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Abstract. Existence and uniqueness of the solution of initial boundary value problem for a class of
equations with complex-valued coefficients is treated in this work. These equations behave like parabolic
ones, though in time they may transform from parabolic to Schrodinger type or even to antiparabolic type.
Note that for the equations of corresponding spectral problems the arguments of the roots of characteristic
polynomials in the sense of Birkhoff are not constant.

1. Introduction

As is known, the second order parabolic equations and the current parameters of heat, diffusion and
other processes can be used to forecast the future parameters, while the antiparabolic equations create
conditions for the study of past processes based on the current parameters. For the equations of completely
antiparabolic type, the classical initial (boundary value or initial boundary value) problems are ill-posed
problem, which either makes it impossible to study the heat or diffusion processes taking place in the
past based on the current parameters or makes it difficult to do so. The results obtained in this work are
important for finding out to which time interval and in which part of the considered domain it is possible to
return based on the current parameters, with an aim to study the past parameters of heat/diffusion process.

Unique solvability and well-posed problem of linear initial boundary value problems have been con-
sidered by many researchers (see [1, 5, 8, 9, 18, 21]).

Different methods are used to consider such problems depending on their statements. For example,
Fourier’s separation of variables method, Laplace transform, method of freezing the coefficients, heat
potential method, a priori estimates method, contour integral method, residue method, finite-difference
method, etc.

Also, there are cases where none of the above methods is applicable for one reason or another.
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Note that the residue method and the contour integral method are among the most universal methods
used in the solution of one-dimensional and multidimensional mixed problems [1], [8].

In this work, we use the residue method and the contour integral method to treat the unique solvability
of one-dimensional initial boundary value problem with the new and previously unexplored singularities.

Definition 1.1. ([5]) The equation of the form

∂U
∂t
= a (t, x)

∂2U
∂x2 (1)

is called parabolic (uniformly parabolic) in the sense of Petrovski in the domain Q of the space t, x if the
inequality Re a (t, x) > 0(Re a (t, x) ≥ δ > 0) holds for every point (t, x) ∈ Q.

Initial boundary value problems for the equations of the form (3) have been considered only when they
are parabolic [1–3], or when they are of Schrodinger type [4, 7, 11, 20–22], i.e. when

Re a (t, x) = 0. (2)

At the same time, it was shown in [10] that if the equation (1) is antiparabolic (i.e. if Re a (t, x) < 0 for (t, x) ∈ Q),
then, for the boundary and initial-conditions with their right-hand sides having only finite smoothness, the
initial boundary value problem for this equation is not correct.

Definition 1.2. The equation (1) is called generalized parabolic in some domain QT = {(t, x) : 0 < t < T ≤ ∞,
0 < x < 1} if Re

∫ t

0 a (τ, x) dτ > 0 for every (t, x) ∈ QT.

Note that the parabolic equation is generalized parabolic in the considered domain. However, not every
generalized parabolic equation is parabolic: being parabolic till some moment of time t0 > 0, generalized
parabolic equation may then transform into Schrodinger or even antiparabolic type. For example, let
a (t, x) = a1 (t, x)+ i a2 (t, x), where a j (t, x) ,

(
j = 1, 2

)
are real continuous functions, with a2 (t, x) , 0. Then, if

a1 (t, x) > 0 for 0 ≤ t < t0 and a1 (t, x) ≡ 0 for t ≥ t0, then the equation (1) is generalized parabolic, but not
parabolic, because after passing the moment of time t0 it degenerates to Schrodinger type. And if a1 (t, x) > 0

for 0 ≤ t < t0 and a1 (t0, x) = 0, a1 (t, x) < 0 for t0 ≤ t < T with
∫ t0

0 a1 (τ, x) dτ >
∣∣∣∣∫ T

t0
a1 (τ, x) dτ

∣∣∣∣, then the
equation (1) is generalized parabolic. At the same time, it is parabolic for 0 ≤ t < t0 Schrodinger for t = t0
and antiparabolic for t0 ≤ t < T. As an example, we can consider the function

a1 (t, x) =

 t0 − t, f or 0 ≤ t < t0 < T,
t2
0(t0−t)

2(T−t0)2 , f or t0 ≤ t ≤ T.

It was shown in [12, 13] that the initial boundary value problems may be ill-posed for the equations
well-posed in the sense of Petrovski, and well-posed problem for the ill-posed problem equations.

Note that our initial boundary value problem also has such properties.

2. Problem statement

In this work, we treat the unique solvability of the initial boundary value problem

M
(
t,
∂
∂t

)
u = L

(
x,
∂
∂x

)
u, 0 < t < T, 0 < x < 1, (3)

u(0, x) = φ(x), (4)

u(t, 0) = u(t, 1) = 0, (5)
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where M
(
t, ∂∂t

)
= 1

P(t)
∂
∂t , L

(
x, ∂∂x

)
= 1

(x+b)2 ·
∂2

∂x2 , b = b1 + ib2, p (t) = p1 (t)+ ip2 (t) , are complex-valued functions
p j (t) ∈ C[0, 1]

(
j = 1, 2

)
, p1 (t) , 0 , φ (x) is a given u (x) is a sought for function.

It is known [5] that the equation (3) is parabolic in the sense of Petrovski in the domain
D = {(t, x) : 0 ≤ t ≤ T, 0 ≤ x ≤ 1} if the real part of the root γ of characteristic equation

1
P (t)
γ −

1

(x + b)2 σ
2 = 0

at every point (t, x) ∈ D satisfies the inequality

Reγ (t, x, σ) < 0

for any real σ , 0.
For solvability, the following conditions must be satisfied:

10.Re
(∫ t

0
P (τ) dτ

)
> 0, Reb < −1 , Im b > 0;

20.Re (1 + b)2 + r (0) Im (1 + b)2 > 0 if Im
[
P (t) ·

∫ t

0 P (τ) dτ
]
≥ 0 and

Re (1 + b)2 + r (T) Im (1 + b)2 > 0 if Im
[
p ·

∫ t

0 p (τ) dτ
]
< 0, where

r (t) = Im
( ∫ t

0
P (τ) dτ

)
·

(
Re

∫ t

0
P (τ) dτ

)−1

, t ∈ (0, T) ;

30.φ(x) ∈ C2[0, 1], φ(0) = φ(1) = 0.

It can be verified that if the inequalities ReP (t) > 0, Imb < −1 , Imb > 0 hold, then the equation (3) is
parabolic in the sense of Petrovski if and only if either

Im
[
P (t) · (P′ (t))

]
≤ 0, Re (1 + b)2 + ω (0) Im (1 + b)2 > 0 (6)

or

Im
[
P (t) · (P′ (t))

]
> 0, Re (1 + b)2 + ω (T) Im (1 + b)2 > 0, (7)

where ω (t) = mP (t) (ReP (t))−1.
Note that despite conditions 10 and 20 holding for the equation

(x − 2 + i)2 ∂u
∂t
= (2t + 1 + i (2t − 1))

∂2u
∂x2 ,

the second of inequalities (6) does not, so this equation is not parabolic in the sense of Petrovski. It
is not difficult to show that this equation is not parabolic even in the sense of Shilov. In some parts
of the rectangle below it is antiparabolic (for example, in the set of points satisfying the inequalities(
2x2
− 4x − 2

)−1 (
−x2 + 6x − 7

)
< t ≤ 3

4 ,
9−
√

26
5 ≤ x ≤ 1, see the shaded area).

3. Classical solvability of initial boundary value problem

It is easy to show that the non-homogeneous spectral problem (more precisely, non-homogeneous
boundary value problem with a spectral parameter) corresponding to the initial boundary value problem
(3)-(5) has the following form:

y′′ − µ2 (x + b)2 y = −φ (x) (x + b)2 , (8)

y(0) = 0, y(1) = 0. (9)
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Note that the important property [6, 18] of the spectral problem (8)-(9) is that the arguments of the
roots ± (x + b) of the characteristic equation in the sense of Birkhoff are not constant in [0, 1]. As is known
[6, 18], this fact significantly complicates both obtaining the asymptotics of the fundamental system of
special solutions to the equation y′′ − µ2 (x + b)2 y = 0 and the study of the scattering of eigenvalues of
the problem (8),(9). In fact, these matters are basic for the solution of one-dimensional initial boundary
value problems, and in general case (where θ1,2 (x) are the functions from rather general class, such that
argθ j (x) , const

(
j = 1, 2

)
), they have never been studied before [6, 18].

So, the presence of seemingly simple coefficient (x + b)2 in the equation (3) is due to the absence of
corresponding spectral theory for more general case and the desire to use the recent result [14, 16] for the
problem (8), (9), the only one in this field so far. As far as we know, there has been no research dedicated
to this problem in more or less general statement.

Green’s function of this spectral problem is analytic in the whole of λ-complex plane, except for the
countable set of values µ = µk (k = 0, ±1, ±2, ...), which are the poles of this function. The poles of Green’s
function of this spectral problem have the following asymptotic representation [3]:

µk =
πk
√
−1

1 + 2b
+O

(1
k

)
, (|k| → ∞) . (10)

Let

Si =
{
µ\ Re

(
µb

)
· Re

(
µ (1 + b)

)
≤ 0, (−1)i Reµ > 0

}
; (i = 1, 2) ,

Si =
{
µ\ Re

(
µb

)
< 0, (−1)i Re

(
µ (1 + b)

)
≤ 0

}
; (i = 3, 4) ,

χ
(
µ
)
= −

(
Reµ

)−1
· Reµb,

(
µ ∈ Si, i = 1, 2

)
.

Hence, 0 ≤ χ
(
µ
)
≤ 1 for λ ∈ Si (i = 1, 2).

As seen from the asymptotic representation of eigenvalues (10) of Green’s function G
(
x, ξ, µ

)
, distant

poles µk lie in the sectors µ ∈ Si (i = 1, 2), and only finite number of them can get in the sectors µ ∈
Si (i = 3, 4).

The following estimates have been obtained for Green’s function and its derivatives [15, 16] outside
δ-neighborhoods of the poles:

∣∣∣∣∣∣∂kG
(
x, ξ, µ

)
∂xk

∣∣∣∣∣∣ ≤ c
∣∣∣µ∣∣∣k−1

, k = 0, 1, 2; µ ∈ S3

⋃
S4, |λ| > R, (11)
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(
x, ξ, µ

)
∂xk

∣∣∣∣∣∣ ≤ ce(−1)iχ2
0(µ)Reµ, k = 0, 1, 2; µ ∈ Si,

∣∣∣µ∣∣∣ > R, (i = 1, 2) ,

where R is a sufficiently big, and δ is a sufficiently small positive number, χ0
(
µ
)
=

= min
(
χ
(
µ
)

; 1 − χ
(
µ
))
.

The following theorem is true:

Theorem 3.1. Let the conditions 10, 20, 30 be satisfied. Then the problem (3)-(5) has a classical solution u (t, x) ∈
C1,2 ((0; T] × [0; 1])

⋂
C ([0; T] × [0; 1]) which can be represented as

u (t, x) =
1
πi

∫
Q
µeµ

2
∫ t

0 P(τ)dτ
·

(∫ 1

0
G

(
x, ξ, µ

)
(ξ + b)2 φ (ξ) dξ

)
dµ (12)

for t > 0, where

Q =
3⋃

j=1

Q j,

Q j =
{
µ : µ = r

(
1 + p̃ j

)
, r ≥ R

} (
j = 1, 2

)
,

Q3 =
{
µ : µ = R

(
1 + iη

)
, p̃1 ≤ η ≤ p̃2

}
,

p̃ j =M j

(
t j

)
+ (−1) j δ, M j

(
t j

)
= −r (t) + (−1) j

√
r2 (t) + 1,

(
j = 1, 2

)
(13)

t1 = 0, t2 = 0 if Im
[
P (t) ·

∫ t

0 P (τ) dτ
]
≥ 0 and t1 = T, t2 = T if Im

[
P (t) ·

∫ t

0 P (τ) dτ
]
< 0, R is a sufficiently big,

and δ is a sufficiently small positive number.

Let us first prove the following auxiliary facts.
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Lemma 3.2. Let Re
(∫ t

0 P (τ) dτ
)
> 0. Then, for t ∈ [t0, T] (∀ t0 ∈ (0,T)), the following estimate is true on the beams

µ = ρ
(
1 + ip̃ j

) (
ρ ≥ 0, j = 1, 2

)
:

Re
(
µ2

∫ t

0
P (τ) dτ

)
≤ c

∣∣∣µ∣∣∣2 , (14)

where c < 0.

Proof. From the conditions of lemma it follows that there exists a number δ1 > 0 such that for t ∈ [t0, T]

Re
(∫ t

0
P (τ) dτ

)
> δ1. (15)

Further, from the equality

Re
(
µ2

∫ t

0
P (τ) dτ

)
=

(
µ2

1 − µ
2
2

) ∫ t

0
p1 (τ) dτ − 2µ1µ2

∫ t

0
p2 (τ) dτ =

= −Re
(∫ t

0
P (τ) dτ

) µ2
2 − µ

2
1 + 2µ1µ2 ·

Im
(∫ t

0 P (τ) dτ
)

Re
(∫ t

0 P (τ) dτ
)
 =

= −Re
(∫ t

0
P (τ) dτ

) [(
Imµ −M1 (t) Reµ

) (
Imµ −M2 (t) Reµ

)]
=

= −Re
(∫ t

0
P (τ) dτ

)
·

2∏
k=1

[
Imµ −Mk (t) Reµ

]
, (16)

for µ = ρ
(
1 + ip̃ j

) (
ρ ≥ 0, j = 1, 2

)
we obtain

Re
(
µ2

∫ t

0
P (τ) dτ

)
= −ρ2Re

(∫ t

0
P (τ) dτ

) 2∏
k=1

[
p̃ j −Mk (t)

]
=

= −ρ2Re
(∫ t

0
P (τ) dτ

) 2∏
k=1

[
M j

(
t j

)
+ (−1) j δ −Mm (t)

]
. (17)

But, from the expressions (13) for the functions Mk (t) we can see that if Im
[
P (t) ·

∫ t

0 P (τ) dτ
]
> 0, then

M′

k (t) > 0, (k = 1, 2). Hence, by the inequality M′

k (t) > 0, (k = 1, 2), we have Mk (0) ≤Mk (t) ≤Mk (T). Then
M′

k (t) > 0. Consequently, Mk (0) ≤ Mk (t) ≤ Mk (T)), k = 1, 2. Having estimated the second term in (17), we
obtain the following inequalities:

M1 (t1) − δ −M1 (t) =M1 (0) − δ −M1 (t) ≤M1 (0) − δ −M1 (0) ≤ −δ,
(
m = 1, j = 1

)
M1 (t1) − δ −M2 (t) =M1 (0) − δ −M2 (t) ≤M1 (0) − δ −M2 (0) ≤ −δ,

(
m = 2, j = 1

)
M2 (t2) + δ −M1 (t) =M1 (0) + δ −M1 (t) ≥M2 (0) + δ −M1 (T) ≥ δ,

(
m = 1, j = 2

)
M2 (t2) + δ −M2 (t) =M1 (0) + δ −M2 (t) ≥M2 (0) + δ −M2 (T) ≥ δ,

(
m = 2, j = 2

)
(18)

Taking into account the inequalities (15), (18), from (17) we get

Re
(
µ2

∫ t

0
P (τ) dτ

)
≤ −δ1δ

2ρ2
≤ c ·

∣∣∣µ∣∣∣2 , (19)
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where c = − δ1δ2

max
j

√
1+p̃2

j

.

And if Im
[
P (t) ·

∫ t

0 P (τ) dτ
]
≤ 0, then, by M′

k (t) ≤ 0, we obtain Mk (T) ≤ Mk (t) ≤ Mk (0), k = 1, 2.
Therefore,

M1 (t1) − δ −M1 (t) =M1 (T) − δ −M1 (t) ≤M1 (T) − δ −M1 (T) ≤ −δ
(
k = 1, j = 1

)
,

M1 (t1) − δ −M2 (t) =M1 (T) − δ −M2 (t) ≤M1 (T) − δ −M2 (T) ≤ −δ
(
k = 2, j = 1

)
,

M2 (t2) + δ −M1 (t) ≥M2 (0) + δ −M1 (0) ≥ δ
(
k = 1, j = 2

)
,

M2 (t2) + δ −M2 (t) ≥M2 (0) + δ −M2 (0) ≥ δ
(
k = 2, j = 2

)
. (20)

Also, by (15), (20), from (17) we obtain

Re
(
µ2

∫ t

0
P (τ) dτ

)
= −ρ2Re

(∫ t

0
P (τ) dτ

)
(K1 (t1) − δ − K1 (t)) (K1 (t1) − δ − K2 (t)) ≤

≤ −δ1δ
2ρ2
≤ c ·

∣∣∣µ∣∣∣2
for j=1, and

Re
(
µ2

∫ t

0
P (τ) dτ

)
= −ρ2Re

(∫ t

0
P (τ) dτ

)
(M2 (t2) + δ −M1 (t)) (M2 (t2) + δ −M2 (t)) ≤

≤ −δ1δ
2ρ2
≤ c ·

∣∣∣µ∣∣∣2
for j=2, where c = − δ1δ2

max
j

√
1+p̃2

j

. This estimate has also the form (19).

Lemma 3.3. Let Re
(∫ t

0 P (τ) dτ
)
> 0. Then for every λ from the sectors

Ω1 =
{
µ : arg

(
1 + ip̃2

)
≤ argµ ≤ π + arg

(
1 + ip̃1

)}
,

Ω2 =
{
µ : arg

(
1 + ip̃2

)
− π ≤ argµ ≤ arg

(
1 + ip̃1

)}
and t ∈ [t0, T] (for ∀ t0 ∈ (0,T)) the estimate of the form (14) is true.

Proof. Denote

r =
∣∣∣µ∣∣∣ , β = argµ, β j = arg(1 + ip̃ j).

Then, using this notation, we can rewrite the function Re
(
µ2

∫ t

0 p (τ) dτ
)

as follows:

Re
(
µ2

∫ t

0
P (τ) dτ

)
= Re

(∣∣∣µ∣∣∣2 e2iβ
·

∫ t

0
P (τ) dτ

)
=

∣∣∣µ∣∣∣2 · Re
(
e2iβ
·

∫ t

0
P (τ) dτ

)
= r2v(β, t),

where v(β, t) = Ree2iβ
(∫ t

0 P (τ) dτ
)
. By Lemma 3.2 there exists ε > 0 such that

v(β j, t) ≤ −ε ( j = 1, 2)

for t ∈ [t0, T], (t0 ∈ (0,T)). Hence,

v(β1 + π, t) = v(β1, t) ≤ −ε,

v(β2 − π, t) = v(β2, t) ≤ −ε.
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Therefore we have to prove that the function v(β, t) has no zero inside the intervals [β2, β1 + π] and
[β2 − π, β1].

But, as at the ends of these intervals this function is negative, it can have inside these intervals both
multiple zeros and at least two different zeros.

If the function w(β, t) vanishes at the point β0, i.e.

v(β0, t) =
dv(β0, t)

dβ0
= 0

for β0 ∈ (β2, β1 + π) (or for β0 ∈ (β2 − π, β1)), then we have

Ree2iβ0

(∫ t

0
P (τ) dτ

)
= 0,Re2ie2iβ0

(∫ t

0
P (τ) dτ

)
= −2Ime2iβ0

(∫ t

0
P (τ) dτ

)
= 0.

Taking into account these relations, we obtain e2iβ0
(∫ t

0 P (τ) dτ
)
= 0. But this is impossible because of the

condition Re
(∫ t

0 P (τ) dτ
)
> 0.

Let us consider another case. Assume

v(β′0, t) = v(β′′0 , t) = 0, (β′0 < β
′′

0 ),

where β′0, β
′′

0 ∈ (β2, β1 + π)(or β′0, β
′′

0 ∈ (β2 − π, β1)). It is not difficult to show that the function v(β, t) is a
solution of the following differential equation:

d2v
dβ2 + 4v = 0.

Then it is clear that the distance between two neighboring zeros of an arbitrary solution of this equation is
equal to π2 . Consequently,

π
2
≤ β′′0 − β

′

0 < π + β1 − β2.

Hence

β2 − β1 <
π
2
. (21)

On the other hand, as the difference β2 − β1 is an angle between the vectors
{
1, p̃1

}
and

{
1, p̃2

}
, the scalar

product of these vectors can be found as follows:

h(δ) = 1 + p̃1p̃2 = 1 + [M1(t1) − δ] [M2(t2) + δ].

This expression implies that f (δ) is a decreasing function, because

h′(δ) = −2δ +M1(t1) −M2(t2) < 0.

Therefore we have

h(δ) < h(0) = 1 +M1(t1)M2(t2) =

 1 +M1(0)M2(T), i f Im
[
P (t) ·

∫ t

0 P (τ) dτ
]
> 0,

1 +M1(T)M2(0), i f Im
[
P (t) ·

∫ t

0 P (τ) dτ
]
≤ 0,

(22)

for δ > 0.
Since the function M j (t) increases as Im

[
P (t) ·

∫ t

0 P (τ) dτ
]
> 0 and does not increase as Im

[
P (t) ·

∫ t

0 P (τ) dτ
]
≤

0, with M1(0)M2(0) = −1, from (22) we obtain

h(δ) < h(0) ≤ 1 +M1(0)M2(0) = 0.

The negativity of the scalar product h(δ) implies that the angle β2 − β1 (for δ > 0) between two vectors{
1, p̃1

}
and

{
1, p̃2

}
is obtuse. And this contradicts the inequality (21).
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Lemma 3.4. Let the conditions 10,20 be satisfied. Then the contour Γ can be chosen in such a way that

Q
⋂

S j = ∅ ( j = 1, 2) (23)

and the domain

Rδ =
{
µ : µ = r(1 + iη), r ≥ R, p1 ≤ η ≤ p2

}
(24)

does not contain the poles µk of Green’s function G(x, ξ, µ).

Proof. By the definitions of sectors S j ( j = 1, 2), it is clear that to prove (23) we have to investigate the sign
of the function

I(µ) = ReµbReµ(1 + b) (25)

for µ ∈ Q. Let µ = ρ
(
1 + ip j

)
(r ≥ R) in (25). Then we obtain the following expression for the function

J(µ):

K j (δ) = J
[
ρ(1 + ip̃ j)

]
= ρ2(b1 − b2p̃ j)(1 + b1 − b2p̃ j) = ρ2

[(
b1 − b2p̃ j +

1
2

)2

−
1
4

]
. (26)

From (25) and (26) it follows

K j (0) = ρ2

[(
b1 − b2M j(t j) +

1
2

)2

−
1
4

]
.

Consequently, if b1 − b2M j(t j) < [−1, 0], then K j (0) > 0. But, in this case there can be found δ0 > 0 such that
K j (δ) > 0 for δ ∈ (0, δ0). This contradicts the definition of the sectors S1 and S2. Therefore let us assume
that −1 ≤ b1 − b2M j(t j) ≤ 0.

From the condition 10 and the expression for the function M1(t) it follows that the last inequality is
impossible for j = 1. Consequently, let us assume that

−1 ≤ b1 − b2M2(t2) ≤ 0.

Hence we have

b1 − b2ω(t2) ≤ b2

√
ω2(t2) + 1 ≤ b1 + 1 − b2ω(t2). (27)

Two cases are possible here:

1) b1 − b2r(t2) ≥ 0,

2) b1 − b2r(t2) < 0.

In first case, from (27) we have

Reb2
− r(t2)Imb2

≤ 0.

And in second case we obtain r(t2) > b1
b2

. Consequently, the following inequality is true:

Reb2
− r(t2)Imb2 < Reb2

− 2b2
1 = − |b|

2 < 0.

These two inequalities contradict the conditions 10,20, the expression for the function r(t) and the number
t2.
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Now, assuming µ = R
(
1 + iη

)
(p1 ≤ η ≤ p2) in (25), we get

K
(
η
)
= I

[
R(1 + iη)

]
= R2(b1 − b2η)(b1 + 1 − b2η) = R2

[(
b1 − b2η +

1
2

)2

−
1
4

]
.

As we have seen above, there exists δ > 0 such that K
(
p j

)
> 0 ( j = 1, 2) for η = p j. Therefore, it suffices to

consider only the stationary point η0 =
1
b2

(
b1 +

1
2

)
.

But, since f (δ) = 1
b2

(
b1 +

1
2

)
− p̃2,we obtain

f (0) =
1
b2

(
b1 +

1
2

)
−M2(t2) >

1
b2

(−b2M2(t2) + b1) =
1
b2

(
−b 2

√
r2(t2) + 1 + b1 − b2r(t2)

)
=

=
−r(t2)Imb2 + Reb2

b2[b 2
√

r2(t2) + 1 − b2r(t2) + b1]
> 0.

Then the number δ0 > 0 can be chosen in such a way that f (δ) > 0 for δ ∈ (0, δ0). And this means that the
stationary point η0 does not lie inside the interval [p̃1, p̃2]. Hence it follows that K(η) > 0 for η ∈ [p̃1, p̃2] .
Thus, the first part of the lemma is proved.

First assertion of this lemma implies

Rδ ⊂
(
S3

⋃
S4

)
. (28)

As the sectors S3 and S4 can only contain a finite number of poles µk, it follows that for sufficiently big R>0
the following relation is true:{

µk
}⋂

Rδ = ∅.

Now let us assume that the numbers R, δ (in definition of the contour Γ) are chosen in accordance with
the requirements of Lemma 3.4. Using Lemmas 3.2-3.4, let us prove our theorem.

Proof. Denote

Q− =
3⋃

j=1

Q−j ,

where

Q−j =
{
λ : λ = −r

(
1 + p̃ j

)
, r ≥ R

} (
j = 1, 2

)
,

Q−3 =
{
λ : λ = −R

(
1 + iη

)
, p̃1 ≤ η ≤ p̃2

}
.

Let us choose the positive directions on the contours Q and Q− as follows:
Q1 → Q3 → Q2 and Q−1 → Q−3 → Q−2 .
Consider a positive integer m0 satisfying the inequality

m0 >
2πR
|1 + 2b|

√
1 +max

j
p̃2

j

and denote the numerical sequence

rm =
(4m + 4m0 + 1)π

2 |1 + 2b|
(n = 0, 1, ...) (29)
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by {rm} .
Depending on the choice of n0, we see that the circles

Om =
{
µ : µ = rmeiβ , (0 ≤ β ≤ 2π)

}
intersect the contours Q and Q− only at the points lying on Q±j ( j = 1, 2), and, moreover,

c±jn = Q±j
⋂

Om = ±
rm√
1 + p̃2

j

(
1 + ip̃ j

)
= ±rmeiβ j .

On the other hand, from (29) it follows that for sufficiently large R > 0 the inequality∣∣∣rmeiβ
− µk

∣∣∣ ≥ π
4 |1 + 2b|

(±k, m = 0, 1, ...; 0 ≤ β ≤ 2π)

holds.
Denote some arcs of the circles On as follows:

⌣

c+1mc+2m =
{
µ : µ = rmeiβ, β1 ≤ β ≤ β2

}
,

⌣

c+2mc−1m =
{
µ : µ = rmeiβ, β2 ≤ β ≤ β1 + π

}
,

⌣

c−2nc+1m =
{
µ : µ = rmeiβ, β2 − π ≤ β ≤ β1 + π

}
.

Also, denote by Ωn and Ω+m the following closed contours:

Σm = Qm,+
⋃ ⌣

c+2mc−1m

⋃
Qm,−

⋃ ⌣

c−2mc+1m,

Σ+m = Qm,+
⋃ ⌣

c+2mc+1m,

where

Qm,± =
{
±µ : µ ∈ Q,

∣∣∣µ∣∣∣ ≤ rm

}
.

Let us formally perform the operations x→ +0, x→ 1 − 0 under the sign of integration:

u (t, x) = −
1
π i

∫
Q
µ eµ

2
∫ t

0 P(τ)dτdµ
∫ 1

0
G(x, ξ, µ)(ξ + b)2 φ (ξ) dξ. (30)

Using the properties of Green’s function G
(
x, ξ, µ

)
, we have

u(t, 0) = 0, u(t, 1) = 0 (31)

for t ∈ (0, T].
Also, formally bringing the derivatives ∂∂t ,

∂2

∂x2 in (30) under the sign of integration, we obtain

(x + b)2 ut − P (t) uxx =
1
πi

P (t) · (x + b)2 φ(x)
∫

Q
µeµ

2
∫ t

0 P(τ)dτdµ (32)

for (t, x) ∈ (0, T] × [0, 1].
By condition 30 and the equality∫ 1

0
G(x, ξ, µ)(ξ + b)2φ(ξ)dξ =

φ(x)
µ2 +

1
µ2

∫ 1

0
G(x, ξ, µ)φ′′(ξ)dξ,
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we can rewrite (30) as follows:∫ 1

0
G(x, ξ, µ)(ξ + b)2φ(ξ)dξ =

φ(x)
µ2 +

1
µ2

∫ 1

0
G(x, ξ, µ)φ′′(ξ)dξ

u(t, x) = u1(t, x) + u2(t, x), (33)

where

u1(t, x) =
1
πi
φ(x)

∫
Q

1
µ

eµ
2
∫ t

0 P(τ)dτdµ, (34)

u2(t, x) =
1
πi

∫
Q

1
µ

eµ
2
∫ t

0 P(τ)dτdµ
∫ 1

0
G(x, ξ, µ)φ′′(ξ)dξ, (35)

u2(0, x) =
1
πi

∫
Q

1
µ

dµ
∫ 1

0
G(x, ξ, µ)φ′′(ξ)dξ. (36)

Now let us calculate the integrals over the contour Q using the formulas (32), (34), (36). Assume

γk (Q) =
∫

Q
µ2k−1 eµ

2
∫ t

0 P(τ)dτdµ (k = 0, 1). (37)

Hence,

γk (Q) = lim
m→∞

γk (Qm,+) =
1
2
· lim

m→∞

[
γk (Qm,+) + γk

(
Qm,−)] .

By Lemma 3.3 we obtain

lim
n→∞
γk

( ⌣

c+2mc−1m

)
= 0, lim

m→∞
γk

( ⌣

c−2mc+1m

)
= 0. (38)

Consequently, the function γk (Q) can be expressed as follows:

γk (Q) =

=
1
2

lim
m→∞

[
γk (Qm,+) + γk

( ⌣

c+2nc−1m

)
+ γk

(
Qm,−) + γk

(
c−2mc+1m

)]
=

1
2
· lim

m→∞
γk (Σm) (39)

for t > 0 and k = 0, 1. But, since γk (Σm) is an integral of the function µ2k−1eµ
2
∫ t

0 P(τ)dτ over the closed contour
Σm, we have

γk (Σm) =
{

2πi, f or k = 0,
0, f or k = 1.

Taking into account the formulas (32), (34), (37), (39), we arrive at the following conclusion:

(x + b)2 ut − P (t) uxx = 0 (40)

and

u1(t, x) = φ(x), (41)

for (t, x) ∈ (0, T] × [0, 1].
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By the estimates (3.4) for Green’s function of the problem (8)-(9) and the relation
⌣

c+2nc−1n ⊂ Rδ ⊂ (S3
⋃

S4)
(see Lemma 3.4), we get

lim
m→∞

1
πi

∫
⌣

c+2mc−1m

1
µ

dλ
∫ 1

0
G(x, ξ, µ)φ′′(ξ)dξ = 0

uniformly with respect to x ∈ [0, 1]. Thus, from (36) we obtain

u2 (0, x) =
1
πi

lim
m→∞

∫
Qm+

⋃
c+2mc−1m

1
µ

dλ
∫ 1

0
G(x, ξ, λ)φ′′(ξ)dξ, (42)

i.e.

u2 (0, x) = 0. (43)

Also, by the formulas (33), (41), (43), we get

lim
t→+0

u (t, x) = lim
t→+0

[u1 (t, x) + u2 (t, x)] = lim
t→+0

[
φ (x) + u2 (t, x)

]
= φ (x) + u2 (0, x) = φ (x) . (44)

Consequently, the function U (t, x) defined by the formula (12), belongs to the space
C1,2 ((0, T] × [0, 1]) (see (37)). Note that this function satisfies the equation (3) for 0 < t ≤ T, 0 ≤ x ≤ 1
(see (44)) and the boundary conditions (5) for 0 < t ≤ T (see (35)). It also satisfies (44) for 0 ≤ x ≤ 1.

Then it is clear that if this function is defined for t = 0, 0 ≤ x ≤ 1 by the equality u (0, x) = φ (x), then it
belongs to C1,2 ((0, T] × [0, 1]), satisfies the equation (3) for 0 < t ≤ T, 0 ≤ x ≤ 1, the initial conditions (4) for
0 ≤ x ≤ 1 and the boundary conditions (5) for 0 ≤ t ≤ T (for t = 0 due to the condition φ (0) = φ (1) = 0).

Remark 3.5. The proved theorem covers not only initial boundary value problems for parabolic equations,
but also those for nonparabolic equations. So, even though the conditions of theorem hold for the equation
(3), this equation is not parabolic.

4. Conclusion

In the paper, the existence and uniqueness conditions for the solution of the problem in the form of
(3)-(5), which changes its type from parabolic to antiparabolic and where the arguments of the roots of the
characteristic equation in the sense of Birkhoff are not constant, have been found, and an explicit analytical
expression for the solution has been obtained.
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