor12 Yo+1,0 1o Y29 Yoo

This equatlon is equivalent to x +x% =0,i=2,3,---, ¢+1,j=1,2,---,¢. Iterating this identity, we

]zl

get xl] Further, we can get

—x 6
],1—1’ ],1—1 z—l,]fl’ Xji-1 = lfl,jfl'
£ _ o
X = —(=x 11;1) Xiy,jo1s

ie., x;j = Xi—l,j—l,i =223,-,0p+1,j=12,---,¢, which implies that X is a Toeplitz matrix, and xXjp =
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_xtlsff—l’ j=2,3,---,¢ + 1. More specifically,

or j=2,3,---,0+1
—x&e if e=L6=% or e=C,6=t, for ¢

—x{. ., if e=Lo=1t, ore=Co=+

Xy = J-

j
1,j-1”

Thus X can be determined by its first row elements x1; € H,i = 1,2,--- ,¢. On the other hand, since @
consists of cj)2 equations and X has (¢ + 1)¢ elements, the variables x1; € H,i = 1,2,--- ,¢ can be taken as
free variables. Hence X has the following form

X1 X12 e X1,9-1  Xi¢p
X x11 X12 e X191
—x° —x° .. .. :
.12 1 , ife=Lo=10ore=C 0=+,
) . ) n
A —° A
Mo-1 "M1o-2 Y
< < <O <
X = X1 Yo-1 M2 11
X11 X12 T X1,6-1  Xio
c
-y x11 X12 T X1
) ) ] ) , ife=Lo=xo0re=Co0=H1,
: ) . . n
_ACo _ACo . _ACo
To-1 o2 n o m
_4Co __4Co _4Co . _4Co
1 Lo-1  F1e-2 1

withx; € H,i=1,2,---, ¢ arbitrary, and this is the general solution of @ Then the result follows.

0
Lemma 4.3 (Left singular block). The real dimension of the solution space of

ArXE+X°(B))® =0 8)
is

dim S(L;) = 0.

The solution of (8) is X = 0.

Proof. Multiplying A, from the left side of (8) and utilizing the property

AAT =1, ©)
we can get
X+ A X*(B))*® = 0. (10)

Taking () and then (-)°, we can obtain X° + B X*A{’ = 0. Substituting this into , we can get X¢ —
ABIXADBI® =0, i,

X — ApBI X (By A =0, (11)
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Utilizing the properties
Aqu = I?](O)/ BgAn = ]n+1(0)r (12)

the equation becomes X¢ — J,(0)X* (],7+1(0))€5 = 0. Obviously, J;(0) is nilpotent. Lemma implies
X =0, and the result follows.
|

Lemma 4.4 (Infinite block). The real dimension of the solution space of

X+ X°J, (002 =0 (13)
is

dim S(N,,) = 0.
The solution of (I3) is X = 0.

Proof. Obviously, J,(0) is nilpotent. Lemma [2.6/implies X = 0, and the result follows.
|

Lemma below presents the solution of matrix equation Ji(u)X¢ + X° = 0, see Lemma 4.4 in [4], and
its detailed proof can be found in Lemmas 8.1-8.4 in [4].

Lemma 4.5 (Finite block). [4] The real dimension of the solution space of

(WX +X0=0 (14)
is
0, if uut#1,
2k, if u==1,andkiseven,
k, if pPut =1withIm(u) # 0, and k is even,
. 2k—1, i =1, fore=C,0=+0ore=1,0=1, and k is odd,
dim SO + M) = fu=1f

2k+1, if u=-1, fore=C,0=»0re=1,0=1, andkis odd,
2k+1, if p=1, fore=C,0=1tore=1,0=x andkisodd,
2k-1, if p=-1, fore=C,6=tore=1,0=+, andkisodd,
k-1, if pou®=1withIm(u) # 0, and k is odd.

Remark 4.6. The detailed procedure for the solution of the quaternion matrix equation J(u)X¢ + X° = 0 can be
found in Algorithms 1-4 in [4]].

4.2. Dimensions of the solution spaces for the subsystems involving pairs of blocks
Lemma 4.7 (Two right singular blocks). The real dimension of the solution space of the system of matrix equations

ApXE+Y°(By)? =0 (15)
ApY: + X°(By)® =0 (16)

is
dim S(Ly, Ly) = 4(¢ + ¢).

The solution is determined by the first row elements x1; € H,i = 1,2,--- , @ and the first column elements x; €
H,i=23,p+10ofX
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Proof. Set X = [x;j] € HO*D*¢)Y = [;;] € H®*D*?_ Then - are equivalent to

£ € e £ 0 0 “ee 0
Y1 X2 Yo Yn Yn Y
£ 3 .. & O . 0
31 Y3 3p Y2, Yz Yo
+ . . . = 0qb><<p (17)
£ & & o O . 0
Yor11 Yor12 Yore) Vg Y29 Yoo
and
& & . € 0 o .. o
Yn Y2 Y2 RSV 11 *o1
& £ .. 3 xb xb . x()
Ya Y3 Y3 12 2 o2
, RS 7 [ = 0 (18)
€ & . & o "] o
Yor11 Ypr12 Yorr0) Mo %29 Yo

From , we can see that y;;,i=1,2,--- ,¢;j=1,2,--- ,¢ depends on the elements of X. Besides, from
(18), yp+1,,j =1,2,--- , ¢ also depends on the elements of X. Hence, Y can be completely determined by X.
Obviously, and are equivalent to

Xpra =Wy fora=12,-,0;b=12,---,¢ (19)
and

x?f:_y;ﬂ,i/ fori=12,---,¢;j=1,2,--,¢. (20)

From (19)-(20), we can derive that X is a Toeplitz matrix. To see this fact, let x;; be any element of X such
that x;;1,j+1 is well-defined. Then i can be taken integers from 1 to ¢ and j can be taken integers from 1 to

@ — 1. By applying (20), we can get

Xij= =Yy fori=12,4;j=12, -1 (21)
Since j+1=2,3,--- ,pandi=1,2,--- , ¢, by (I9) we have

~Y; = Xivnjer, for i=1,2,,4;j=1,2, 01 (22)

Hence x;j = xjy1,j41 fori=1,2,--- ,¢;j=1,2,--- ,¢ — 1, s0 X is definitely a Toeplitz matrix. This shows that



X € HO+*DX? ig the form

X11
X21

Xp-2,1
Xp-1,1
x¢1
Xo+1,1
X1

X21

x¢1

Xop+1,1

X12
X11 X12

X21

X¢-3,1

Xp-2,1

Xp-1,1
X¢,1

X12

X111 X12

X21
X¢)1

L. Dong, J. Li / Filomat 39:19 (2025), 6603-6628

X1,0-1

X21

Xp+2-¢,1
Xp+3-¢,1

X11  X12

xlfp
X1,p-1

X11 ’

X21

Xp+1-¢,1

Xp+2-¢,1
X1,p-1

X,0-¢

X21 X11  X12

o+12=¢,
Xl(p
X1,0-1
, ¢p+1<oq,
X1,0-p+1
XL

6614

(23)

forany xi; e H,i=1,2,--- , o and x5y € H,i = 2,3,--- ,¢ + 1. Thus X can be determined by its first row
and column, a total of ¢ + ¢ quaternions. Besides, it is straightforward to verify that any X of form
determines a unique matrix Y € H®*D*® of the form

€0
21
€0
11

=X

—X

€0

Xy

)
31
)
21

—-X

—X

&0

X9

A0 A0
X1 Yo+1,1
A0 .. A0
Y31 X1
A0 A0 A0
Xio X1 X1
A0 20 4
Xio X1
A0
Xio
A0 A0
X1 p—p+1 YLo—o
_ €0 40
Yp-o12  XLp-¢+1
. 40 €0
X1 Xo+1,1
_ €0 _ 4E0
Y31 Y1
7
_ A0 a0 _4E0
1 T Xo—p+2,1
_ A0 _aEd D _4E0
Y2 T Ty Xo—p+11
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More specifically, for e = 1,0 =1, or € = C,6 = %, we have

<O <O <> <O
X1 X3 X1 Xor11
—x° —x° —x° o —x°
1 Y21 Y31 X1
<O <O
X2 X1
—x° . —x° —x° —x°
1¢p-1 12 11 21 |, p+12>9,
—x° . —x° —x° —x®
10 13 12 1
<O <O <O <O
Y141 *14 *13 *12
Y = x<> <O _xo _x<>
1o-1 1p-2 Lo—¢+1 Lo-¢
_ <O _ <O e _ O _ <&
X1p X101 Yp—dr2  Xlp-¢p+1
—_— o — 4 .. .« . ... ... — 4 — 4
Xo1 X31 X1 Xor11
— <o [— <& —_— & .. .. ... ... —_— o
11 n Y31 Y1
A A
X2 X1
, p+1<o.
o 3 o o c. o
Y1 -2 n T . Xo—p+2,1
_ <O _ < _ <O _ <O _ <& e _ <&
X1p X10-1 Yo i Ty Xo—p+1,1
ore=Id=+ore=C,5 =1, wehave
For e = 1,6 C5=1weh
_ACo _ACo . _ACo _,Co
Y21 Y31 Xo1 Yp+11
_ACo _ACo _ACo . _,Co
1 Y1 Y31 X1
_ACo _2Co .
X 2T
Co Co Co Co
—x e —x —x —x
Lo-1 12 11 21 , p+1>0,
_xCo . _xCo _xCo _xCo
10 13 2 1
_1Co . _4Co _,Co _4Co
Lo+ X1y X3 X
Y=1l_.c c co c
_ < _ < _ < _ <
Yo-1 Y2 XLp—p+1 XLo—o
_ACo _+Co . _+Co _ACo
x}:gu xl,g—l Yp-o12  Xlp-o+1 . .
—ylo —ylLo . [SPEN N —xLe —xLe
X1 Y31 Xo1 Xo+11
_4Co _4Co €0 _,Co
X X1 X31 X1
Co Co
—x —x
2 n . p+1<o.
_4Co _4Co _4Co _,Co _Co
o1 X2 X Xy Xo—p+2,1
_ACo _ACo _ACo  _,Co _,Co _ACo
X1 -1 X1 n Xz Xo—p+1,1

Now, it can be easily verified that X and Y of the above form is the general solution of the subsystem
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(T5)-(16). In particular, the real dimension of the solution space is 4(¢) + @), as stated. The results follow. [
Lemma 4.8 (Two left singular blocks). The real dimension of the solution space of the system of matrix equations
ATXE+Y°(B))? =0 (24)
ATY* + X°(B])*® =0 (25)
is
dim S(L;, L}) = 0.
The solution is (X, Y) = (0,0).
Proof. Multiplying A, and A, from the left side of and (25), respectively, and utilizing (9) we get
X+ A)Y(B)? =0, (26)
Ye+ A X(B)? = 0. (27)

From (26), we have X* = —A,Y°(B])®, i, X° = —BJY*A:". Substituting this into [27), we can get
Y¢ = A B YCAL(BI)?, ie, Y = (A,B))*Y(BjA,)°. Using the properties
AyB) = ],(0), By Ay = J;+1(0), (28)

7=n

wehaveY =], (O)SY],]H(O)‘S. Obviously, Y = 0 can be drawn by Lemma hence X = 0. The result follows.
|

Lemma 4.9 (Two infinite blocks). The real dimension of the solution space of the system of matrix equations

X+ YT, (00 =0 (29)
Y + X°J,(0)° =0 (30)

is
dim S(N,,, N;) = 0.
The solution is (X, Y) = (0,0).
Proof. From we obtain X¢ = =Y°J,(0)*, i.e., X® = —],(0)Y¢. Substituting this into we get
Y = J.(0)Y*J(0), (31)

which implies Y = 0 by Lemma further X = 0. Then the unique solution of (29)-(30) is the trivial
solution (X, Y) = (0,0), and the result follows.
O

Lemma below presents the solution of the systems of matrix equations Ji(u)X¢ + X° = 0 and
Ji(v)Y¢ + X° = 0, which can also be seen in Lemma 4.8 in [4].

Lemma 4.10 (Two finite blocks). The real dimension of the solution space of the system of matrix equations

Ji(WXE+Y° =0 (32)
Y +X2 =0 (33)
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is

2minfk(k + 1), 11+ 1)}, if udve =1,

dim S(Ji(u) + ALy, [i(v) + AL = {0, otherwise.

For yévf =1, if I > k, the solution can be completely determined by the elements y;; € H,i = 1,2,--- ,k;j =
i,i+1,--+ ,kofY; otherwise, the solution can be completely determined by the elements y;; € H,j—i >k — L. For
pove # 1, the solution is (X, Y) = (0,0).

Lemma 4.11 (Right singular and left singular blocks). The real dimension of the solution space of the system of
matrix equations

ApX* +Y°(By)? =0 (34)
ATY* + X°(Bg)® = 0 (35)

0, if n-¢ <0,
dn-o¢+1), if n—-¢=0.

Ifn—¢ =0, then the solution can be completely determined by the elements x;; € H,i=¢+1,0+2,--- ,n,n+1of
X. Otherwise, the solution is (X,Y) = (0, 0).

dim S(Lg, L) = {

Proof. Note that X = [x;;] € HO*D**D Y = [1,,] € H™?. Equations — are equivalent to

£ & . & J O .. o
21 Y2 X241 Y Ya Yo O
xS x“? e xf yb yb e y 0
31 32 3+l 12 Y» 7
. . +| . ) = Opx(n+1) (36)
: ¢ N 5 P
Yor11 Ypr12 Yorrne1) Ve Y29 Yoo O
and
o 0 0 O X Xy x%l
3 £ . & S O
Yu Y Y1e X2 Yoo X
€ e L. qf
Yn Yx Y | + : : : = O(pet)xod- (37)
: S : s 5 5
. x x .o x
" ; . s 1n s 21 5 ¢n
yTI1 y’lz y’]ﬁb xl,r]+1 x2,n+l o xq5,1]+1

Equation implies that Y can be completely determined by X. Furthermore, (36)-(37) are equivalent to
the systems of equations

X2n+1 = X341 = 0 = Xon+1 = Xp+1,0+1s (38)
vij = =0y for i=1,2, =129, (39)
X11 =X = =X¢1 =0, (40)
Yij = x5y, for i=1,2, =12, ,¢. (41)

Combining and (41), we can obtain

xij :xi+1,j—1/ for l: 1/2/'“ /(z)/]: 1/2/"' /T]+1/



L. Dong, |. Li/ Filomat 39:19 (2025), 6603—6628 6618

which shows that all elements of X sitting on the same anti-diagonal, £ = {x;; : i + j = s}, are equal.
Furthermore, and imply that all elements in the first and (7 + 1)-th columns of X are zero except
for X1,q+1 and xqr)ﬂ,l .

If n < ¢, every anti-diagonal contains one of these elements equal to zero. This in turn implies
X=0,Y=0,s0(X,Y) =(0,0) is the unique solution.

If n > ¢, then there are anti-diagonals of X which do not contain any of these zero elements from the first
and (1) + 1)-th columns. More specifically, these anti-diagonals are those which have an element in the first
and last rows. Because there are 77 — ¢ + 1 anti-diagonals like this, X depends on 1 — ¢ + 1 free quaternion
variables. On the other hand, it can be verified that if X € H®*DX+D has the form

0 0 0 0 Xxppe1 Xige2 0 X1y X1+l
0 0 0 X141 XLg+2 0 X1y X1l 0
x=| o o e (42)
0 X941 X142 X1y Xy O 0 0
X141 XlLp+2 X1p X+ 0 0 0 0

and Y is defined by (39), then X and Y satisfy (38)-(1) for all values of x;; e H,i=¢+1,¢+2,--- ,n,n+1.
As a consequence, the general solution of (34)-(35) depends on exactly 1 — ¢ + 1 free quaternion variables.
Moreover, and give the expressions of the general solution (X, Y).

O

Lemma 4.12 (Right singular and infinite blocks). The real dimension of the solution space of the system of
matrix equations

ApX + YT, (00 =0 (43)
Y¢ + X°(By)? =0 (44)

is
dim S(Lg, N,) = 4u.

The solution can be completely determined by the first row elements x1; € H,i=1,2,--- ,u of X.

Proof. Note that X € H®+*D*# and Y € H**?. From , we can obtain

5 5 5
xél x§2 . x%u y%l ygl . ygl 0
Y31 Yo o Ay Yo Yo 0 Y 0
. . . + . : . : . = quxu/
£ 3 . & ) O .. )
Yor11 Yor12 Yori) g Y20 Y39 Yag O xu
which implies that x, = x3, = - -+ = xp+1,, = 0 and
& _ o H— =
Xii = Y11 for i=23,---,0+1,j=12,--- ,u-1 (45)
From (44), we also have
e & L. & 0 0 . o
Yn Y2 Y1p 11 X1
5 D b
Yn Yo o Yo Y2 x Yoo
. . . + . . . . = Ouxqb/
& e . 3 0 O . o
Ya Y yuqb uxg Y Xou xqu uxg
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which implies that
Xy ==Yy for i=12,,¢;j=1,2, ,u (46)
This shows that Y can be completely determined by X. Now, utilizing (45)-(&6), we can obtain
Xij = Xi-1,j+1, for i=2,3,--,¢+1;j=1,2,--- ,u—-1 47)

Formula (7)) shows that any elements of X sitting on the same anti-diagonal are equal. Besides, the anti-
diagonals below the main anti-diagonal of X are equal to zero since xp, = -+ = Xg41,4 = 0. Thus X € H@+Dx«
depends on u free quaternion parameters x1; € IH,i = 1,2, --- ,u and has the form

X11 X12 cee X1u-1  Xlu
X12 o Xu-1 X1y 0
, ifp+1=>u,
X1u-1  Xlu 0 0 0
X1u 0 0 0 0
X = 0 0 0 0 0
x11 X12 e o Xugel X1ge2 Tt X
X1 . S Xigal Xige2 o x 0
: : , ifo+l<u
X1 Xup+1 Xip+2 X1u 0 0 0
X141 X1p+2 X1u 0 0 0 0

Moreover, given any matrix X which has the above form and let Y be defined by (46), we have that (X, Y) is
the solution of (43)-(4). Then, the general solution depends on exactly u free quaternion variables.

O

Lemma 4.13 (Right singular and finite blocks). The real dimension of the solution space of the system of matrix
equations

ApX +Y =0 (48)
Je(w)Y© + X*(By)® =0 (49)

is
dim S(Ly, Jx(u) + Aly) = 4k.

The solution can be completely determined by the (¢ + 1)-th row elements xy41,,1=1,2,-+ ,k of X.

Proof. Note that X € HO+*D*k Y e TH*?. (48)-{49) can be reformed as

£ & & ) O . o
x%l xgz xgk y 1 y%l 3/151
X3 X3 X3k Yo Yo = Y
. . R P = Opk (50)

£ 3 . & O O . O
Yor11 Xo+12 Yor1k) Yo Y20 Yo
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and
& & e &
Vi Y ot Wi ]/51 ygz Y 2| (K 1y e xgl
» : : Y = ¥ o o 5
Vo Y v W a1 Y3 ol |xd, x, -
72 N Ed N . | = Ok (51)
e e | Y Ve o W S SR
Yo Yo 7 Yo Okl 62 o 6(75 e X T Yk

By inspecting columns in (5I), we can obtain

yij ]/zj x?l 0

Y5 Y3 x?z 0
gl [ E L e

Yier,j Yy x?’,k—l 0

ylij 0 x?k 0

By utilizing (50), the identity can be rewritten as

O S O
x 11 Xis12 X [
b 0 x°
j+1,2 x]‘+1,3 j2
| R Y I I R P O s
O 5 )
Yir1h-1 Xk Xik-1
5 5
Yivik 0 Yk
and taking (-)°, we have
Xj+1,1 Xj+1,2 Xj1
Xj+1,2 Xj+1,3 Xj2
. ) . _ . L
. [J + . - N /]_1121'.'/¢'
Xj+1 k-1 Xj+1,k Xjk-1
Xj+1k 0 Xjk

From the recursion relation, we can see that the (j + 1)-th row elements of X can be determined in terms
of the j-th row elements, vice versa. Thus X can be uniquely determined by k free quaternion parameters
Xp+1,, € H,i=1,2,--- k. From , we can see that Y is completely determined by X.

Moreover, if we set
C]‘ =X¢+1,]',]'= 1,2,"' ,k, (52)
then we can prove that X satisfies

P+1-i

Xij = Z (q5 +ll - l) Cj+l(y6)(p+1—i—ll (53)

1=0
where we assume that cj,; = 0if j+ 1> k.

To prove (53), we can proceed by inductiononi = ¢ +1,¢,---,2,1 and downwards. The base case for
i=¢+1isjust (52). Now, assume that holds for someiwithl1 <i<¢+1landj=1,2,--- k Inorderto
prove that X satisfies fori—land j=1,2,---,k we only need to prove that satisfies the recursion
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relation x;_1,; = x;u® + X; js1. By , x;jui® + x; j+1 becomes

Pp+1-i p+1-i

Y. ((Ml1 _i) Cjua(u) I Y (qb+11 _i) Cprna(u)*H17,
1=0 =0
ie.,
d+1-i . P+2—i :
5 e s F O o -
1=0 =1

By the binomial identity

m—1 (m- 1\ (m
n—1 n | \n)’
for any positive integers m, 1, the formula (54) equals to

Pp+1-i

—i +2—1i S —im
Cj(#6)¢+2 + Z (qb I 1) Cj+l(#lb)¢+2 Z+Cj+(f>+2—i
=1
Pp+2—i 42—
—1 —i
= Z (q5 I )Cj+l([16)¢)+2 l/
1=0

which is just the left side of (53), and thus the proof is completed.
|

Lemma 4.14 (Left singular and infinite blocks). The real dimension of the solution space of the system of matrix
equations

APXE+ YL (0)° =0 (55)
Yo+ X°(BI)® =0 (56)
is
dim S(L,,N,,) = 0.
The solution is (X, Y) = (0,0).
Proof. By , we have Y¢ = —X‘S(Bg)fé, ie,Y® = —BgXE. Substituting into , we have
ATX® =By X“.(0)° =0
and then premultiplying A,, and using the properties @) and , we can get X¢ = [,(0)X],(0)?, i.e.,
X = Ju(0)° XJu(0)°.

Since J,(0)¢ and J.(0)? are nilpotent, Lemmaimplies X =0, and this in turn implies Y = 0.
U

Lemma 4.15 (Left singular and finite blocks). The real dimension of the solution space of the system of matrix
equations

ATX +Y°=0 (57)
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Je(w)Y* + X°(B})* =0 (58)

dim S(L, Je(u) + AL) = 0.
The solution is (X,Y) = (0, 0).
Proof. By , we have Y0 = —A%Xf, ie, Y = —X‘S(AZ)‘S*‘. Substituting into , we have
JH(XO (AT = XP(BL) =0,
and taking (-)°, we have
(AT XJ(w)’ - (BT)'X = 0,
and then premultiplying B¢, and utilizing the properties
B A} = J;(0)", B,By =1,
we get
X = (O XJe(u)'.

Obviously, J;(0) is nilpotent, so is (],](O)T)". Lemma.5/implies X = 0, which in turn implies Y = 0.
|

Lemma 4.16 (Infinite and finite blocks). The real dimension of the solution space of the system of matrix equations
X +Y =0 (59)
Jlw)Y* + X°Ju(0)° =0 (60)

is

2min{u(u + 1), k(k +1)}, if p=0,

dim SNy, Ji(p) + Aly) = {0 if p#0.

For = 0,ifk > u, the solution can be completely determined by the elements y;j € H,i = 1,2, ,u; j = i,i+1,--- ,u;
otherwise, the solution can be completely determined by the elements y;; € H, j —i > u — k. For u # 0, the solution
is (X, Y) = (0,0).

Proof. By , we have X¢ = —-Y?, i.e.,, X® = —Y*. Substituting into , we get
(@Y = Y], (0% = 0.
Taking ()¢, we have
Je(u)Y = YJ,(0)° = 0. (61)

The solution of this Sylvester is as follows.
(1) If u # 0, then u # 0. Thus Y =0, X = 0.
(2) If u = 0, then becomes

J(0)Y - Y]u(O)T =0, (62)
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Let R € H”* be a nonsingular matrix such that R7!J,(0)’R = J,(0), a Jordan canonical form. Then
becomes

Ji(0)Y = YRJ,(O)R™ =0, (63)
equivalently,

JHO)Y = Y],(0) =0, (64)
where Y = YR. The remaining proofs are similar to Lemma 4.12 in [4].

O
Remark 4.17. Similar to Remark 4.1 in [4], the reverse matrix R = (eu ey1 ‘0 e el) can be selected as the

required nonsingular matrix R € H>*. Then Y € H*" has the form

iim ]71,u—1 e ?12 ?11
You You-r 0 Ym0
I 0 = if k>u,
Yu-1u  Yu-1u-1 0 s 0
?uu 0 et 0 0
y = ~0 N 0 0 0 0 g N
Yiu Yiu-1 T o Yiu—k+2 Yiu—k+ O
y2u yz,u—l e toe yZ,u—k+2 0 0
o N 0 -, ifk<u
Yk—2u Yk-—2u-1 Yk-2,u-2 0 et et 0
?k—l,u ?k—l,u—l 0 - e - 0
?ku 0 ... . ... ... 0

Remark 4.18. Ifthe solution of AX¢ + X°B = (s restricted in the complex field instead of the set of quaternions, then
all of the results presented in Theorem[4.1jand Lemmas can be reduced to the corresponding results stated in
Theorem 4 and Lemmas 21-34 in [20], respectively. That is to say, the related theories of the complex matrix equation
AX + X'B = 0 can be generalized to the quaternion matrix equation AX¢ + X°B = 0. This is our main contributions.

5. Uniqueness of the solution of AX¢ + X°B = 0

Theorem [5.T|below presents necessary and sufficient condition for the unique solution of the equation
in terms of the KCF and eigenvalues of the matrix pencil A + AB®.

Theorem 5.1. Let A € H™", B € H™™ be two quaternion matrices, and let (A, B®) be a reqular matrix pencil. Let

P, Q be two nonsingular quaternion matrices such that A = PAQ, B = Q®BP¢® are two complex matrices. Then the
quaternion matrix equation AX¢ + X°B = 0 has the unique trivial solution X = 0 if and only if the following two
conditions hold: o

(a) The KCF of the matrix pencil A + AB¢ has no right singular blocks.

(b) If u* € C U {oo} is an eigenvalue of A + AB, then 1/u® is not an eigenvalue of A + AB,
Note that, in particular, it must be m > n, and A + AB¢ has not eigenvalues of module one.

Proof. The matrix equation AX¢ + X°B = 0 has the unique trivial solution X = 0 if and only if the dimension
of the solution space is zero. Inspecting Theorem 4.1} the dimension is zero if and only if the two conditions
(a)-(b) in the statements hold.

0
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By Theorem. AX¢ +X°B = O has the unique solution X = 0 if and only if AY* +Y°B = 0 has the e unique
solution Y = 0. We intend to point out that AY* + YB=0 may have a unique solution Y = 0 with A + AB#d
being singular. By the condition (a) in Theorem. 1} the KCF of A + 1B has not right singular blocks, but it
may have left singular blocks. For instance, consider the quaternion matrix equation AY¢ +Y°B = 0, where

A-(3) -0 o).

Though A+ AB is a left singular block, the matrix equation AY* + Y°B = 0 has the unique trivial solution

Y = 0. Incredibly, the operator Y AY¢ + Y®B is not invertible. In fact, this operator maps H to H>!. In
order for this operator to be invertible, the dimension of the original space must be the same as that of the
mapped space. In general, this holds if and only if m = n. Then, the condition (a) in Theorem [5.1|implies

that A + AB¢ is regular. This also leads to the following result.

Theorem 5.2. Let A € H™",B € H™™",C € H™" be three quaternion matrices, and let (A, B¢?) be a reqular
matrix pencil. Let P, Q be two nonsingular quaternion matrices such that A = PAQ, B = Q®°BP# are two complex
matrices. Then Y is a solution of the quaternion matrix equation AY® + Y°B = PCP¢ ifand only if X = Q*YP % isa
solution of the quaternion matrix equation AX¢ + X°B = C. As a consequence, the solutions of the two equations are
one-to-one via Y — Q¢YP™° = X. Besides, the quaternion matrix equation AX¢ + X°B = C has a unique solution if
and only if the following two conditions hold:

(a) The matrix pencil A+ AB® is reqular.
(b) If u¢ € C U {oo} is an eigenvalue of A + AB, then 1/u® is not an eigenvalue of A + ABE,

Proof. Let X = Q°YP~°. Similarly to the proof of Theorem 3.1 we have
X¢ = stp—és X6 — P—lyéQé‘é — P_lyéQés.
By computations, we have

AY + Y°B = PAQY* + Y°Q*BP®
= PAQY*P~%Pp% 4 pp~ly? Q% Bpo*
= P(AQY¢P~% + P~1Y?Q%B)P®*
= P(AX¢ + X°B)P%.

Since P and P are nonsingular, AY* + Y°B = PCP® if and only if AX® + X*B = C. The mapping Y > Q¢YP™
is clearly linear and invertible, so it is a one-to-one correspondence. The remaining proof can be obtained
from TheoremB.1l [

Theorem 5.2]above not only presents the necessary and sufficient condition for existence of the unique
solution of AX® + X°B = C in terms of the properties of the matrix pencil - A + AB%, but also presents a
necessary and sufficient condition for the invertibility of the operators Y — AY* + Y®B and X > AX¢ + X°B.

Remark 5.3. Similar to Remark if the solutions of AX¢ + X°B = 0 and AX® + X°B = C are restricted in
the complex fields instead of the set of quaternions, then the results presented in Theorems can be reduced
to the corresponding results about the complex matrix equations AX + X*B = 0, AX + X*B = C and the operator
X — AX + X'B stated in [20]. That is to say, the related theories about the complex equation AX + X*'B = 0 and
AX + X*B = C and the complex operator X + AX + X*B can be generalized to the set of quaternions. This is our
another main contribution.
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6. Numerical examples

In this section, we will give a specific example to display the process of calculating the solution of the
nonhomogeneous quaternion matrix equation AX¢ + X°B = C.

Example 6.1. Consider the Sylverter-like quaternion matrix equation AX¢ + X°B = C with
li- 1k 1k ) ( 14l —1j—lk) ( j—k i+j+k
A=[t. 3 4 ,B=( 1.4 oA, e=1. 7. . ,
(%] +ik —1-1j-1 —1i+tik  i1-4i i—-j—k j+k

where e = C,0 = =.

By the definitions of C and *, we have

is a nonsingular quaternion matrix. Thus (4, B®) is a regular quatermon matrix pencil. Then there exist

two nonsingular quaternion matrices P, Q such that A = PAQ and B®> = PB**Q are two complex matrices.
Let

-1-k 0= 1+i—-j—k 1-i+j+k
o \l4i+ -k 1-i+j+k)

i + i)
Besides
- B i+ -1-k li- 1k 1k 1+i—j—k 1-i+j+k
A_PAQ_(%—%i—%j—%k %—%i—§]+1k)(2]+1k ooyl eieiok 1-i4j+k
_(-3k 1k 1+i—j—k 1-i+j+k
N crenio o yliie ok 1-ivj+k
=i
B i
and
PR i+] -1-k }1—%1' —1j+i\(1+i-j—k 1-i+j+k
Q=li-yidj-e s-ti- e b\l e Thi Jlawivjk 1-i+j+k
i+ dk —Lj-Lk\(1+i-j-k 1-i+j+k
T\l 14l J\l+i+j-k 1-i+j+k
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are two complex matrices. Evidently, the complex matrix pencil A+AB? 1s regular Bya 51mple computatlon
we can obtaln the two elgenvalues of the matnx pencil A+AB are Ay = 1 t+tiand Ay = 1 —1i Letyy = $+3i
and p, = 1 - 1i. Then “1 1+liand Wy =35- 1i. Obviously, 1/us = 1+i and 1/py =1—iarenot elgenvalues

of the matnx pencil A + /\B”. So the two cond1t10ns of Theoremuhold. Then AX¢ + X°B = Chasa unique
solution.

Let

=~ o5 i+] -1-k j—k i+j+k\(-i+j s+ii-1j-1k

e TP OV VAP A [ AR 06 1 (8
(—2-3i+j+2k —1+21 2] k\(-i+j §+%1—%]—%k
“lezgiow 1-deyealak ook

[ -4 —1—z‘—3]+k
“5-i-j-k 4iv4)

By a simple computation, the quaternion matrix equation AY¢+YB=Chasa unique solution

_ —4 + 8i 3—i+j—3k
“\1-i+3j+3k —4i-4j |°

By Theorem 5.2} the quaternion matrix equation AX® + X°B = C has a unique solution

evns _ [1+i+j+k 1—i—j—k —4 +8i 3—i+j-3k\(3+3i+3 —%i
X=Qyp (1+1 itk 1—i—j-k\1—it3j+3k  —4i—4j L
_(-6+2i+10j-14k -2-10i+6j+2k\(s+1i+1j -1i
—6+2i + 18 + 2k —4i 1+ 3i

~5-i-j—-13k —5-i+9j+9%

-11-5i+7j-7k -1+i-j+9% )

(65)

In fact, substituting into the left side of the quaternion matrix equation AX¢ + X°B = C, we can verify
that

1k 1k 141;  _1i_ 1y
AX® + X°B = (1 3 4" )X*+X5( 171 /71
3f+3k —1-3j- 3k —7ji+ik -1

_(3i- 3k 1k —5—i+j+13k -5-i-9j-9%k

T\ -1\ -11-5i-7j+ 7k -1+i+j-%

_ . . _ ._ . l l. _l._l
+(5+z+]+13k 11+ 5i 7]+7k)(4+41 L 4k) (66)

5+i-9j-9% -1-i+j-9% J\-1j+i L-1i

5+i—-4j —2-6i+3j\ (-5-i+5j-k 2+7i-2j+k
-1+4i+3j—-k 5-3j+2k 1-3i-4j -5+4j-k

[ j-k i+j+k
“\i-j-k  j+k )

The matrix on the right side of is exactly equal to the matrix C. This confirms that the matrix X in (65)
is the solution of the considered equation in Example
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7. Conclusions

In this paper, we presented the procedure for the dimension of the solution space of the quaternion
matrix equation AX® + X%B = 0 for ¢ € {I,C},6 € {t,+}. Firstly, based on the regularity of (A, B®), we
transformed the target equation into a quaternion matrix equation with complex coefficients. Secondly,
we decoupled the transformed equation into several subsystems in terms of the Kronecker canonical form
of the transformed matrix pencil. Moreover, we also pointed out that we can compute the solution in
terms of the Kronecker canonical form and its four related nonsingular matrices. Thirdly, we presented the
dimension of the solution space in terms of the sizes of the blocks of the Kronecker canonical form. Finally,
we also gave the necessary and sufficient condition for the existence of the unique solution of AX® + X°B = 0
and AX¢ + X°B = C, respectively.

However, as declared in Introduction, the quaternion matrix equation AX + X®B = 0 has not been
studied at present. Thus, it still be an unsettled problem to determine the dimension of the solution space
of AX + X*B = 0, and the necessary and sufficient condition for existence and uniqueness of solution of
AX + X®B = 0 and AX + X°B = C, respectively. Furthermore, the dimension of the solution space of the
more general quaternion matrix equation AXB + CX°D = 0 has not been completely addressed. In the
future, we will also explore the necessary and sufficient condition for the existence of the unique solution
of AX!B + CX°D = 0 and AX¢B + CX°D = E, respectively.
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