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Abstract. In this paper, we prove the boundedness of sublinear operator on weighted modular Banach
function space (BFS) under a certain size condition. We establish sufficient conditions on weight functions
and on the geometry of modular BFS for the validity of the strong inequality for sublinear operator on
weighted modular BFS under certain size condition. We will assume that the BFS is p-convex and the
modular defining the BFS satisfies some growth condition. In particular, we obtain the boundedness of
the sublinear operator on weighted Musielak-Orlicz spaces. The size condition is satisfied by most of
the operators in harmonic analysis, such as the Calderón-Zygmund singular integral operator, Hardy-
Littlewood maximal operator, Bochner-Riesz means at the critical index, Carleson maximal operator, Ricci-
Stein’s oscillatory singular integrals, C. Fefferman’s singular multiplier operator, R. Fefferman’s singular
integral operator and so on. The main result is new in the case of an unweighted setting.

1. Introduction

One of the central problems of harmonic analysis is the problem of the boundedness of the sublinear
operators on the BFS. The investigations of the sublinear operators on weighted BFS have a recent history.
The goal of these investigations was closely connected with the finding of criterion on the geometry of BFS
and on the weights for validity of boundedness of sublinear operators on BFS. The characterization of the
mapping properties such as boundedness and compactness of Hardy type operator on variable Lebesgue
spaces were considered in [1]-[3], [5], [6], [8], [15], [17], [30] and so on. Moreover, the compactness and
measure of noncompactness of Hardy-type operators on ℓ-convex BFS was established in [27]. Also, the
boundedness of Hardy type operator on general BFS was studied in [23]. The characterization of the
boundedness of the Hardy-Littlewood maximal operator on BFS has been studied in [10], [20], [25] and
so on. We observe that the boundedness of Riesz potential on weighted modular BFS was proved in [7].
In particular, the boundedness Hardy-Littlewood maximal operator on variable Lebesgue spaces and on
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Musielak-Orlicz spaces has been studied in [12], [13], [18], [19], [32] and so on. Note that the notion of BFS
was introduced in [29]. In particular, the weighted Lebesgue spaces, weighted Lorentz spaces, weighted
variable Lebesgue spaces, variable Lebesgue spaces with mixed norm and Musielak-Orlicz spaces are BFS.

In order to study the well known important operators in harmonic analysis uniformly, many researchers
introduced the following sublinear operator satisfying some size condition.

Let T be a sublinear operator that satisfies that for any f ∈ L1 (Rn) with compact support and x < supp f

|T f (x)| ≤ C0

∫
Rn

| f (y)|
|x − y|n

dy, (1)

where C0 is independent of f and x.
We point out that condition (1) was first introduced by Soria and Weiss in [34]. The condition (1) are

satisfied by many interesting operators in harmonic analysis, such as the Calderón-Zygmund singular inte-
gral operators, Carleson’s maximal operators, Hardy-Littlewood maximal operator, C. Fefferman’s singular
multipliers, R. Fefferman’s singular integrals, Ricci-Stein’s oscillatory singular integrals, the Bochner-Riesz
means and so on (see [28], [34] for details). Note that the boundedness of sublinear operators and its
commutators on different function spaces was studied in [1], [16], [23], [28], [34]-[36] and so on.

Inspired by the above, we proved the boundedness of sublinear operators on weighted modular BFS.
We give sufficient conditions on weight functions and on the geometry of modular BFS. In this paper, it is
assumed that the BFS satisfies the condition of p-convexity. In particular, we can obtain the boundedness of
many important linear operators in harmonic analysis on weighted modular BFS. In particular, we obtain
the boundedness of the sublinear operator on weighted variable Lebesgue spaces.

The remainder of the paper is structured as follows. In Section 2, we will recall some related definitions
and auxiliary lemmas, including some basic notions regarding modular spaces and weighted BFS. Our
principal assertions concerning the Hardy operator in the mentioned spaces are formulated and proved
in Section 3. We establish sufficient conditions on weight functions and on the modular defining BFS for
the validity of two-weight inequality for sublinear operator on weighted modular BFS under certain size
condition. As an application, we obtain the boundedness of some classical sublinear operators on weighted
modular BFS. Throughout, we use C to stand for an absolute positive constant, which may have different
values in different occurrences.

2. Preliminaries

Let (Ω, µ) be a complete σ-finite measure space. By L0 = L0(Ω, µ) we denote the collection of all
real-valued -measurable functions on Ω.

Definition 2.1. ([14], [31] Let X be a real linear space. A function ρ : X 7→ [0,∞] is called semimodular on
L if the following properties hold:

(a) ρ(0) = 0,
(b) ρ(λx) = ρ(x) for all x ∈ X and λ ∈ R with |λ| = 1,
(c) ρ is convex,
(d) ρ is left-continuous,
(e) ρ(λx) = 0 for all λ > 0 implies that x = 0.
A semimodular ρ is called a modular if
(f) ρ(x) = 0 implies that x = 0,
A semimodular ρ is called continuous if
(f) the mapping λ 7→ ρ(λx) is continuous on [0,∞) for every x ∈ X.

If ρ is semimodular or modular on X, then

Xρ :=
{
x ∈ X : lim

λ→0
ρ(λx) = 0

}
is called a semimodular space or a modular space, respectively. The limit as λ→ 0 exists in R.
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Theorem 2.2. ([14], [31]) Let ρ be semimodular on X. Then Xρ is a normed real vector space. The norm in
semimodular space is called the Luxemburg norm and defined by the formula

∥x∥Xρ = ∥x∥ρ := inf
{
λ > 0 : ρ

( 1
λ

x
)
≤ 1

}
.

Now we give the norm-modular unit ball property in semimodular space.

Lemma 2.3. ([14]) Let ρ be a semimodular on X. Then ∥x∥ρ ≤ 1 and ρ(x) ≤ 1 are equivalent. If ρ is continuous,
then also ∥x∥ρ < 1 and ρ(x) < 1 are equivalent, as are ∥x∥ρ = 1 and ρ(x) = 1.

Let Xρ1 and Yρ2 be two modular spaces on linear spaces X and Y, respectively. We recall that the sublinear
operator S is said to be bounded from Xρ1 to Yρ2 if there exists a constant C > 0 such that for any f ∈ Xρ1

∥S f ∥ρ2 ≤ C∥ f ∥ρ1 .

Let us give a characterization of the bounded sublinear operator in terms of the modular.
By the norm-modular unit ball property in modular spaces, we have the following lemma.

Lemma 2.4. Let ρ1 and ρ2 be two modulars on linear spaces X and Y, respectively. Suppose that S : Xρ1 7→ Yρ2 is a
bounded sublinear operator. Then, S is bounded if and only if there exists C > 0 such that

ρ1( f ) ≤ 1 =⇒ ρ2

(
S f
C

)
≤ 1.

Definition 2.5. ([9], [26]) We say that real normed space X is a BFS over (Ω, µ) if:
(P1) the norm ∥ f ∥X is defined for every µ-measurable function f , and f ∈ X if and only if ∥ f ∥X < ∞;

∥ f ∥X = 0 if and only if f = 0 µ-a.e.,
(P2) ∥ f ∥X = ∥| f |∥X for all f ∈ X,
(P3) 0 ≤ f ≤ 1 µ-a.e. =⇒ ∥ f ∥X ≤ ∥1∥X,
(P4) if 0 ≤ fn ↑ f µ-a.e. =⇒

∥∥∥ fn
∥∥∥

X ↑ ∥ f ∥X (Fatou property),
(P5) if E is a µ-measurable subset ofΩ such that µ(E) < ∞, then ∥χE∥X < ∞,where χE is the characteristic

function of the set E,
(P6) for every µ-measurable set E ⊂ Ωwith µ(E) < ∞, there is a constant CE > 0 such that∫

E

f dµ ≤ CE ∥ f ∥X.

Given a BFS X we can always consider its associate space X′ consisting of those 1 ∈ L0 that f1 ∈ L1 for

every f ∈ X with the usual order and the norm ∥1∥X′ = sup
∫
Ω

f1 dµ, ∥ f ∥X ≤ 1
 . Note that X′ is a BFS over

(Ω, µ) and a closed norming subspaces.
The definition of ∥1∥X′ implies that ∫

Ω

f1 dµ ≤ ∥ f ∥X ∥1∥X′ .

So, we have

∥ f ∥X = sup
∥1∥X′≤1

∫
Ω

| f1| dµ.

Let X be a BFS over (Ω, µ) and let ω be a weight function on Ω. Let Xω =
{
f ∈ L0 : fω ∈ X

}
. This space

is a weighted BFS equipped with the norm ∥ f ∥Xω = ∥ fω∥X. (For more detail and proofs of results about BFS
we refer the reader to [9] and [25].)

Note that the notion of BFS was introduced by W.A.J. Luxemburg in [29].
Let us recall the notion of p-convexity and p-concavity of BFS’s.
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Definition 2.6. ([33]) Let X be a BFS. Then X is called p-convex for 1 ≤ p ≤ ∞, if there exists a constant
M > 0 such that for all n ∈N and f1, . . . , fn ∈ X∥∥∥∥∥∥∥∥

 n∑
k=1

∣∣∣ fk∣∣∣p
1
p

∥∥∥∥∥∥∥∥
X

≤M

 n∑
k=1

∥∥∥ fk
∥∥∥p

X


1
p

if 1 ≤ p < ∞,

or

∥∥∥∥∥∥ sup
1≤k≤n

∣∣∣ fk∣∣∣∥∥∥∥∥∥
X

≤ M max
1≤k≤n

∥∥∥ fk
∥∥∥

X if p = ∞. Similarly, X is called p-concave for 1 ≤ p ≤ ∞, if there exists a

constant M > 0 such that for all n ∈N and f1, . . . , fn ∈ X n∑
k=1

∥∥∥ fk
∥∥∥p

X


1
p

≤M

∥∥∥∥∥∥∥∥
 n∑

k=1

∣∣∣ fk∣∣∣p
1
p

∥∥∥∥∥∥∥∥
X

if 1 ≤ p < ∞,

or max
1≤k≤n

∥∥∥ fk
∥∥∥

X ≤M

∥∥∥∥∥∥ sup
1≤k≤n

∣∣∣ fk∣∣∣∥∥∥∥∥∥
X

if p = ∞.

Remark 2.7. Note that the notions of p-convexity and p-concavity, are closely related to the notions of
upper p-estimate (strong ℓp-composition property), respectively lower p-estimate (strong ℓp-decomposition
property) as can be found in [26].

We note that the Lebesgue spaces with mixed norm, weighted Lorentz spaces etc are p-convex(p-concave)
BFS. Now we reduce more general result connected with Minkowski’s integral inequality.

Let X and Y be BFS’s on
(
Ω1, µ

)
and (Ω2, ν) , respectively. By X[Y] and Y[X] we denote the spaces with

a mixed norm and consist of all functions 1 ∈ L0
(
Ω1 ×Ω2, µ × ν

)
such that

∥∥∥1(x, ·)∥∥∥Y ∈ X and
∥∥∥1(·, y)

∥∥∥
X ∈ Y.

The norms in this spaces is defined as

∥1∥X[Y] =
∥∥∥∥∥∥1(x, ·)∥∥∥Y

∥∥∥
X
, ∥1∥Y[X] =

∥∥∥∥∥∥1(·, y)
∥∥∥

X

∥∥∥
Y
.

Now we give some examples of p-convex and respectively p-concave BFS.

Theorem 2.8. ([33]) Let X and Y be BFS’s and let there exists 1 ≤ p ≤ ∞ such that X is p-convex and Y is p-concave.
Then there exists a constant M such that for all µ × ν-measurable f : Ω1 ×Ω2 7→ R the inequality

∥ f ∥X[Y] ≤M ∥ f ∥Y[X]

holds.

It is known that X[Y] and Y[X] are BFS’s on Ω1 ×Ω2 (see [24]).

Example 2.9. Let 1 ≤ q ≤ ∞ and X = Lq. Then the space Lq is p-convex (p-concave) BFS if and only if
1 ≤ p ≤ q ≤ ∞ (1 ≤ q ≤ p ≤ ∞.)

The proof implies from the usual Minkowski inequality in Lebesgue spaces.
Next, we give the definition of the Musielak-Orlicz space.

Definition 2.10. ([14], [31]) LetΩ ⊂ Rn be a Lebesgue measurable set. A real functionφ : Ω×[0,∞) 7→ [0,∞]
is called a generalized Φ-function on Ω if it satisfies:

(a) φ(x, ·) is a Φ-function for all x ∈ Ω, i.e., φ(x, ·) : [0,∞) 7→ [0,∞] is convex and satisfies φ(x, 0) = 0,
lim
t→+0

φ(x, t) = 0;

(b) x 7→ φ(x, t) is measurable for every t ≥ 0.

If φ is a generalized Φ-function on Ω, we briefly write φ ∈ Φ(Ω).
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Definition 2.11. ([14], [31]) Let φ ∈ Φ and let ρφ be given by

ρφ( f ) :=
∫
Ω

φ(x, | f (x)|) dx for all f ∈ L0(Ω).

We put Lφ(Ω) =
{

f ∈ L0(Ω) : ρφ
(
λ0 f

)
< ∞ for some λ0 > 0

}
and

∥ f ∥Lφ(Ω) = inf
{
λ > 0 : ρφ

(
f
λ

)
≤ 1

}
The space Lφ(Ω) is called Musielak-Orlicz space.

Let ω be a weight function on Ω. In this work we considered the weighted Musielak-Orlicz spaces. We
denote

Lφ,ω(Ω) =
{

f ∈ L0(Ω) : fω ∈ Lφ(Ω)
}
.

It is obvious that the norm in this spaces is given by

∥ f ∥Lφ,ω(Ω) = ∥ fω∥Lφ(Ω).

The following lemma shows that the Musielak-Orlicz space Lφ is p-convex BFS.

Lemma 2.12. ([5]) Let Ω1 ⊂ Rn and Ω2 ⊂ Rm. Let (x, t) ∈ Ω1 × [0,∞) and let φ
(
x, t1/p

)
∈ Φ for some 1 ≤ p < ∞.

Suppose that f : Ω1 ×Ω2 7→ R is a µ × ν-measurable function. Then the inequality∥∥∥∥∥∥∥ f (x, ·)
∥∥∥

Lp(Ω2)

∥∥∥∥
Lφ(Ω1)

≤ 21/p
∥∥∥∥∥∥∥ f (·, y)

∥∥∥
Lφ(Ω1)

∥∥∥∥
Lp(Ω2)

holds.

Let X and Y be BFS over the same measure space (Ω, µ). We write X ↪→ Y to denote the fact that X is
continuously embedded into Y.

Now we give an embedding between different Musielak-Orlicz spaces.

Theorem 2.13. ([14]) Let φ, ψ ∈ Φ(Ω). Then Lφ(Ω) ↪→ Lψ(Ω) if and only if there exist C > 0 and h ∈ L1(Ω) with
∥h∥L1(Ω) ≤ 1 such that

ψ(x,
t
C

) ≤ φ(x, t) + h(x)

for almost all x ∈ Ω and all t ≥ 0.
Moreover, C is bounded by the embedding constant, whereas the embedding constant is bounded by 2C.

The following corollary is a consequence of Theorem 2.13.

Corollary 2.14. Let φ ∈ Φ(Ω). Let 1 ≤ p < ∞ and ψ(x, t) = tp, x ∈ Ω. Then Lφ(Ω) ↪→ Lp(Ω) if and only if there
exist C > 0 and h ∈ L1(Ω) with ∥h∥L1(Ω) ≤ 1 such that( t

C

)p
≤ φ(x, t) + h(x) (2)

for almost all x ∈ Ω and all t ≥ 0.
Moreover, C is bounded by the embedding constant, whereas the embedding constant is bounded by 2C.
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Let p : Ω 7→ [1,∞) be a Lebesgue measurable function. The Musielak-Orlicz space Lφ(Ω) is the variable
Lebesgue space if φ(x, t) = tp(x), t ≥ 0 (see, [11] and [22]). In particular, for more information on embedding
between different variable Lebesgue spaces we refer to [4] and [14].

Let f be a non-negative locally integrable function onRn. The multidimensional Hardy operator and its
dual operator are defined by

H f (x) =
∫
|y|<|x|

f (y) dy; H⋆ f (x) =
∫
|y|>|x|

f (y) dy, x ∈ Rn.

As shown in [6], we have the following two theorems.

Theorem 2.15. Let v and w are weights on Rn and let 0 < α < 1. Suppose that there exists 1 ≤ p < ∞ such that Xw
is a p-convex weighted BFS’s. Then the inequality

∥H f ∥Xw ≤ C ∥ f ∥Lp,v(Rn) (3)

holds if and only if

A(α) = sup
t>0


∫
|y|<t

[v(y)]−p′ dy


α
p′

∥∥∥∥∥∥∥∥∥∥χ{|z|>t}(·)


∫
|y|<|·|

[v(y)]−p′ dy


1−α
p′

∥∥∥∥∥∥∥∥∥∥
Xw

< ∞.

Moreover, if C > 0 is the best possible constant in (3), then

sup
0<α<1

p′ A(α)

(1 − α)
[( p′

1−α

)p
+ 1

α(p−1)

]1/p ≤ C ≤M inf
0<α<1

A(α)

(1 − α)1/p′ .

The similar theorem holds for dual operator of the multidimensional Hardy operator.

Theorem 2.16. Let v and w are weights on Rn and 0 < β < 1. Suppose that there exists 1 ≤ p < ∞ such that Xw is
a p-convex weighted BFS’s. Then the inequality

∥H⋆ f ∥Xw ≤ C ∥ f ∥Lp,v(Rn) (4)

holds if and only if

B(β) = sup
t>0


∫
|y|>t

[v(y)]−p′ dy


β
p′

∥∥∥∥∥∥∥∥∥∥χ{|z|<t}(·)


∫
|y|>|·|

[v(y)]−p′ dy


1−β
p′

∥∥∥∥∥∥∥∥∥∥
Xw

< ∞.

Moreover, if C > 0 is the best possible constant in (4), then

sup
0<β<1

p′ B(β)

(1 − β)
[( p′

1−β

)p
+ 1

β(p−1)

]1/p ≤ C ≤M inf
0<β<1

B(β)(
1 − β

)1/p′ .

3. Main results

In this section, we start with the proof of the main result.
Let SB(X,Y) be the set of the bounded sublinear operators from a Banach space X into a Banach space Y.
Let Z be the set of integers. For k ∈ Z we define Ek =

{
x ∈ Rn : 2k < |x|

≤ 2k+1
}
, Ek,1 =

{
x ∈ Rn : |x| ≤ 2k−1

}
, Ek,2 =

{
x ∈ Rn : 2k−1 < |x| ≤ 2k+2

}
and Ek,3 =

{
x ∈ Rn : |x| > 2k+2

}
. Then

Ek,2 = Ek−1 ∪ Ek ∪ Ek+1 and the multiplicity of the covering
{
Ek,2

}
k∈Z is equal to 3.
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Theorem 3.1. Let ν and w be weight functions defined on Rn. Suppose {ωk}k∈Z is a sequence of nonnegative
measurable functions on Rn. Let X be a modular BFS on Rn and let Xν be a corresponding weighted modular BFS.
Suppose that there exists 1 < p < ∞ such that Xw is a p-convex BFS and let Xν ↪→ Lp,ν (Rn) . Suppose that r is a
bounded measurable function on Rn such that r ≥ p. Let T be a sublinear operator satisfying the condition (1) and
T ∈ SB

(
Lp (Rn) , X

)
. Let 0 < α, β < 1 and assume that the following conditions are satisfied:

1) A1(α) = sup
t>0


∫
|y|<t

[ν(y)]−p′ dy


α
p′

∥∥∥∥∥∥∥∥∥∥
1
|x|n


∫
|y|<|x|

[ν(y)]−p′ dy


1−α
p′

χ{|x|>t}

∥∥∥∥∥∥∥∥∥∥
Xw

< ∞,

2) B1(β) = sup
t>0


∫
|y|>t

[
ν(y) |y|n

]−p′ dy


β
p′

∥∥∥∥∥∥∥∥∥∥

∫
|y|>|x|

[ν(y) |y|n]−p′ dy


1−β
p′

χ{|x|<t}

∥∥∥∥∥∥∥∥∥∥
Xw

< ∞,

3) there exists C1 > 0 such that for any k ∈ Z the following inequality holds:

ess sup
x∈Ek

w(x) ≤ C1 ess inf
x∈Ek,2

ν(x)

4) there exists C2 > 0 such that for any k ∈ Z and 1k ∈ X the following inequality holds:

ρ

∑
k∈Z

ωk

∣∣∣1k

∣∣∣ χEk

 ≤ C2

∑
k∈Z

ess sup
x∈Ek

[ωk(x)]r(x) ρ
(
1k χEk

)
.

Then T ∈ SB (Xν, Xw) .

Proof. Let f ∈ Xν. By the fact that T is a sublinear operator, we can write

|T f (x)| =
∑
k∈Z

|T f (x)|χEk (x) ≤
∑
k∈Z

∣∣∣T fk,1(x)
∣∣∣χEk (x) +

∑
k∈Z

∣∣∣T fk,2(x)
∣∣∣χEk (x)

+
∑
k∈Z

∣∣∣T fk,3(x)
∣∣∣χEk (x) = T1 f (x) + T2 f (x) + T3 f (x),

where χEk is the characteristic function of the set Ek, fk,i = fχEk,i , i = 1, 2, 3.
First we shall estimate

∥∥∥T1 f
∥∥∥

Xw.
We observe that for x ∈ Ek and y ∈ Ek,1, we have |y| ≤ 2k−1

≤
1
2 |x|. It is

obvious that Ek ∩ supp fk,1 = ∅ and |x − y| ≥ |x| − |y| ≥ 1
2 |x|. So, by (1), one has

∣∣∣T1 f (x)
∣∣∣ ≤ C

∑
k∈Z


∫
Rn

∣∣∣ fk,1(y)
∣∣∣

|x − y|n
dy

 χEk (x) = C
∑
k∈Z


∫

Ek,1

∣∣∣ f (y)
∣∣∣

|x − y|n
dy

 χEk (x)

≤ C


∫

|y|< 1
2 |x|

∣∣∣ f (y)
∣∣∣

|x − y|n
dy


∑
k∈Z

χEk (x) = C


∫

|y|< 1
2 |x|

∣∣∣ f (y)
∣∣∣

|x − y|n
dy


≤ C


∫
|y|<|x|

∣∣∣ f (y)
∣∣∣

|x − y|n
dy

 ≤ 2n C
1
|x|n

∫
|y|<|x|

| f (y)| dy.



R. A. Bandaliyev et al. / Filomat 39:19 (2025), 6629–6640 6636

So, we have ∥∥∥T1 f
∥∥∥

Xw
≤ 2n C

∥∥∥∥∥∥∥∥∥
1
| · |n

∫
|y|<|·|

| f (y)| dy

∥∥∥∥∥∥∥∥∥
Xw

= 2n C

∥∥∥∥∥∥∥∥∥
∫
|y|<|·|

| f (y)| dy

∥∥∥∥∥∥∥∥∥
X w
|·|n

.

By condition 1) and Theorem 2.15, we have∥∥∥T1 f
∥∥∥

Xw
≤

2n C M A1(α)
(1 − α)1/p′ ∥ f ∥Lp,ν(Rn). (5)

Next we estimate
∥∥∥T3 f

∥∥∥
Xw.

We observe that for x ∈ Ek and y ∈ Ek,3,we have |y| > 2k+2
≥ 2 |x|. It is obvious

that Ek ∩ supp fk,3 = ∅ and |x − y| ≥ |y| − |x| ≥ 1
2 |y|. Similarly, we can show that∣∣∣T3 f (x)
∣∣∣ ≤ 2n C

∫
|y|>|x|

| f (y)|
|y|n

dy.

Thus, one has ∥∥∥T3 f
∥∥∥

Xw
≤ 2n C

∥∥∥∥∥∥∥∥∥
∫
|y|>|·|

| f (y)|
|y|n

dy

∥∥∥∥∥∥∥∥∥
Xw

.

By condition 2) and Theorem 2.16, we have∥∥∥T3 f
∥∥∥

Xw
≤

2n C M B1(β)
(1 − β)1/p′ ∥ f ∥Lp,ν(Rn). (6)

Finally, we estimate
∥∥∥T2 f

∥∥∥
Xw.

Let ∥ f ∥Lp,ν(Rn) ≤ 1. So, ρp( f ) =
∫
Rn

[
| f (x)| ν(x)

]p dx ≤ 1. By Lemma 2.4, it

suffices to prove that there exists a constant M > 0 such that

ρ

(
w T2 f

M

)
≤ 1.

Taking ωk(x) =
C w

∥∥∥ fk,2
∥∥∥

Lp(Rn)

M
by the conditions 3) and 4), we have

ρ

(
w T2 f

M

)
= ρ


w

∑
k∈Z

∣∣∣T fk,2
∣∣∣ χEk

M

 = ρ
∑

k∈Z

C w
∥∥∥ fk,2

∥∥∥
Lp(Rn)

M

∣∣∣T fk,2
∣∣∣

C
∥∥∥ fk,2

∥∥∥
Lp(Rn)

χEk


≤ C2

∑
k∈Z

ess sup
x∈Ek

C w(x)
∥∥∥ fk,2

∥∥∥
Lp(Rn)

M


r(x)

ρ

 T fk,2
C

∥∥∥ fk,2
∥∥∥

Lp(Rn)

χEk


≤ C2

∑
k∈Z

ess sup
x∈Ek

C
∥∥∥ f w(x)

∥∥∥
Lp(Ek,2)

M


r(x)

ρ

 T fk,2
C

∥∥∥ fk,2
∥∥∥

Lp(Rn)



≤ C2

∑
k∈Z

ess sup
x∈Ek


C C1

∥∥∥∥∥ f ess inf
x∈Ek,2

ν(x)
∥∥∥∥∥

Lp(Ek,2)
M


r(x)
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≤ C2 ess sup
x∈Rn

(C C1

M

)r(x) ∑
k∈Z

ess sup
x∈Ek

[∥∥∥ f ν
∥∥∥

Lp(Ek,2)

]r(x)

= C2 ess sup
x∈Rn

(C C1

M

)r(x) ∑
k∈Z

[∥∥∥ f
∥∥∥

Lp,ν(Ek,2)

]r

≤ C2 ess sup
x∈Rn

(C C1

M

)r(x) ∑
k∈Z

[∥∥∥ f ν
∥∥∥

Lp(Ek,2)

]p

= C2 ess sup
x∈Rn

(C C1

M

)r(x) ∑
k∈Z

∫
Ek,2

[
| f (x)| ν(x)

]p dx.

Next, we have ∑
k∈Z

∫
Ek,2

[
| f (x)| ν(x)

]p dx

=

∑k∈Z
∫

Ek−1

[
| f (x)| ν(x)

]p dx +
∑
k∈Z

∫
Ek

[
| f (x)| ν(x)

]p dx +
∑
k∈Z

∫
Ek+1

[
| f (x)| ν(x)

]p dx


= 3

∫
Rn

[
| f (x)| ν(x)

]p dx ≤ 3.

Finally, one has

ρ

(
w T2 f

M

)
≤ 3 C2 ess sup

x∈Rn

(C C1

M

)r(x)

.

Let ess sup
x∈Rn

(C C1

M

)r(x)

≤
1

3 C2
. Let’s choose M so that

M ≥ C C1 ess sup
x∈Rn

(3 C2)
1

r(x) .

Therefore, we have

ρ

(
w T2 f

M

)
≤ 1.

So, by Lemma 2.4, one has∥∥∥T2 f
∥∥∥

Xw
≤ C∥ f ∥Lp,ν(Rn). (7)

Combining the estimates (5), (6) and (7), we have∥∥∥T f
∥∥∥

Xw
≤ C∥ f ∥Lp,ν(Rn).

Since Xν ↪→ Lp,ν (Rn) , we have that ∥∥∥T f
∥∥∥

Xw
≤ C∥ f ∥Xν .

Let p = ess inf
x∈Rn

p(x) and p = ess sup
x∈Rn

p(x).

The following corollary is a consequence of Theorem 3.1.
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Corollary 3.2. Let ν and w be weight functions defined on Rn. Suppose that p is a bounded measurable function on

Rn such that 1 < p ≤ p(x) ≤ p < ∞. Let there exists 0 < δ < 1 such that
∫
Rn

δ
p p(x)

p(x)−p dx < ∞. Let T be a sublinear

operator satisfying the condition (1) and T ∈ SB
(
Lp (Rn) , Lp(x) (Rn)

)
. Let 0 < α, β < 1 and assume that the following

conditions are satisfied:

1) A1(α) = sup
t>0


∫
|y|<t

[ν(y)]−p′ dy


α
p′

∥∥∥∥∥∥∥∥∥∥
1
|x|n


∫
|y|<|x|

[ν(y)]−p′ dy


1−α
p′

∥∥∥∥∥∥∥∥∥∥
Lp(·),w(|x|>t)

< ∞,

2) B1(β) =


∫
|y|>t

[
ν(y) |y|n

]−p′ dy


β
p′

∥∥∥∥∥∥∥∥∥∥

∫
|y|>|x|

[ν(y) |y|n]−p′ dy


1−β
p′

∥∥∥∥∥∥∥∥∥∥
Lp(·),w(|x|<t)

< ∞,

3) there exists C1 > 0 such that for any k ∈ Z the following inequality holds:

ess sup
x∈Ek

w(x) ≤ C1 ess inf
x∈Ek,2

ν(x)

Then T ∈ SB
(
Lp(x),ν (Rn) , Lp(x),w (Rn)

)
.

Proof. Let Xw = Lp(x),w (Rn) , r(x) = p(x) and p = p. It is well known that the modular on weighted variable
Lebesgue space is defined by

ρ( f ) = ρp(·),w( f ) =
∫
Rn

(
| f (x)|w(x)

)p(x) dx.

Thus, condition 4) of Theorem 3.1 is fulfilled directly.

Remark 3.3. It should be noted that Corollary 3.2 was proved in [1]. The boundedness of the Hardy-
Littlewood maximal operator on variable Lebesgue spaces was studied in [12], [13], [18], [32] and so on. If
p(x) = p0 is constant, then two-weight inequalities for singular integrals defined on homogeneous groups
was proved in [21] and [28]. If p(x) = p0 is constant, then various versions of Corollary 3.2 on weighted
Lebesgue spaces were proved in [16], [36] and so on. Also, the boundedness of sublinear operators and its
commutators on weighted grand Morrey spaces and on generalized mixed Morrey spaces were proved in
[23] and [35].

Now we formulate a strong type inequality for sublinear operator satisfying the condition (1) on
weighted Orlicz-Musielak space.

Corollary 3.4. Let φ ∈ Φ (Rn) and let ν and w be weight functions defined on Rn. Suppose that {ωk}k∈Z is a
sequence of nonnegative measurable functions on Rn. Let Lφ,ν (Rn) be a corresponding weighted Musielak-Orlicz

space. Suppose that there exists 1 < p < ∞ such that φ
(
x, t

1
p
)
∈ Φ (Rn) and let φ satisfy condition (2) of Corollary

2.14. Suppose that r is a bounded measurable function onRn such that r ≥ p. Let T be a sublinear operator satisfying
the condition (1) and T ∈ SB

(
Lp (Rn) , Lφ (Rn)

)
. Let 0 < α, β < 1 and assume that the following conditions are

satisfied:

1) A1(α) = sup
t>0


∫
|y|<t

[ν(y)]−p′ dy


α
p′

∥∥∥∥∥∥∥∥∥∥
1
|x|n


∫
|y|<|x|

[ν(y)]−p′ dy


1−α
p′

∥∥∥∥∥∥∥∥∥∥
Lφ,w(|x|>t)

< ∞,
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2) B1(β) = sup
t>0


∫
|y|>t

[
ν(y) |y|n

]−p′ dy


β
p′

∥∥∥∥∥∥∥∥∥∥

∫
|y|>|x|

[ν(y) |y|n]−p′ dy


1−β
p′

∥∥∥∥∥∥∥∥∥∥
Lφ,w(|x|<t)

< ∞,

3) there exists C1 > 0 such that for any k ∈ Z the following inequality holds:

ess sup
x∈Ek

w(x) ≤ C1 ess inf
x∈Ek,2

ν(x)

4) there exists C2 > 0 such that for any k ∈ Z, x ∈ Ek and 1k ∈ Lφ (Rn) the following inequality holds:

φ

x,
∑
k∈Z

ωk

∣∣∣1k

∣∣∣ χEk

 ≤ C2

∑
k∈Z

ess sup
x∈Ek

[ωk(x)]r(x) φ
(
x;

∣∣∣1k

∣∣∣ χEk

)
.

Then T ∈ SB
(
Lφ,ν (Rn) , Lφ,w (Rn)

)
.

Proof. Let Xw = Lφ,w (Rn) . By the Definition 2.11 the modular on weighted Musielak-Orlicz space is defined
by

ρ( f ) = ρφ,w( f ) =
∫
Rn

φ
(
x, | f (x)|w(x)

)
dx.

Remark 3.5. We observe that the boundedness of Hardy-Littlewood maximal operator on Musielak-Orlicz
spaces was studied in [13] and [19]. Similar results for the multidimensional Hardy operator on weighted
Musielak-Orlicz spaces were obtained in [5].
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