
Filomat 39:19 (2025), 6641–6649
https://doi.org/10.2298/FIL2519641M

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. For an open coveringU in a topological space in this paper we define aU-chain connected set,
and a pair ofU-chain separated sets in the topological space and study its properties.

1. Introduction

The definition of a chain connected set in a topological space is given in [1]. The properties of those sets
are studied in [1]-[7]. The notion of a chain connected set in a topological space requires the existence of
a chain in every open covering. However, it is possible to introduce analogous notions and to formulate
analogous statements also in the case where the existence of the chain is required in one, previously given,
open covering. Moreover, the connections between the notions concerning the chain connectedness and
the chain connectedness in an open covering i.e.,U-chain connectedness are given in Sections 5 and 9.

In this paper by a covering in a topological space we understand an open covering, i.e., a covering that
consists of open sets, and by a covering of X, if it is not otherwise stated, we understand a covering of X in
X.

LetU be a covering of the set X and x, y ∈ X. A chain inU that connects x and y (from x to y) is a finite
sequence of sets U1,U2, ...,Un ofU such that x ∈ U1, y ∈ Un and Ui ∩Ui+1 , ∅ for every i = 1, 2, ...,n − 1 [1].

2. U-chain connected set in a topological space

Using the notion of a chain we define the notion of U-chain connected set in a topological space, a
central notion in this paper.

Let X be a topological space, letU be a covering of X and let C ⊆ X.

Definition 2.1. The set C is U-chain connected in X, if for every x, y ∈ C, there exists a chain in U that
connects x and y.

Let C ⊆ Y ⊆ X andUY =U ∩ Y.

Theorem 2.2. 1) If the set C isUY-chain connected in Y, then C isU-chain connected in X.
2) If C isU-chain connected in Y, then C isU-chain connected in X.
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Proof. Let C beUY-chain connected in Y. Then:

UY =U ∩ Y = {U ∩ Y|U ∈ U}.

Since C is UY-chain connected in Y, it follows that for every two points x, y ∈ X, there exists a chain
U1∩Y,U2∩Y, ...,Un∩Y of elements ofUY. Then U1,U2, ...,Un is a chain in X of elements ofU, that connects
x and y. It follows that C isU-chain connected in X.

The most important case of the previous theorem is when Y = C.
The following example shows that the converse statement does not hold in general.

Example 2.3. Consider the topological space X = [−2,−1] ∪ {0} ∪ [1, 2] and the covering:

U = {[−2,−1] ∪ {0}, {0} ∪ [1, 2]}.

The set Y = X\{0} isU-chain connected in X, but is notUY-chain connected in Y since does not exist a chain
inUY = {[−2,−1], [1, 2]} that connects arbitrary element x ∈ [−2,−1] with arbitrary y ∈ [1, 2].

The next claim, directly follows from the definition.

Theorem 2.4. If the set C isU-chain connected in X, then each subset of C isU-chain connected in X

Definition 2.5. The set C isU-connected if C isU-chain connected in C.

LetV be a covering of X. We say that the coveringU is refinement ofV, notationU ≺ V, if for every
U ∈ U there exists V ∈ V such that U ⊆ V.

Proposition 2.6. If C isU-chain connected in X andU ≺ V then C isV-chain connected in X.

Theorem 2.7. Let f : X → Y be a function, let U be a covering of X and let V be a covering of Y such that
f (U) ≺ V. If C isU -chain connected set in X then f (C) isV-chain connected in Y.

Proof. Let f (x), f (y) ∈ f (C) and letV be a covering of Y such that f (U) ≺ V.
Since C isU-chain connected in X, there exists a chain inU that connects x and y i.e., there exists a finite

sequence U1,U2, ...,Un such that x ∈ U1, y ∈ Un and Ui ∩Ui+1 , ∅; i = 1, 2, ...,n − 1.
Let f (Ui) ⊆ Vi. Since Ui ∩Ui+1 , ∅ it follows that

Vi ∩ Vi+1 , ∅,

f (x) ∈ V1 and f (y) ∈ Vn i.e., V1,V2, ...,Vn is a chain inV that connects f (x) and f (y).

3. U-chain components

Let X be a topological space, letU be a covering of X, and let x, y ∈ X.
The definition of the next notion is mentioned as a commentary after Corollary 4.3 in [1].

Definition 3.1. The element x isU-chain related to y in X, and we denote it by x ∼
U,X

y, if there exists a chain

inU that connects x and y.

If x is not U-chain related to y in X we use the notation x /
U,X

y. The U-chain relation in a topological

space is an equivalence relation and it depends on the set X, the topology of X, and the coveringU of X.

Definition 3.2. The U-chain component of the point x in X, denoted by VX(x,U) or V(x,U) in X, is the
maximalU-chain connected set in X that contains x.
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TheU-chain component of the point x in X is unique, it is the largestU-chain connected set that contains
x and it is a class of equivalence of theU-chain relation in X. The set VX(x,U) consists of all elements y ∈ X
such that there exists a chain inU that connects x and y.

Let X be a topological space, let C ⊆ X, letU be a covering of X, and let x, y ∈ X.

Definition 3.3. The element x isU-chain related to y in X relatively C, if x, y ∈ C and there exists a chain
inU that connects x and y.

The U-chain relation relatively subset C in a topological space X is an equivalence relation and it
depends on the sets C and X, the topology of X, and the coveringU of X.

Definition 3.4. The U-chain component of the point x of C in X, denoted by VCX(x,U), is the maximal
U-chain connected subset of C in X that contains x.

The U-chain component of the point x of C in X is unique, it is the largest U-chain connected set in
C that contains x and it is a class of equivalence of U-chain relation in X relatively C. The set VCX(x,U)
consists of all elements y ∈ C such that there exists a chain inU that connects x and y.

Let x, y ∈ C. From the properties of the equivalence classes it follows that if y ∈ VCX(x,U) then
VCX(x,U) = VCX(y,U), and if VCX(x,U) , VCX(y,U) then VCX(x,U) ∩ VCX(y,U) = ∅.

From the definitions ofU-chain relation,U-chain relation relatively C, and the previous property of the
equivalence classes, the next proposition is valid.

Proposition 3.5. For every x ∈ C, VCX(x,U) = C ∩ VXX(x,U). Each U-chain component of X in X contains at
most oneU-chain component of C in X.

Let X be a topological space,U be a covering of X, C ⊆ X andUC =U ∩ C.
If C = X then VX(x,U) = VXX(x,U). The next proposition is a summary of the previous comments and

propositions.

Proposition 3.6. For every x ∈ C,

VC(x,UC) ⊆ VCX(x,U) =
⋃

y∈VCX(x)

VC(y,UC) ⊆ VX(x,U).

The proposition shows that everyU-chain component of C in X is a union ofUC-chain components of
C in C and is a subset ofU-chain component of X in X.

The next proposition is a reformulation of the definition of the U-chain connected set by using the
notion ofU-chain relation.

Proposition 3.7. The set C isU-chain connected in X if and only if for every x, y ∈ C, x ∼
U,X

y

So, C is notU-chain connected in X if and only if there exist x, y ∈ C such that x /
U,X

y.

Example 3.8. For the topological space, subspace and covering from Example 2.3, VX(1,U) = X and
VYX(x,U) = X\{0} for every x ∈ Y.

The next theorem describes allU-chain connected sets in a topological space.

Theorem 3.9. The set of allU-chain connected subsets of C in X consist of allU-chain components of C in X and
their subsets.

If the set C isU-chain connected in X, then the sets VX(x,U) match for every x ∈ C. Therefore, we also
use the notation VX(C,U) or V(C,U) in X for VX(x,U), x ∈ C. So VX(C,U) is the set that consists of all
elements y ∈ X, such that there exists a chain inU that connects some x ∈ C and y. Clearly C ⊆ VX(C,U)
and VX(C,U) = VX(x,U) for every x ∈ C.
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4. Union ofU-chain connected sets. Star of a covering

Now we turn to a union ofU-chain connected sets in a topological space.
Let X be a topological space and letU be a covering of X.
The accuracy of the next statement follows from the properties of the equivalence classes of theU-chain

relation.

Lemma 4.1. 1) Let C,D ⊆ X. If C and D areU-chain connected sets in X and VX(C,U) ∩ VX(D,U) , ∅, where
VX(C,U) and VX(D,U) areU-chain components of C and D, respectively, then the union VX(C,U)∪VX(D,U) is
U-chain connected in X and

VX(C,U) ∪ VX(D,U) = VX(C,U) = VX(D,U).

2) Let C,D ⊆ X. If C and D areU-chain connected in X and VX(C,U) ∩ VX(D,U) , ∅, where VX(C,U) and
VX(D,U) areU-chain components of C and D, respectively, then the union C ∪D isU-chain connected in X.

Theorem 4.2. Let Ci, i ∈ I, be a family of U-chain connected subspaces of X. If there exists i0 ∈ I such that
for every i ∈ I, VX(Ci0 ,U) ∩ VX(Ci,U) , ∅, then the union

⋃
i∈I VX(Ci,U) is U-chain connected in X and⋃

i∈I VX(Ci,U) = VX(Ck,U) for every k ∈ I.

Proof. Let Ci, i ∈ I, be a family of U-chain connected subspaces of X. Let x, y ∈
⋃

i∈I VX(Ci,U) i.e.,
x ∈ VX(Cx,U) and y ∈ VX(Cy,U) for some x, y ∈ I.

Because VX(Ci0 ,U)∩VX(Ci,U) , ∅, for every i ∈ I, from the previous lemma, it follows that VX(Ci0 ,U)∪
VX(Cx,U) is U-chain connected in X. Similarly VX(Ci0 ,U) ∪ VX(Cy,U) is U-chain connected in X. Then,
since Ci0 , ∅, from the previous lemma it follows that VX(Ci0 ,U) ∪ VX(Cx,U) ∪ VX(Cy,U) is U-chain
connected in X i.e., there exists a chain inU that connects x and y. So

⋃
i∈I VX(Ci,U) isU-chain connected

in X. By the definition of a chain component,
⋃

i∈I VX(Ci,U) = VX(Ck,U), for every k ∈ I.

Corollary 4.3. Let Ci, i ∈ I, be a family ofU-chain connected subspaces of X. If there exists i0 ∈ I such that for every
i ∈ I, Ci0 ∩ Ci , ∅, then the union

⋃
i∈I Ci isU-chain connected in X.

The star of the element x and the covering U of X, is the set st(x,U) = ∪{U ∈ U|x ∈ U}, the star of
degree n, for n > 1, of x and U in X is stn(x,U) = st

(
stn−1(x,U)

)
, and the infinite star of x and U in X is

st∞ =
⋃
∞

n=1 stn(x,U).
Let X be a topological space, letU be a covering of X and let C ⊆ X.

Theorem 4.4. Set C isU-chain connected in X, if and only if C ⊆ st∞(x,U), for every x ∈ C.

Corollary 4.5. The topological space X isU-chain connected in X, if and only if X = st∞(x,U), for every x ∈ X.

5. Inheriting aU-chain connectedness from a space to its subspace

Let X be a topological space,U be a covering of X, Y ⊆ X andUY =U ∩ Y.
If the set A is U-chain connected in X, then A is U-chain connected in each super space of X, but the

converse statement does not hold in general. The next theorem tell as in which case the converse statement
holds.

Theorem 5.1. If the set A isU-chain connected in X and VX(A,U) ⊆ Y ⊆ X then A isUY-chain connected in Y.

Proof. Let A be aU-chain connected set in X. It follows firstly that for arbitrary x, y ∈ A there exists a chain
U1,U2, ...,Un inU that connects x and y and secondly that for every z, t ∈

⋃n
i=1 Ui, there exists a chain inU

that connects z and t i.e.,
⋃n

i=1 Ui ⊆ VX(A,U) ⊆ Y. Therefore U1,U2, ...,Un is a chain inUY also that connects
x and y i.e., A isUY-chain connected in Y.

If the set A is not subset of VX(x,U) for every x ∈ X it follows that there exist x, y ∈ A such that there
is not chain in U that connects x and y. Then there is not chain in UY that connects x and y for every
A ⊆ Y ⊆ X i.e., A is notUY-chain connected in Y for every A ⊆ Y ⊆ X.
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6. Product ofU-chain connected sets

In this section we will consider the product ofU-chain connected sets.

Theorem 6.1. If Ci areUi-chain connected sets in Xi, i = 1, 2, ...,n; then the product
∏n

i=1 VXi (Ci,Ui) is a
∏n

i=1Ui-
chain connected set in

∏n
i=1 Xi and

V∏n
i=1 Xi

 n∏
i=1

Ci,
n∏

i=1

Ui

 = n∏
i=1

VXi (Ci,Ui).

Proof. a) Let X and Y be topological spaces, let U be a coverings of X and let V be a covering of Y.
Firstly we will prove that if C and D are U and V chain connected sets in X and Y, respectively, then
VX(C,U) × VY(D,V) is aU ×V-chain connected set in X × Y and

VX×Y(C ×D,U ×V) = VX(C,U) × VY(D,V).

Let (c, d) ∈ VX(C,U) × VY(D,V). Then c ∈ VX(C,U) and d ∈ VY(D,V) i.e., for arbitrary (e, f ) ∈ C ×D there
exist a chains U1,U2, ...,Up inU and V1,V2, ...,Vq inV that connect c and e, and d and f , respectively.

It follows firstly that U1 × Vm and U1 × Vm+1 for m = 1, 2, ..., q − 1; and Ur × Vq and Ur+1 × Vq for
r = 1, 2, ..., p − 1; have nonempty intersections, and secondly that:

U1 × V1, U1 × V2, ...,U1 × Vq, U2 × Vq, ...,Up × Vq

is a chain in U × V that connects (c, d) and (e, f ). Similarly, for arbitrary (1, h) ∈ VX(C,U) × VY(D,V) it
follows that (1, h) is chain related to (e, f ). From transitivity of chain connectedness relation it follows that
(1, h) is chain related to (c, d). Hence VX(C,U) × VY(D,V) is aU ×V-chain connected set in X × Y.

Since C ×D ⊆ VX(C,U) × VY(D,V), it follows that C ×D isU ×V-chain connected set in X × Y. Since
VX×Y(C × D,U ×V) is the largestU ×V-chain connected set in X × Y that contains C × D, it follows that
VX(C,U) × VY(D,V) ⊆ VX×Y(C ×D,U ×V).

Let (c, d) be arbitrary element of VX×Y(C×D,U×V). Then for arbitrary (e, f ) ∈ C×D there exists a chain
U1 × V1, U2 × V2, ...,Un × Vn inU ×V that connects (c, d) and (e, f ). Then U1,U2, ...,Un is a chain inU that
connects c and e, and V1,V2, ...,Vn is a chain inV that connects d and f . So e ∈ VX(C,U) and f ∈ VY(D,V)
i.e.,

(e, f ) ∈ VX(C,U) × VY(D,U).

It follows that VX×Y(C ×D,U ×V) ⊆ VX(C,U) × VY(D,V).
b) Now we will prove the finite case. Let Xi, i = 1, 2, ...,n; be topological spaces and letUi, be coverings

of Xi, i = 1, 2, ...,n; respectively. Let Ci be Ui-chain connected sets in Xi, i = 1, 2, ...,n. Then VXi (Ci,Ui) are
Ui-chain connected sets in Xi for all i = 1, 2, ...,n. The theorem we will prove by mathematical induction.

For n = 1 the statement is trivial.
For n = k, let

∏k
i=1 VXi (Ci,Ui) be

∏k
i=1Ui-chain connected set in

∏k
i=1 Xi and

V∏k
i=1 Xi

 k∏
i=1

Ci,
k∏

i=1

Ui

 = k∏
i=1

VXi (Ci,Ui).

Then for n = k + 1 ∏k+1
i=1 VXi (Ci,Ui) =

(∏k
i=1 VXi (Ci,Ui)

)
× VXk+1 (Ck+1,Uk+1) ind.

=

V∏k
i=1 Xi

(∏k
i=1 Ci,

∏k
i=1Ui

)
× VXk+1 (Ck+1,Uk+1) a

=

V(∏k
i=1 Xi)×Xk+1

((∏k
i=1 Ci

)
× Ck+1,

(∏k
i=1Ui

)
×Uk+1

)
= V∏k+1

i=1 Xi

(∏k+1
i=1 Ci,

∏k+1
i=1 Ui

)
.

Hence
∏n

i=1 VXi (Ci,Ui) is a chain connected set in
∏n

i=1 Xi and V∏n
i=1 Xi

(∏n
i=1 Ci,

∏n
i=1Ui

)
=
∏n

i=1 VXi (Ci,Ui).
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The next example shows that a product of infinitely many, even countable manyUi-chain connected sets
in topological spaces Xi, i = 1, 2, ...; respectively, in general is not

∏
∞

i=1Ui-chain connected set in product
space

∏
∞

i=1 Xi.

Example 6.2. Consider the discrete spaceN that consists of the set of natural numbers and an open covering
U = {{1, 2}, {2, 3}, {3, 4}, ...}. The spaceN isU-chain connected inN. Namely for every x, y ∈N, x < y; there
exists a chain

{x, x + 1}, {x + 1, x + 2}, ..., {y − 1, y}

inU that connects x and y.
So, the topological spaces Ni = N, for every i ∈ N; are Ui = U-chain connected in Ni, but the

product space
∏
∞

i=1 Ni is not
∏
∞

i=1Ui-chain connected in
∏
∞

i=1 Ni. Namely for the elements x = (1, 1, 1, ...)
and y = (1, 2, 3, ...) of

∏
∞

i=1 Ni, there is no chain in
∏
∞

i=1Ui that connects x and y. If there exists such a
finite sequence U1,U2, ...,Un of n elements in

∏
∞

i=1Ui that connects x and y, since x ∈ U1, it follows that
U1 =

∏
∞

i=1{1, 2}. Since, U1 ∩ U2 , ∅ for the coordinates zi, i ∈ N of arbitrary element of U2 it follows that
zi ≤ 3 for every i ∈N. In n-th step, since y ∈ Un, for every coordinate yi, i ∈N, of y it follows that yi ≤ n+ 1.
But infinitely many coordinates of y are greater than n + 1.

7. U-chain separated sets in a topological space

Let X be a topological space,U be a covering of X and A,B ⊆ X, A,B , ∅.
In this section we define a pair ofU-chain separated sets in a topological space X and study its properties.

Moreover we give a criterion ofU-chain connected set by the new notion ofU-chain separatedness.

Definition 7.1. The sets A and B are U-chain separated in a topological space X, if for every point x ∈ A
and every y ∈ B, there is no chain inU that connects x and y.

From the definition, it follows that if A and B areU-chain separated in a topological space X, then both
C and D, where C ⊆ A and D ⊆ B and C,D , ∅, areU-chain separated in X.

Let X be a topological space, let A and B be nonempty subsets of X, let A∪B ⊆ Y ⊆ X, and letUY =U∩Y.
The following proposition will show us that a pair of sets, which areU-chain separated in a topological

space, are alsoU-chain separated in every its subspace that contain their union.

Proposition 7.2. If A and B areU-chain separated in X, then A and B areUY-chain separated in Y.

Proof. Let the sets A and B be U-chain separated in X and let x ∈ A and y ∈ B. It follows that there is no
chain inU that connects x and y. Then

UY =U ∩ Y = {U ∩ Y|U ∈ U},

is a covering of Y in Y such that there is no chain inUY that connects x and y.

Remark 7.3. The most important case of the previous theorem is when Y = A ∪ B.

The next example shows that the converse statement does not hold in general.

Example 7.4. For the topological space X , the subspace Y and the coveringU, from Example 2.3; the sets
A = [−2,−1] and B = [1, 2] areUY-chain separated in Y = A ∪ B, whereUY = U ∩ Y = {[−2,−1], [1, 2]}, but
they are notU-chain separated in X.

Now let us consider statement that give criterion for U-chain connected set by using the notion of
U-chain separatedness.

Let X be a topological space, letU be a covering of X and let C ⊆ X.
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Theorem 7.5. The set C isU-chain connected in X, if and only if C cannot be represented as a union of twoU-chain
separated sets A and B in X.

Proof. (⇒) If C can be represented as a union ofU-chain separated sets A and B in X, then C is notU-chain
connected in X.

(⇐) Let C not beU-chain connected in X. It follows that C has at least two elements for which there is
no chain inU that connects some elements x and y of C. We consider the set V = VCX(x,U). Since C is not
U-chain connected in X, it follows that y ∈ C\V. So, C is represented as a union of twoU-chain separated
sets V and C\V.

Corollary 7.6. A set C isU-connected, if and only if it cannot be represented as a union of twoU-chain separated
sets A and B in C.

Theorem 7.7. Let X = A ∪ B, where A and B areU-chain separated sets in X, and C is aU-chain connected set in
X. Then C ⊆ A or C ⊆ B.

Proof. If there exists x, y ∈ C such that x ∈ A and y ∈ B, because C is aU-chain connected set in X, it follows
that there exists a chain inU that connects x and y. The last claim contradicts the claim that sets A and B
areU-chain separated in X. So, C ⊆ A or C ⊆ B.

8. Relation between chain andU-chain connected sets

In this section, the relationship betweenU-chain connected and chain connected sets will be considered.
Moreover criteria for some topological notions usingU-chain connectedness will be given. In fact, that is
the reason for defining theU-chain connectedness.

Let X be a topological space, let C ⊆ X and let A and B be nonempty subsets of X.
The set C is chain connected in X if for every coveringU of X and every x, y ∈ C, there exists a chain in

U that connects x and y [1].

Theorem 8.1. 1) The set C is chain connected in X if and only if C isU-chain connected in X for every coveringU
of X.

2) The set C is connected if and only if C isU-chain connected in C for every coveringU of C.
3) The set C is connected if and only if C isU-connected for every coveringU of C.

The set C is not connected if there exists a coveringU of C such that C is notU connected.
Let x, y ∈ X. The element x is chain related to y in X, and we denote it by x∼

X
y, if for every coveringU

of X there exists a chain inU that connects x and y. If x is not chain related to y in X we use the notation
x/

X
y. The chain component of element x of X, denoted by VX(x),is the maximal chain connected set in X that

contains x. The chain component of element x of C in X, denoted by VCX(x), is the maximal chain connected
subset of C in X that contains x. If C = X, VX(x) = VCX(x) for every x ∈ X [1].

Proposition 8.2. Let x, y ∈ X. The element x is chain related to y in X if and only if x isU-chain related to y in X
for every coveringU of X.

Theorem 8.3. The chain component VCX(x) is an intersection of allUC-chain components VCX(x,U), whereU is
a covering of X andUC =U ∩ C.

Corollary 8.4. The chain component VX(x) is an intersection of all U-chain components VX(x,U), where U is a
covering of X.

At the end we will present statements by using the notion ofU-chain separatedness.
The sets A and B are chain separated in X, if there exists a covering U of X such that for every point

x ∈ A and every y ∈ B, there is no chain inU that connects x and y [1].
The next Theorem 2) give a criterion for separatedness by using the notion of chain separatedness.
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Theorem 8.5. 1) The sets A and B are chain separated in X if there exists a coveringU of X such that A and B are
U-chain separated in X.

2) The sets A and B are separated if and only if there exists an open coveringU of A ∪ B such that A and B are
U-chain separated in A ∪ B.

The first two statements of the next proposition give criteria for two more topological notions by usung
the notion ofU-chain separatedness. The sets A and B are weakly chain separated in X, if for every point
x ∈ A and every y ∈ B, there exists a coveringU = Uxy of X such that there is no chain inU that connects
x and y [3]. The set C is totally weakly chain separated in X if for every two distinct points x, y ∈ C there
exists a coveringU =Uxy of X such that there is no chain inU that connects x and y [6]. The set C is totally
chain separated in X if there exists a coveringU of X such that for every two distinct points x, y ∈ C there
is no chain inU that connects x and y [6].

Proposition 8.6. 1) The topological space C is the discrete if and only if there exists a coveringU of C such that for
every two distinct points x, y ∈ C, {x} and {y} areU-chain separated in C.

2) The point x ∈ X is an isolated point of the T1 space X if and only if there exists a coveringU of X such that {x}
and {y} areU-chain separated in X for every y ∈ X\{x}.

3) The sets A and B are weakly chain separated in X if for every x ∈ A and every y ∈ B there exists a covering
U =Uxy of X such that {x} and {y} areU-chain separated in X.

4) The set C is totally weakly chain separated in X if for every two distinct points x, y ∈ C, there exists a covering
U =Uxy of X such that {x} and {y} areU-chain separated in X.

5) The set C is totally chain separated in X if there exists a coveringU of X such that for every two distinct points
x, y ∈ C, {x} and {y} areU-chain separated in X.

6) The topological space C is totally separated if and only if for every two distinct points x, y ∈ C, there exists a
coveringU =Uxy of C such that {x} and {y} areU-chain separated in C.

9. Inheriting a chain connectedness from a space to its subspace

Let X be a topological space and A ⊆ X. If A is chain connected in X, then A is chain connected in each
super space of X, but the converse statement does not hold in general. The next theorem tell as in which
case the converse statement holds.

By CX(x) is denoted the connected component of x ∈ X in X.

Theorem 9.1. If the set A ⊆ CX(x) for some x ∈ X, and CX(x) ⊆ Y ⊆ X, then A is chain connected in Y.

Proof. Let A ⊆ CX(x) for some x ∈ X and let CX(x) ⊆ Y ⊆ X. The set CX(x) is a connected i.e., chain connected
in CX(x). Since every subset of a chain connected set in a topological space is chain connected in the same
space, it follows that A is chain connected in CX(x). Thus, A is chain connected in each space Y such that
CX(x) ⊆ Y ⊆ X.

The next example show that CX(x) from the previous theorem, cannot be replaced by VX(x).

Example 9.2. Consider the topological space:

X =
{(

x,
1
x

) ∣∣∣∣x ∈ [−1, 1], n ∈N
}
∪

{
(x, 0)

∣∣∣x ∈ [−1, 1]\{0}
}
.

The set Y = ([−1, 1]\{0})× {0} is chain connected in X and is a chain component in X i.e. Y = VX(x) for every
x ∈ Y, but it is not chain connected in Y.

The next theorem refers to topological spaces with equal connected components and chain components.
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Corollary 9.3. Let X be a topological space that has one of the following properties:
1) X is a compact Hausdorff space;
2) The chain components of X are open sets;
3) X is locally connected space;
4) X has a finite number of chain components.

If the set A ⊆ VX(x) for some x ∈ X, and VX(x) ⊆ Y ⊆ X, then A is chain connected in Y.

Proof. Let A ⊆ VX(x) for some x ∈ X, and let VX(x) ⊆ Y ⊆ X. For the topological spaces from 1)-4),
CX(x) = VX(x) for every x ∈ X. Namely, for 1)-3) see [7], for 4), since the chain components are closed sets
[2], if they are finite number, then they also are open, and 2) implies the accuracy of the statement. It follows
that A ⊆ CX(x). From the previous theorem it follows that A is chain connected in Y.
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