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Abstract. In this work, we introduce a comprehensive generalization of the kernel of a set within topolog-
ical spaces equipped with a primal structure. The proposed notion of the primal kernel offers a powerful
framework for redefining and analyzing generalized forms of open and closed sets. Leveraging this frame-
work, we establish new, weaker separation axioms and construct a novel topology that is demonstrably
incomparable with the classical topology derived from the primal structure. These results not only con-
tribute to the refinement of topological concepts but also highlight the structural richness and potential
applications of primal-based topologies.

1. Introduction

Numerous topological structures were actively studied in many mathematical fields, including the
social and natural sciences, to find solutions to a wide range of natural issues. The idea of grills was
established by Choquet [13] and presented in 1947. Kuratowski [17] subsequently examined and analyzed
ideals conceptions in 1966, where the ideal concept is the dual of a filter. Grill structures were used by
many researchers, such as general topology [7], fuzzy topology [12], etc. It is important to remember that in
[21] and [22], Vaidyanathaswamy introduced the idea of localization theory in set-topology. Furthermore,
Janković et al. extensively explored this subject in [15]. Also, Sarkar talked about fuzzy ideals in fuzzy set
theory and how to use them to create new fuzzy topologies out of existing ones. In [20], he also examined
the ideas of compatibility of fuzzy ideals with fuzzy topologies and fuzzy local functions. Conversely, the
concept of soft local functions was first presented by Kandil et al. in [16]. A refinement of the idea of the
soft local function, Ameen et al. described the cluster soft closed sets in terms of many types of soft sets
[9]. Primal is the dual of the concept of grill, as was recently explored in [1], whereby primal structure was
examined. They also investigated the connection between topological spaces and primal topological spaces.
Al-Shami et al. [8] developed the soft primal soft topology and looked into its fundamental characteristics,
which encourages the quick growth of primal topological space. In addition, some kinds of primal soft
operator was given by Al-Omari et al. [3]. Fuzzy primal ideas were also presented by Ameen et al. [10].
An important contribution of Al-Omari et al. [6] was to the construction of operators in primal topological
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spaces and studying the proximity spaces inspired by primal and others [4, 5]. The idea of κ-sets (Λ-set)
in topological spaces was first introduced in 1986 by Maki [19]. A set U that coincides with its kernel (=
saturated set), that is, with the intersection of all open sets that include U, is called a κ-set. Using κ-sets and
closed sets, Arenas et al. [11] established and researched the concept of λ-closed and λ-open sets in 1997.

In this paper, we analyze the relation between a primal kernel set, κ(U), and other primal operators.
We also investigate and introduce this new operator. Moreover, we examine numerous fundamental
characteristics and establish a novel topology (Θ

κ
) via the κ-operator. We report on new results on the

κ-operator in Section 3. In Section 4, we also apply the notion of the κ-operator to generate a new topology
that is incomparable with the previous topology. Additionally, in Section 5, we provide some fundamental
results on 1κ-closed sets via primal. Besides, we report results pertaining to λκ-closed sets in primal spaces
in Section 6.

2. Preliminaries

A topological spaces are denoted by (T,Θ) (briefly, T) throughout this article. We designate the interior
of V by Int(V) and the closure of V by cl(V) for each V ⊂ T. The power set of Twill be denoted by P(T). To
represent the family of open sets that contains t, we use the notationΘ(t). If F ⊆ T, then F is a closed subset
ofTwhen F ∈ Θc . We now have the ideas and conclusions listed below, which are important for this article
that follows: The kernel of U is κ(U) = ∩{V ⊆ T : U ⊆ V and V ∈ Θ}. It is sometimes referred to as Λ(U). If
U = κ(U), then a subset U of T is a κ-set [19]. Note that κ(U) = U if U is an open set. Moreover, the union
of all closed sets included in U is the co-kernel of a set U [19], represented by coκ(U) or ∨(U). Note that
coκ(U) = U if U is a closed set. If U = coκ(U), then a subset U is a coκ-set [19]. The coκ-sets are the κ-sets’
complements. Θκ represents the set of all κ-sets in T. κ(U) is typically neither an open nor a closed set.

Lemma 2.1. ([19]) The statement that follows holds for any subsets V and U of a topological space (T,Θ):

1. V ⊆ κ(V),
2. If U ⊆ V, then κ(U) ⊆ κ(V),
3. κ(κ(V)) = κ(V),
4. κ(V) is a κ-set,
5. If V is open, then V is a κ-set,
6. κ(∪i∈I(Vi)) = ∪i∈Iκ(Vi)
7. κ(T \ V) = T \ coκ(V),
8. κ(V ∩U) ⊆ κ(V) ∩ κ(U).

Lemma 2.2. ([19]) Considering (T,Θ) as a topological space, we may see the subsequent characteristics:

1. ∅ and T are κ-sets.
2. Every union of κ-sets is a κ-set.
3. Every intersection of κ-sets is a κ-set.

If a subset V of T and V = A∩ F, where F is closed and A is a κ-set, then V is λ-closed [11]. The λ-open
is the complement of a λ-closed set. It is clear that every κ-set is λ-closed.

Lemma 2.3. ([11]) The requirements listed below are identical for a subset V of a topological space (T,Θ):

(a) V is λ-closed.
(b) V = L ∩ cl(V), where L is a κ-set.
(c) V = κ(V) ∩ cl(V).

Recall that generalized closed, or short 1-closed [18], refers to a subset V of a topological space (T,Θ),
whenever V ⊆ U and U is open in T, then cl(V) ⊆ U. A subset B is 1-closed iff T \ B is a 1-open set of T.

Definition 2.4. ([14]) A topological space (T,Θ) is said to be:
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(a) R0-space if the closure of each singleton in an open set is contained within it.
(b) R1-space if for t, s ∈ T with cl({t}) , cl({s}) there are an open sets U and V that are disjoint such that

cl({t}) is a subset of U and cl({s}) is a subset of V.

Definition 2.5. ([1]) A collection P of the power set P(T) of a nonempty set T is called a primal if the
following conditions hold:

1. T < P.
2. V ∈ P and U ⊆ V, impels that U ∈ P (or U < P and U ⊆ V, impels that V < P).
3. if V ∩U ∈ P, impels that V ∈ P or U ∈ P (or V < P and U < P impels that V ∩U < P).

The topological space (T,Θ) with a primal P [1] on T is denoted by a PTS and is a primal topological
space (T,Θ,P).

Definition 2.6. ([1]) Let (T,Θ,P) be a PTS. We provide a function (·)⋄ : P(T) → P(T) as A⋄(T,Θ,P) = {t ∈
T : Ac

∪ Uc
∈ P for all U ∈ Θ(t)}for any set A ⊆ T. We’re going to utilize the symbol A⋄P or A⋄ to denote

A⋄(T,Θ,P).

Definition 2.7. ([1]) Let (T,Θ,P) be a PTS. We provide a function cl⋄ : P(T) → P(T) as cl⋄(V) = V ∪ V⋄,
where V ⊆ T.

Definition 2.8. ([1]) Let (T,Θ,P) be a PTS. The definition ofΘ⋄ is given asΘ⋄ = {V ⊆ T : cl⋄(Vc) = Vc
}. It is

a topology on T induced by topology Θ and primal P and Θ ⊆ Θ⋄. The elements of Θ⋄ are called Θ⋄-open
and the complement of aΘ⋄-open set is calledΘ⋄-closed. It is clear that if V⋄ ⊆ V, then V isΘ⋄-closed more
about Θ⋄ can be found in ([1, 4, 5]).

Theorem 2.9. ([1]) Assume that a PTS is (T,Θ,P). For any two subsets of V and U of T, then the following claims
are hold:

(i) if Vc
∈ Θ, then V⋄ ⊆ V,

(ii) ∅⋄ = ∅,
(ii) cl(V⋄) = V⋄,
(iv) (V⋄)⋄ ⊆ V⋄,
(v) if V ⊆ U, then V⋄ ⊆ U⋄,

(vi) V⋄ ∪U⋄ = (V ∪U)⋄,
(vii) (V ∩U)⋄ ⊆ V⋄ ∩U⋄.

Lemma 2.10. ([1, 5]) Let (T,Θ,P) be a PTS for any V ⊆ T. Then,

(i) if Vc < P, then V⋄ = ∅.
(ii) V⋄ \ V, does not include any nonempty Θ⋄-open set.

(iii) if V < P, then V is Θ⋄-open.

3. A primal kernel sets

This section presents and examines the idea of a primal kernel, which is a topological space’s natural
generalization of a set’s kernel.

Definition 3.1. Let (T,Θ,P) be a PTS. For a subset U of T, We provide the following definition for a primal
kernel set as κ(U)(T,Θ) = {t ∈ T : Uc

∪ Fc = (U ∩ F)c
∈ P for every closed set F containing t in T}. To ensure

there is no misunderstanding κ(U)(P,Θ) is briefly denoted by κ(U) and is called the a primal kernel of U
with respect to P and Θ.
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We note that one way to conceptualize the a primal kernel is as an operator that is κ(.) : P(T) → P(T)
defined by U → κ(U). The a primal kernel is not a Kuratowski closure operator, since in general, it dose
not satisfy U ⊆ κ(U) for all U ⊆ T. If it is the case that U ⊆ κ(U), we say that U is a subset κ-dense in itself.

Theorem 3.2. Let (T,Θ,P) be a PTS, then for all V ⊆ T the primal kernel κ(V) = {t ∈ T : [cl({t}) ∩ V]c
∈ P}.

Proof. Let K = {t ∈ T : [cl({t}) ∩ V]c
∈ P} and suppose t < K, then [cl({t}) ∩ V]c < P. Since cl({t}) is closed set

containing t, then t < κ(V). Conversely, let t < κ(V), then there is closed set F containing t and [F ∩ V]c < P.
Since cl({t}) ⊆ F we have [cl({t}) ∩ V]c < P. Hence, t < K and κ(V) = {t ∈ T : [cl({t}) ∩ V]c

∈ P}.

Corollary 3.3. Let (T,Θ) be a TS, then for all V ⊆ T the kernel of V is κ(V) = {t ∈ T : cl({t}) ∩ V , ∅}.

Lemma 3.4. Let (T,Θ) be a topological space, P andJ be primals on T, and let U and V be subsets of T. Then the
following characteristics are true:

1. If V ⊆ U, then κ(V) ⊆ κ(U).
2. If P ⊆ J , then κ(V)(P) ⊇ κ(V)(J).
3. κ(V) = κ(κ(V)) ⊆ κ(V) (i.e. κ(V) is a κ-set).
4. If V ⊆ κ(V), then κ(V) = κ(V).
5. If Vc < P, then κ(V) = ∅.
6. If Vc

∈ Θ, then κ(V) ⊆ V.

Proof. (1) Suppose that t < κ(U). Then there is a closed set F such that t ∈ F and (U ∩ F)c < P. Since
(U ∩ F)c

⊆ (V ∩ F)c, thus (V ∩ F)c < P. Hence t < κ(V)}. Thus T \ κ(U) ⊆ T \ κ(V) or κ(V) ⊆ κ(U).
(2) Suppose that t < κ(V)(P). Thus, there is closed set F containing t such that (V∩ F)c < P. Since P ⊆ J ,

(V ∩ F)c < J and t < κ(V)(J). Hence, κ(V)(P) ⊇ κ(V)(J).
(3) We have κ(V) ⊆ κ(κ(V)) in general. Let t ∈ κ(κ(V)). Then κ(V) ∩ F , ∅ for each closed set F with

t ∈ F. Therefore, there is some s ∈ κ(V) ∩ F and F closed set containing s. Since s ∈ κ(V), (κ(V) ∩ F)c
∈ P

and hence t ∈ κ(V). Hence we get κ(κ(V)) ⊆ κ(V) and hence κ(V) = κ(κ(V)). Again, let t ∈ κ(κ(V)) = κ(V),
then (V ∩ F)c

∈ P for each closed set F with t ∈ F. This implies V ∩ F , ∅ for each closed set F with t ∈ F.
Therefore, t ∈ κ(V). This shows that κ(V) = κ(κ(V)) ⊆ κ(V).

(4) For any subset V of T, by (3) we get κ(V) = κ(κ(V)) ⊆ κ(V). Since V ⊆ κ(V), κ(V) ⊆ κ(κ(V)) and so
κ(V) = κ(V).

(5) Suppose that t ∈ κ(V). Thus for any closed set F containing t, (V∩F)c = Vc
∪Fc
∈ P. But since Vc < P,

(V ∩ F)c < P for some closed set F containing t and t < κ(V). This is a contradiction. Hence κ(V) = ∅.
(6) Let Vc

∈ Θ and t ∈ κ(V). Suppose t < V. Then t ∈ Vc and it is closed set containing t. Since t ∈ κ(V),
then Vc

∪ Fc
∈ P for all closed set containing t. Therefore, T = V∪Vc = (Vc)c

∪Vc
∈ P. This is contradiction

with T < P. Hence, κ(V) ⊆ V.

Example 3.5. Let us consider the setN of natural numbers. InN, define the topological space Θ such that
U ∈ Θ if and only if U =N or 3 < U. OnN, let P be defined as B ∈ P if and only if 3 < B. Thus, (N,Θ,P) is
PTS. Let A ⊆N. Then, there are two cases:

Case 1. If 3 ∈ A. Let n ∈ N and let V be any closed set containing n. From the definition of Θ, we know that
3 ∈ V. Then, we observe hat 3 < Ac

∪ Vc which implies that Ac
∪ Vc

∈ P and then n ∈ κ(A). Hence,
κ(A) =N.

Case 2. If 3 < A. Then, we observe hat 3 ∈ Ac
∪ Vc for every closed set V which implies that Ac

∪ Vc < P.
Hence, κ(A) = ∅.

∴ κ(A) =
{
N, if 3 ∈ A
∅, if 3 < A

Lemma 3.6. Let (T,Θ,P) be a PTS. If F is closed set, then F ∩ κ(V) = F ∩ κ(F ∩ V) ⊆ κ(F ∩ V) for any V ⊆ T.
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Proof. Suppose that F is closed set and t ∈ F ∩ κ(V). Then t ∈ F and t ∈ κ(V). Let U be any closed set
containing t. Then U ∩ F is closed set containing t and [U ∩ (F ∩ V)]c = [(U ∩ F) ∩ V]c

∈ P. This shows that
t ∈ κ(F ∩ v) and hence we obtain F ∩ κ(V) ⊆ κ(F ∩ V). Moreover, F ∩ κ(V) ⊆ F ∩ κ(F ∩ V) and by item (1) of
Lemma 3.4 κ(F ∩ V) ⊆ κ(V) and F ∩ κ(F ∩ V) ⊆ F ∩ κ(V). Therefore, F ∩ κ(V) = F ∩ κ(F ∩ V).

Theorem 3.7. Let V,U ⊆ T and (T,Θ,P) be a PTS. The following characteristics are true:

1. κ(∅) = ∅.
2. κ(U) ∪ κ(V) = κ(U ∪ V).
3. κ(κ(V)) ⊆ κ(V).

Proof. (1) It is obvious to proof.
(2) According to Theorem 3.4 we have κ(V∪U) ⊇ κ(V)∪κ(U). Let’s illustrate the inclusion in reverse, if

t < κ(V) ∪ κ(U). Then, t neither belongs to κ(V) nor to κ(U). So, there is two closed sets F and D containing
t such that Fc

∪Vc < P and Dc
∪Uc < P. Since P is additive, (Fc

∪Vc)∩ (Dc
∪Uc) < P. Additionally, since P

is hereditary and

(Fc
∪ Vc) ∩ (Dc

∪Uc) = [(Fc
∪ Vc) ∩Dc] ∪ [(Fc

∪ Vc) ∩Uc]
= [Fc

∩Dc] ∪ [Vc
∩Dc] ∪ [Fc

∩Uc] ∪ [Vc
∩Uc]

⊆ [Fc
∩Dc] ∪Dc

∪ Fc
∪ [Vc

∩Uc]
⊆ [F ∩D]c

∪ (V ∪U)c.

Then, [F ∩D]c
∪ (V ∪U)c < P. Since F ∩D is closed set containing t, thus t < κ(V ∪U). Hence, κ(V ∪U) ⊆

κ(V) ∪ κ(U). Hence we obtain κ(V) ∪ κ(U) = κ(V ∪U).
(3) Let t ∈ κ(κ(V)). Then for every closed set F containing t we get (F∩κ(V))c

∈ P and hence F∩κ(V) , ∅.
Let s ∈ F ∩ κ(V). Then, F is closed set containing s and s ∈ κ(V). Hence, we have (F ∩ V)c

∈ P and t ∈ κ(V).
This indicates that κ(κ(V)) ⊆ κ(V).

Lemma 3.8. Let U,V ⊆ T and (T,Θ,P) be a PTS. Then κ(V) \ κ(U) = κ(V \U) \ κ(U).

Proof. We get by Theorem 3.7 κ(V) = κ[(V \U) ∪ (V ∩U)] = κ(V \U) ∪ κ(V ∩U) ⊆ κ(V \U) ∪ κ(U). Thus,
κ(V) \κ(U) ⊆ κ(V \U) \κ(U). By Theorem 3.4, κ(V \U) ⊆ κ(V) and we obtain κ(V \U) \κ(U) ⊆ κ(V) \κ(U).
Hence, κ(V) \ κ(U) = κ(V \U) \ κ(U).

Corollary 3.9. Let (T,Θ,P) be a PTS and U,V ⊆ T with Vc < P. Then, κ(U ∪ V) = κ(U) = κ(U \ V).

Proof. Since Vc < P, by Theorem 3.4 κ(V) = ∅. By Lemma 3.8, κ(U) = κ(U \ V) and by Theorem 3.7
κ(U ∪ V) = κ(U) ∪ κ(V) = κ(U).

Theorem 3.10. Let (T,Θ,P) be a PTS, so the subsequent properties are equivalent:

1. Θ \ {T} ⊆ P;
2. If Vc < P, then coκ(V) = ∅;
3. V ⊆ κ(V) for each closed set V in T;
4. T = κ(T).

Proof. (1)⇒ (2): Let Vc < P and Θ \ {T} ⊆ P. Assume t ∈ coκ(V). Then, there is a closed set F in T such that
t ∈ F ⊆ V and Vc

⊆ Fc. Since Vc < P, then Fc < P. This is not the case that Θ \ {T} ⊆ P. Hence, coκ(V) = ∅.
(2)⇒ (3): Let V be closed set and t ∈ V. Suppose t < κ(V) then there is a closed set F containing t

such that Vc
∪ Fc < P and hence (V ∩ F)c < P, thus by item (2) coκ(V ∩ F) = ∅. Also V ∩ F is closed, then

coκ(V ∩ F) = V ∩ F , ∅. This is a logical contradiction. Hence, t ∈ κ(V) and V ⊆ κ(V) for every closed set V.
(3)⇒ (4): Since T is closed, so we get T = κ(T).
(4)⇒ (1): T = κ(T) = {t ∈ T : Fc

∪ Tc = Fc
∈ P for each closed set F containing t}. Hence,Θ \ {T} ⊆ P.
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Remark 3.11. Let (T,Θ,P) be a PTS. For a proper subset V of T the following hold:

1. If P = ∅, then κ(V) = ∅.
2. If P = P(T) \ T, then κ(V) = κ(V).

Examples of how the ideas relate to one another are as follows:

Example 3.12. Let T = {3, 2, 1}. Define Θ = {∅,T, {1}, {1, 2}} and P = {∅, {1}, {2}, {1, 2}}. If (T,Θ,P) be a PTS
and V ⊆ T, then we have the following table.

V κ(V) kernel coκ(V) co-kernel κ(V) primal-kernel
∅ ∅ ∅ ∅

T T T T
{1} {1} ∅ ∅

{2} {1, 2} ∅ ∅

{3} T {3} T
{1, 2} {1, 2} ∅ ∅

{1, 3} T {3} T
{2, 3} T {2, 3} T

Example 3.13. Let T = {3, 2, 1}. Define Θ = {∅,T, {1}, {1, 2}} and P = ∅. If (T,Θ,P) is a PTS and V ⊆ T, then
we have the following table.

V κ(V) kernel coκ(V) co-kernel κ(V) primal-kernel
∅ ∅ ∅ ∅

T T T T
{1} {1} ∅ ∅

{2} {1, 2} ∅ ∅

{3} T {3} ∅

{1, 2} {1, 2} ∅ ∅

{1, 3} T {3} ∅

{2, 3} T {2, 3} ∅

Example 3.14. Let T = {3, 2, 1}. Define Θ = {∅,T, {1}, {1, 2}} and P = P(T) \ {T}. If (T,Θ,P) be a PTS and
V ⊆ T, then we have the following table.

V κ(V) kernel coκ(V) co-kernel κ(V) primal-kernel
∅ ∅ ∅ ∅

T T T T
{1} {1} ∅ {1}
{2} {1, 2} ∅ {1, 2}
{3} T {3} T
{1, 2} {1, 2} ∅ {1, 2}
{1, 3} T {3} T
{2, 3} T {2, 3} T

4. A topology associated with a primal kernel sets

Theorem 4.1. Let (T,Θ,P) be a PTS, then V
κ
= κ(V)∪V is a Kuratowski operator that is if V, U be subsets of T.

Then
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1. ∅
κ
= ∅.

2. V ⊆ V
κ
.

3. V ∪U
κ
= V

κ
∪U

κ
.

4. V
κ
= V

κκ

.

Proof. By Theorem 3.7, we obtain
(1) ∅

κ
= κ(∅) ∪ ∅ = ∅.

(2) V ⊆ V ∪ κ(V) = V.
(3) V ∪U

κ
= κ(V ∪U) ∪ (V ∪U) = κ(V) ∪ κ(U) ∪ (V ∪U) = V

κ
∪U

κ
.

(4) V
κκ

= κ(V) ∪ V
κ
= κ(κ(V) ∪ V) ∪ (κ(V) ∪ V) = κ(κ(V)) ∪ κ(V) ∪ (κ(V) ∪ V) = κ(V) ∪ V = V

κ
.

Lemma 4.2. Let (T,Θ,P) be a PTS and V, U be subsets of T. Then

1. If V ⊆ U, then V
κ
⊆ U

κ
.

2. (V ∩U)
κ
⊆ V

κ
∩U

κ
.

3. When F is a closed set, then F ∩ V
κ
⊆ V ∩ F

κ
.

Proof. (1) Since V ⊆ U, by Lemma 3.4 we have V
κ
= V ∪ κ(V) ⊆ U ∪ κ(U) = U

κ
.

(2) This is obvious by (1).
(3) Since F is closed set, by Lemma 3.6 we have F ∩ V

κ
= F ∩ (V ∪ κ(V)) = (F ∩ V) ∪ (F ∩ κ(V)) ⊆

(F ∩ V) ∪ κ(F ∩ V) = F ∩ V
κ
.

Corollary 4.3. Let (T,Θ,P) be a PTS and V ⊆ T. If V ⊆ κ(V), then κ(V) = V
κ
.

According with Theorem 4.1, if (T,Θ,P) is a PTS, we denote by Θ
κ

the topology generated by (.)
κ
, that

is Θ
κ
= {V ⊆ T : T \ V

κ
= T \ V}. The elements of Θ

κ
are called κ-open and the complement of κ-open is

called κ-closed.

Remark 4.4. In Example 3.5 we consider the setN of natural numbers. InN, define the topological space
Θ such that U ∈ Θ if and only if U =N or 3 < U. OnN, let P be defined as B ∈ P if and only if 3 < B. Thus,
(N,Θ,P) is PTS. Let A ⊆N. Then,

A
κ
=

{
N, if 3 ∈ A
A, if 3 < A

Hence, A is κ-closed set if and only if 3 < A.

In general the following topology Θ and Θ
κ

are incomparable as we can see in below example

Example 4.5. Let T = {3, 2, 1}with Θ = {∅,T, {1, 3}} and the primal P = {∅, {1}, {2}, {3}, {1, 3}, {2, 3}}.

V κ(V) kernel coκ(V) co-kernel κ(V) primal-kernel V
κ

V⋄ cl⋄(V)
∅ ∅ ∅ ∅ ∅ ∅ ∅

T T T T T T T
{1} {1, 3} ∅ {1, 3} {1, 3} {2} {1, 2}
{2} T {2} T T {2} {2}
{3} {1, 3} ∅ ∅ {3} ∅ {3}
{1, 2} T {2} T T T T
{1, 3} {1, 3} ∅ {1, 3} {1, 3} T T
{2, 3} T {2} T T {2} {2, 3}
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By above table we obtain Θ
κ
= {∅,T, {2}, {1, 2}} and it clear that Θ and Θ

κ
are incomparable topology.

Also Θ⋄ = {∅,T, {1}, {1, 2}, {1, 3}}

Remark 4.6. 1. Since κ(V) = κ(κ(V)) ⊆ κ(V), then V
κ
⊆ κ(V) for all subset V of T. Hence, if V is a κ-set,

then V is κ-closed. It follows that each coκ-set is κ-open.

2. If P = P(T) \ T, then Θ
κ

is the collection of all coκ-set.
3. According to [4], if V is a subset of T considering P and Θ, the primal local closure operator of V is
Π(V) = Π(V)(P,Θ) = {t ∈ T : Vc

∪ (F)c
∈ P for every F ∈ Θ(t)}, where Θ(t) = {F ∈ Θ : t ∈ F}. It is clear

that κ(V) ⊆ Π(V) ⊆ clθ(V). Hence, it follows that if V is a θ-closed set, then V is κ-closed and every
θ-open set, then is κ-open.

Proposition 4.7. A subset V of a PTS (T,Θ,P) is κ-closed if and only if κ(V) ⊆ V.

Proof. Let V be κ-closed, then V = V
κ
= κ(V) ∪ V. Hence, κ(V) ⊆ V.

Conversely, let κ(V) ⊆ V. Since, V
κ
= κ(V) ∪ V and κ(V) ∪ V ⊆ V, then V

κ
⊆ V and V

κ
= V. This show

that V is κ-closed.

Theorem 4.8. Let (T,Θ,P) be a PTS. Then β(Θ,P) = {V ∩ P : V is a closed set and P < P} is a basis for Θ
κ
.

Proof. Let (T,Θ,P) be a PTS. It is clear that V is κ-closed if and only if κ(V) ⊆ V. Currently, we have U ∈ Θ
κ

if and only if κ(Uc) ⊆ Uc if and only if U ⊆ [κ(Uc)]c. Therefore, t ∈ U implies that t < κ(Uc). This follows
that there is a closed set F such that t ∈ F and [F ∩ Uc]c < P. Now let B = F ∩ [Fc

∪ U] ∈ β and we have
t ∈ B ⊆ U, where F is a closed and t ∈ F and Fc

∪ U < P. All that remains to be shown is that β is closed
under finite intersection. Let M,N ∈ β, then M = H ∩ P1 and N = K ∩ P2, where H,K are closed sets and
P1,P2 < P. Hence, we obtain

M ∩N = (H ∩ P1) ∩ (K ∩ P2) = [H ∩ K] ∩ (P1 ∩ P2).

Since (P1 ∩ P2) < P and H ∩ K is closed set, hence M ∩ N ∈ β. Hence, the finite intersection in β is closed.
Thus β = {V ∩ P : V is a closed set and P < P} is a basis for Θ

κ
.

Example 4.9. Assume that the real numbers with a left ray topology areΘ = {(−∞, a) : a ∈ R}∪ {∅,R}. LetP
be a primal of all subsets A ofR such thatR\A is infinite. Consider the collection β(Θ,P) = {Fn

∩Pn : n ∈N},
where Fn = [ 1

2 − n,∞) which is closed set and Pn = R \ {1, 2, ...,n} < P. Then ∪{Fn
∩ Pn : n ∈ N} = R \N

which is not in β(Θ,P). Thus β(Θ,P) is not a topology in general as it is not closed under arbitrary unions.

Lemma 4.10. Let (T,Θ,P) be a PTS and V be subset of T. Then,

1. V ∈ Θ
κ

if and only if for all t ∈ V, a closed set F that contains t exists such that V ∪ Fc < P.

2. if V < P, then V ∈ Θ
κ
.

Proof. (1) Let V ∈ Θ
κ

if and only if Vcκ = κ(Vc) ∪ Vc = Vc, then κ(Vc) ⊆ Vc and V ⊆ [κ(Vc)]c. Hence, for all
t ∈ V, we have t < κ(Vc). Thus, for all t ∈ V, there is a closed set F containing t such that Fc

∪(Vc)c = Fc
∪V < P.

(2) Let V < P and t ∈ V. Put F = T. Then F is a closed set containing t. Since V < P and Fc
∪ V = V, we

have Fc
∪ V < P. By item (1), we have V ∈ Θ

κ
.

Proposition 4.11. Let (T,Θ,P) be a PTS and V ⊆ T. Then, κ(V) \ V does not contain any nonempty κ-open set.

Proof. Suppose that V ⊆ T and U is κ-open set such that U ⊆ κ(V)\V. Then, U ⊆ κ(V)\V ⊆ T\V, V ⊆ T\U
and T \U is κ-closed set. By Lemma 3.4 and Proposition 4.7, we have κ(V) ⊆ κ(T \U) ⊆ T \U and hence
U ⊆ T \ κ(V) since U ⊆ κ(V) we obtain that U ⊆ κ(V) ∩ (T \ κ(V)) = ∅. Thus, U = ∅ and we get, κ(V) \ V
does not contain any nonempty κ-open set.
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Corollary 4.12. Let (T,Θ) be a TS and V ⊆ T. Then, κ(V) \ V does not contain any nonempty coκ-set.

Theorem 4.13. Let P1 and P2 be primals on a TS (T,Θ) such that P2 ⊆ P1, then Θ
κ
(P1) ⊆ Θ

κ
(P2).

Proof. Let V ∈ Θ
κ
(P1). We will show that U = T \ V is κP2 -closed that is κP2 (U) ⊆ U. Suppose that t < U,

then t < κP1 (U) because U is κP1 -closed set. Next, a closed set F exists such that t ∈ F and (U ∩ F)c < P1.
Since P2 ⊆ P1 we get (U ∩ F)c < P2 and hence t < κP2 (U) this mean that κP2 (U) ⊆ U and U is κP2 -closed set.
Hence, Θ

κ
(P1) ⊆ Θ

κ
(P2).

Theorem 4.14. If a PTS (T,Θ,P) is T1-space, then for all t ∈ T, the singleton {t} is κ-closed. The converse is true if
each singleton is κ-dense in itself.

Proof. Let t be any point in T. For any s ∈ T, t , s an open set V exists such that t ∈ V and s < V. Now,
s ∈ F = T \ V and F is closed and {t} ∩ F ⊆ V ∩ F = ∅. Hence ({t} ∩ F)c < P and so s < κ({t}). This show
that κ({t}) ⊆ {t} and hence {t} is κ-closed by Proposition 4.7. Conversely, let each singleton is κ-closed and
κ-dense in itself. Let t be any point of T and s ∈ T \ {t}. Then, κ({s}) = {s} ⊆ T \ {t} and hence t < κ({s}), then
there is a closed set F such that t ∈ F and ({s} ∩ F)c < P. We claim that {s} ∩ F = ∅ and s ∈ Fc

⊆ T \ {t} = V and
Fc is open set. Hence, {t} is a closed set and T \ {t} is an open set and thus (T,Θ,P) is a T1-space. Otherwise
we have {s} ∩ F , ∅, so s ∈ F and ({s} ∩ F)c < P. It follows that s < κ({s}) which is a contradiction with the fact
κ({s}) = {s}.

Corollary 4.15. If TS (T,Θ) is T1-space if and only if for each t ∈ T, the singleton {t} is a κ-set.

5. 1κ-closed sets in primal spaces

Definition 5.1. A subset V of a PTS (T,Θ,P) is called 1κ-closed if cl⋄(V) ⊆ U whenever V ⊆ U and U is
κ-open.

Remark 5.2. In Example 3.5 let A ⊆N. Then,

A⋄ =
{
{3}, if 3 ∈ A
∅, if 3 < A

Hence, cl⋄(A) = A for all A ⊆N, thus A is 1κ-closed for all A ⊆N.

Remark 5.3. In Example 4.5 we obtained that Θ
κ
= {∅,T, {2}, {1, 2}} and Θ⋄ = {∅,T, {1}, {1, 2}, {1, 3}}. Let

U = {1, 2} be κ-open and V = {2} it is clearly that V ⊆ U and cl⋄(V) = T ⊈ U. Hence, V is not 1κ-closed.

Proposition 5.4. A subset V of a PTS (T,Θ,P) is 1κ-closed if and only if V⋄ ⊆ U whenever V ⊆ U and U is
κ-open.

Proof. Let V be 1κ-closed and V ⊆ U where U is κ-open, then cl⋄(V) ⊆ U and since V⋄ ⊆ cl⋄(V) for all V ⊆ T.
Hence, V⋄ ⊆ U whenever V ⊆ U and U is κ-open. Conversely, let V ⊆ U and V⋄ ⊆ U whenever U is κ-open,
then V ∪ V⋄ = cl⋄(V) ⊆ U. Thus, V is 1κ-closed.

Proposition 5.5. Let V and U be a subset of a PTS (T,Θ,P). The listed below items are hold:

(i) If V is Θ⋄-closed, then V is 1κ-closed.
(ii) If V is 1κ-closed and κ-open, then V is Θ⋄-closed.

(iii) If V is 1κ-closed and V ⊆ U ⊆ V⋄, then U is 1κ-closed.
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Proof. (i) Let V be Θ⋄-closed and V ⊆ U where U is κ-open. Then, V = cl⋄(V) = V⋄ ∪ V, we get V⋄ ⊆ V and
V⋄ ⊆ V ⊆ U. Therefore, V⋄ ⊆ U and thus V is 1κ-closed.

(ii) Let V be 1κ-closed and κ-open. Since, V ⊆ V and V is κ-open by Proposition 5.4, V⋄ ⊆ V and hence
V is Θ⋄-closed.

(iii) Let V be 1κ-closed, V ⊆ U ⊆ V⋄, and U ⊆ W where, W is κ-open. Then, V ⊆ W and hence V⋄ ⊆ W
also U⋄ ⊆ (V⋄)⋄ ⊆ V⋄ ⊆W. Hence, U is 1κ-closed.

Theorem 5.6. A subset V of a PTS (T,Θ,P) is 1κ-closed if and only if V⋄ ⊆ κ
Θ
κ (V) where, κ

Θ
κ (V) is the kernel of

V in the topology Θ
κ
.

Proof. Suppose that V is 1κ-closed, let V ⊆ U where U is κ-open. Then, cl⋄(V) ⊆ U and since U is κ-open
containing V we get cl⋄(V) ⊆ κ

Θ
κ (V).

Conversely, suppose that cl⋄(V) ⊆ κ
Θ
κ (V) and U is κ-open containing V. Then, we get that V ⊆ κ

Θ
κ (V) ⊆

κ
Θ
κ (U) = U. Hence, cl⋄(V) ⊆ U and V is 1κ-closed.

Theorem 5.7. If a subset V of a PTS (T,Θ,P) is 1κ-closed, then V⋄ \ V does not contain any nonempty κ-closed
set.

Proof. Let V be 1κ-closed set and suppose and F is nonempty κ-closed set such that F ⊆ V⋄ \ V. Then,
F ⊆ V⋄ \ V ⊆ T \ V, V ⊆ T \ F and T \ F is κ-open set. By Lemma 2.9 and Proposition 5.4, we have
V⋄ ⊆ (T \ F)⋄ ⊆ T \ F and hence F ⊆ T \ V⋄ since F ⊆ V⋄ we obtain that F ⊆ V⋄ ∩ (T \ V⋄) = ∅. Thus, F = ∅
and we get, V⋄ \ V does not contain any non empty κ-closed set.

Theorem 5.8. Let V be a 1κ-closed subset of a PTS (T,Θ,P). Then, the items below are equivalent:

1. V is Θ⋄-closed.
2. V⋄ \ V = ∅.
3. V⋄ \ V is κ-closed.

Proof. (1)⇔ (2) By Definition 2.7 V is Θ⋄-closed set if and only if V⋄ ⊆ V, which is equivalently V⋄ \V = ∅.
(2)⇒ (3) It is obvious since Θ

κ
is a topology.

(3) ⇒ (1) Suppose that V⋄ \ V is κ-closed set. Since V is a 1κ-closed, by Theorem 5.7, we get that
V⋄ \ V = ∅.

Lemma 5.9. Let (T,Θ,P) be a PTS, for all t ∈ T, the singleton {t} is κ-closed or 1κ-open.

Proof. Let {t} be not κ-closed, then T \ {t} is κ-open and the only κ-open set containing T \ {t} is T. Since
cl⋄(T \ {t}) ⊆ T, then T \ {t} is a 1κ-closed set and hence {t} is 1κ-open.

Definition 5.10. A PTS (T,Θ,P) is called κ-T 1
2

if each 1κ-closed set of T is Θ⋄-closed.

Theorem 5.11. The PTS (T,Θ,P) is κ-T 1
2

if and only if for each t ∈ T the singleton {t} is κ-closed or Θ⋄-open.

Proof. Suppose that (T,Θ,P) is κ-T 1
2

space and let t ∈ T. If {t} is not κ-closed, then by Lemma 5.9, {t} is
1κ-open and hence T \ {t} is 1κ-closed set. Since (T,Θ,P) is κ-T 1

2
we get that T \ {t} is Θ⋄-closed set. Hence,

{t} is Θ⋄-open. Conversely, let V be a 1κ-closed set and t ∈ V⋄. Next, there are two cases:
Case 1: {t} is κ-closed set. Then, by Theorem 5.8, V⋄ \ V does not contain any nonempty κ-closed set

and hence t < V⋄ \ V. Since t ∈ V⋄ we get that t ∈ V. Thus, V⋄ ⊆ V and V is Θ⋄-closed set and in this case
(T,Θ,P) is κ-T 1

2
space.

Case 2: {t} is Θ⋄-open set. Then, by Lemma 2.10, V⋄ \ V does not contain any nonempty Θ⋄-open set
and hence t < V⋄ \ V. Since t ∈ V⋄ we conclude that t ∈ V. Thus, V⋄ ⊆ V and V is Θ⋄-closed set and in this
case (T,Θ,P) is κ-T 1

2
space.
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Remark 5.12. In Example 3.5 A is κ-closed set if and only if 3 < A and since cl⋄(A) = A for all A ⊆N, thus A
is Θ⋄-open for all A ⊆N, therefore for each t ∈N the singleton {t} is κ-closed or Θ⋄-open. Hence, (N,Θ,P)
is κ-T 1

2
space.

Remark 5.13. In Example 4.5 we obtained that Θ
κ
= {∅,T, {2}, {1, 2}} and Θ⋄ = {∅,T, {1}, {1, 2}, {1, 3}}. Let

V = {2} it is clearly that V is neither κ-closed nor Θ⋄-open set. Hence, (T,Θ,P) is not κ-T 1
2

space.

6. λκ-closed sets in primal spaces

Definition 6.1. A subset V of a PTS (T,Θ,P) is called λκ-closed if V = F ∩U whenever F is a κ-closed and
U is a Θ⋄-closed set.

Example 6.2. In Example 4.5 whenT = {3, 2, 1}withΘ = {∅,T, {1, 3}} and the primalP = {∅, {1}, {2}, {3}, {1, 3}, {2, 3}}.
It is clear that the collection of all κ-closed and Θ⋄-closed sets are {∅,T, {1, 3}, {3}} and {∅,T, {2, 3}, {3}, {2}}
respectively. Thus, {∅,T, {2, 3}, {3}, {2}, {1, 3}} is the collection of all λκ-closed sets.

Remark 6.3. Let (T,Θ,P) be a PTS, then

1. If V is a λ-closed set, then V is a λκ-closed set, because every κ-set is κ-closed and each closed set is
Θ⋄-closed.

2. If P = P(T) \ T, then V is a λκ-closed set if and only if V is a λ-closed set.

Proposition 6.4. In a PTS (T,Θ,P) every κ-closed set is λκ-closed and each Θ⋄-closed set is λκ-closed.

Proof. (1) Let V be a κ-closed, since V = T ∩ V, where, V is a κ-closed and T is Θ⋄-closed, then V is a
λκ-closed.

(1) Let V be a Θ⋄-closed, since V = T ∩ V, where, V is a Θ⋄-closed and T is κ-closed, then V is a
λκ-closed.

Lemma 6.5. Let V be a subset of a PTS (T,Θ,P). The following items are equivalent:
1. V is a λκ-closed set.
2. V = F ∩ cl⋄(V), where F is a κ-closed set.
3. V = V

κ
∩ cl⋄(V).

Proof. Since V
κ

is a κ-closed and cl⋄(V) is a Θ⋄-closed set the proof is clear.

Definition 6.6. The PTS (T,Θ,P) is said to be κ-T0 if for each of distinct points t, s ∈ T there is a Θ⋄-open V
containing s but not t or there is κ-closed set F containing t but not s.

Remark 6.7. 1. Every T0-space is κ-T0-space, because each open set is Θ⋄-open and κ-closed.
2. A PTS (T,Θ,P) in Example 4.5 is κ-T0-space but not T0-space.

Theorem 6.8. The PTS (T,Θ,P) is a κ-T0 if and only if each t ∈ T, the singleton {t} is a λκ-closed.

Proof. For all t ∈ T we have {t} ⊆ {t}
κ
∩ cl⋄({t}). Let t , s, since is a λκ-closed. is κ-T0, after which there are

two cases:
Case 1: There is aΘ⋄-open set V containing s but not t. In this case s < cl⋄({t}) and hence s < {t}

κ
∩ cl⋄({t}).

Case 2: There is a κ-closed set F containing t but not s. In this case s < {t}
κ

and hence s < {t}
κ
∩ cl⋄({t}).

Hence, we show that {t}
κ
∩ cl⋄({t}) ⊆ {t}. Therefore, {t}

κ
∩ cl⋄({t}) = {t} and by Lemma 6.5, {t} is a λκ-closed.

Conversely, suppose that a PTS (T,Θ,P) is not κ-T0 space. Then there is two distant points t, s ∈ T such
that one of the following cases hold:

Case 1: s ∈ F for each κ-closed set F containing t. Then, we obtain s ∈ {t}
κ
.

Case 2: {t} ∩ V , ∅ for each Θ⋄-open set V containing s. Then, we obtain s ∈ cl⋄({t}).
Therefore, s ∈ {t}

κ
∩ cl⋄({t}). Since {t} is a λκ-closed, then by Lemma 6.5 we have {t} = {t}

κ
∩ cl⋄({t}) and

hence t = s it is contradictory therefore, (T,Θ,P) is a κ-T0.
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We now provide a concept that shares some similarities with the concept of R0 space.

Definition 6.9. The PTS (T,Θ,P) is said to be κ-R0 space if each κ-closed set F and each t ∈ F we have
cl⋄({t}) ⊆ F.

Example 6.10. In Example 3.12 whenT = {3, 2, 1}withΘ = {∅,T, {1}, {1, 2}}and the primalP = {∅, {1}, {2}, {1, 2}}.
We obtaind the collection of all κ-closed andΘ⋄-closed sets are {∅,T, {1, 2}, {1}, {2}} and {∅,T, {1, 2}, {1, 3}, {2, 3},
{1}, {3}, {2}} respectively. It is clear that, each κ-closed set F and each t ∈ F we have cl⋄({t}) = {t} ⊆ F.
Hence, Example 3.12 is κ-R0. But Example 4.5 is not κ-R0 because {1, 3} is κ-closed and 1 ∈ {1, 3} but
cl⋄({1}) = {1, 2, 3} ⊈ {1, 3}.

Theorem 6.11. Let a PTS (T,Θ,P) be κ-R0 space. A singleton {t} is λκ-closed if and only if {t} is Θ⋄-closed.

Proof. Let {t} be a λκ-closed set. By lemma 6.5 we have {t} = {t}
κ
∩ cl⋄({t}). Now for each κ-closed set F

containing {t}, cl⋄({t}) ⊆ F. Thus, cl⋄({t}) ⊆ {t}
κ
. Hence, we obtain that {t} = {t}

κ
∩ cl⋄({t}) = cl⋄({t}). Therefore,

{t} is a Θ⋄-closed set.
Conversely, suppose that {t} is aΘ⋄-closed set. Then, {t} = cl⋄({t}), and we obtain that {t} ⊆ {t}

κ
∩ cl⋄({t}) =

{t}
κ
∩ {t} = {t}. Hence, {t} = {t}

κ
∩ cl⋄({t}) and by lemma 6.5, a singleton {t} is λκ-closed set.

Corollary 6.12. Let a PTS (T,Θ,P) be κ-R0 space. Then, (T,Θ,P) a κ-T0 space if and only (T,Θ⋄) is a T1 space.

Example 6.13. In Example 4.5 for each distinct points t, s ∈ T there is a Θ⋄-open V containing s but not t
or there is κ-closed set F containing t but not s. Hence, Example 4.4 is κ-T0. But (T,Θ⋄) it is not a T1 space
because {1} is not Θ⋄-closed. Thus, the condition in Corollary 6.12 is a necessary.
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