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Abstract. We prove that the category of quasi-pseudometric modular spaces whose morphisms are the
nonexpansive mappings is isomorphic to a quantale enriched category. To achieve this, we construct an
appropriate quantale of isotone functions. We also show that, by means of this isomorphism, the topology
associated with a quasi-pseudometric modular coincides with that generated by its corresponding quantale
enriched category.

Furthermore, we demonstrate that the class of quasi-pseudometrizable topological spaces coincides
with the topological spaces whose topology is induced by a quasi-pseudometric modular.

1. Introduction

Nakano introduced the concept of modular [24] to obtain a more detailed theory of Dedekind complete
Riesz spaces and it was further extended to Riesz spaces and vector spaces. A modular on a vector space
is a nonnegative real-valued function, symmetric, convex, left-continuous, and non-identically null in each
half-line. Its importance comes from the fact that you can construct a normed vector subspace from a
modular, with the so-called Luxemburg norm [17]. Moreover, modular spaces extend the Lebesgue, Riesz,
and Orlicz spaces.

Recently, motivated by problems from multivalued analysis, Chistyakov [2, 3] introduced a general
theory of modulars in arbitrary sets (removing the requirement of an algebraic structure in the underlying
set) under the name of metric modular space. Roughly speaking, a metric modular space is a nonempty set
endowed with a parameterized family {wt}t>0 of two-variable functions valued at [0,+∞] satisfying certain
axioms that are consistent with the classical theory of modulars (see Definition 2.1). The monograph [4]
written by Chistyakov is a comprehensive study of the metric and topological properties of metric modular
spaces. In particular, he introduced two different topologies in a metric modular space: the so-called metric
topology and modular topology. The modular topology turns out to be the topologization [4, Theorem
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4.3.5] of a non-topological convergence called modular convergence [4, Definition 4.2.1], that extends the
modular convergence defined by Musielak and Orlicz [23].

There also exists an asymmetric version of metric modular spaces, named quasi-pseudometric modular
spaces, introduced by Sebogodi [27] in 2019, for which there is also a parallel theory to a certain extent.

The purpose of this paper is to keep on exploring the theory of quasi-pseudometric modular spaces.
Specifically, our objective is twofold. First, we aim to contribute to the basic theory of quasi-pseudometric
modular spaces. This will be addressed in Section 2. After recalling the basic definitions, we introduce a
quasi-uniformity (Proposition 2.4) on every quasi-pseudometric modular space, having as entourages the
modular entourages considered by Chistyakov [4, Section 4.1.2]. The topology generated by this quasi-
uniformity is the quasi-pseudometric topology of the quasi-pseudometric modular. Moreover, we will
show that the topology of a quasi-pseudometric space is also induced by a quasi-pseudometric modular
(Theorem 2.10). In addition, we analyze some concepts of functions between quasi-pseudometric modular
spaces that can be considered as morphisms for the category of quasi-pseudometric modular spaces, which
will be necessary for the second aim of the paper that we next discuss.

The study of the metrizability of a topological space has been one of the main research areas of general
topology. Since not every topological space is metrizable, some authors have taken a different approach to
this problem, searching for a more general concept of metric in such a way that every topology comes from
a generalized metric. Quasi-pseudometrics (metrics that do not satisfy neither the symmetry axiom nor the
non-degeneracy axiom) are probably the first generalized metrics but there are still topologies that are not
quasi-pseudometrizable [12].

In 1978, Trillas and Alsina [28] replaced the codomain of non-negative reals of a classic metric with an
ordered algebraic structure. Kopperman tackled a similar approach [18] in 1988, introducing the so-called
continuity spaces by considering a value semigroup as the codomain of the metric. This afforded him to
prove that every topological space is a continuity space. Later on, Flagg [10, 11] modified Kopperman’s
approach by evaluating a metric in a value quantale (see Definition 3.20 and sections 3 and 4) which
provides important advantages with respect to the original continuity spaces (see [6]). Furthermore, Flagg
noticed that, in the same way that quasi-pseudometric spaces are enriched categories as first noticed by
Lawvere [20], continuity spaces are just enriched categories over a value quantale. Roughly speaking, an
enriched category is a generalization of the concept of a category where the set of morphisms are objects
of a monoidal category. Therefore, the continuity spaces are Q-categories [15, Section III.1.3] where Q is a
value quantale.

The second goal of this paper is to demonstrate that the category of quasi-pseudometric modular spaces
is isomorphic to a Q-category for a concrete value quantale Q. We will show this in Section 5 where we prove
that the family∇ of all isotone functions between (0,+∞) and [0,+∞]op can be endowed with a specific order
and operation that makes it a value quantale (Proposition 5.5). Then, we provide an isomorphism between
the category of quasi-pseudometric modular spaces and the ∆-category (Theorem 5.6). Furthermore, we
show that this isomorphism also preserves the topologies of the objects (Theorem 5.9). These results
establish the enriched category theory as a frame for studying quasi-pseudometric modular spaces that
could allow for analyzing their relationship with other topological structures.

2. Quasi-pseudometric modular spaces

We start by recalling the definition of a quasi-pseudometric modular [27], the asymmetric version of the
metric modular introduced by Chistyakov [2, 4].

Definition 2.1. ([4, 27]) Let X be a nonempty set. A function w : (0,+∞) × X × X → [0,+∞] is a quasi-
pseudometric modular on X if for every x, y, z ∈ X and all t, s > 0 it verifies:

(M1) w(t, x, x) = 0 for all t > 0;
(M2) w(t + s, x, y) ≤ w(t, x, z) + w(s, z, y).

If, in addition, w satisfies
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(M3) w(t, x, y) = w(t, y, x) = 0 for all t > 0 if and only if x = y

then w is called a quasi-metric modular.
If a quasi-(pseudo)metric modular w verifies

(M4) w(t, x, y) = w(t, y, x) for all x, y ∈ X and all t > 0

then w is said to be a (pseudo)metric modular on X.
The pair (X,w) is known as a (quasi)-(pseudo)metric modular space.
Moreover, a (quasi)-(pseudo)metric modular w on X is said to be left-continuous if w(·, x, y) : (0,+∞)→

[0,+∞] is left-continuous for every x, y ∈ X. In this case we say that (X,w) is a left-continuous (quasi)-
(pseudo)metric modular space.

Example 2.2. ([4]) Given a (quasi)-(pseudo)metric space (X, d) and a nonincreasing function 1 : (0,+∞) →
[0,+∞] non-identically zero, then w1 : (0,+∞) × X × X→ [0,+∞] defined as

w1(t, x, y) = 1(t) · d(x, y)

for all x, y ∈ X and all t > 0, is a (quasi)-(pseudo)metric modular on X.
If 1(t) = 1

t for all t > 0 then w1 will be called the standard (quasi)-(pseudo) metric modular induced by
d and will be denoted by wd, that is,

wd(t, x, y) =
d(x, y)

t
for all x, y ∈ X and all t > 0.

One of the most important properties of a quasi-pseudometric modular, which can be deduced from
(M2), the triangular inequality, is the following:

Proposition 2.3. ([27, Lemma 3.1.1]) Let (X,w) be a quasi-pseudometric modular space. Then the function
w( , x, y) : (0,+∞)→ [0,+∞] is non-increasing for all x, y ∈ X.

In [4], Chistyakov considered two different topologies in a metric modular space that were later studied
in the realm of quasi-pseudometric modular spaces in [27]: the metric topology and the modular topology.
We provide here a new approach to the introduction of the metric topology by defining a quasi-uniformity
from a quasi-pseudometric modular.

Proposition 2.4. Let (X,w) be a quasi-pseudometric modular space. Given t, ε > 0, define

Ww
t,ε := {(x, y) ∈ X2 : w(t, x, y) < ε}

(we will omit the superscript w if no confusion arises).

1. The family B = {Ww
t,ε : t, ε > 0} is a base for a quasi-uniformityWw on X. The elements Ww

t,ε will be called
modular entourages.

2.
{
Ww

1
n ,

1
n

: n ∈N
}

is a countable base forWw.

3. If w is a pseudometric modular, thenWw is a uniformity on X.

Proof. We prove (1).
By (M1), it is obvious that {(x, x) : x ∈ X} ⊆Wt,ε for all t, ε > 0.
Let us see thatB is a filter base. Given t1, t2, ε1, ε2 > 0, we claim that Wt1∧t2,ε1∧ε2 ⊆Wt1,ε1 ∩Wt2,ε2 . In fact if

(x, y) ∈Wt1∧t2,ε1∧ε2 then w(t1∧t2, x, y) < ε1∧ε2.Since w( , x, y) is non-increasing then max{w(t1, x, y),w(t2, x, y)} ≤
w(t1 ∧ t2, x, y) < ε1 ∧ ε2, that is, (x, y) ∈Wt1,ε1 ∩Wt2,ε2 .

Now, by (M1), it is obvious that {(x, x) : x ∈ X} ⊆Wt,ε for all t, ε > 0.
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Let t, ε > 0. Let us prove that W t
2 ,
ε
2
◦W t

2 ,
ε
2
⊆ Wt,ε. If (x, y) ∈ W t

2 ,
ε
2
◦W t

2 ,
ε
2
, then there exists some z ∈ X

such that (x, z), (z, y) ∈W t
2 ,
ε
2
, that is,

max
{
w
( t

2
, x, z
)
,w
( t

2
, z, x
)}
<
ε
2
.

By (M2) we have that

w(t, x, y) = w
( t

2
+

t
2
, x, y
)
≤ w
( t

2
, x, z
)
+ w
( t

2
, z, x
)
<
ε
2
+
ε
2
= ε.

Hence, (x, y) ∈Wt,ε and B is a base of a quasi-uniformity on X.
We next prove (2). Given some arbitrary t, ε > 0 there exists n0 ∈ N such that 1

n0
< min{ε, t}. We claim

that W 1
n0
, 1

n0
⊆Wt,ε.

Take some (x, y) ∈W 1
n0
, 1

n0
. Then w

(
1
n0
, x, y
)
< 1

n0
. Hence, since w( , x, y) is non-increasing

w(t, x, y) ≤ w
( 1

n0
, x, y
)
<

1
n0
< ε,

so (x, y) ∈Wt,ε.
Finally, to see (3), it is obvious that the modular entourages are symmetric in case that w is a pseudometric

modular. Thus, they form a base for a uniformity on X.

Remark 2.5. It is important to mention that a version of this result for metric modular spaces appears
concurrently in [22, Theorem 2].

Definition 2.6. Let (X,w) be a quasi-pseudometric modular space. The topology T (Ww) generated by the
quasi-uniformityWw on X will be called the topology associated to the quasi-pseudometric modular w.
For simplicity, it will be also denoted by T (w).

Then T (w) has as neighborhood base at x ∈ X the family {Wt,ε(x) : t, ε > 0}where

Wt,ε(x) = {y ∈ X : w(t, x, y) < ε}.

Example 2.7. Let (X, d) be a quasi-pseudometric space. Consider the standard quasi-pseudometric modular
wd on X induced by d (see Example 2.2) given by

w(t, x, y) =
d(x, y)

t

for all x, y ∈ X and all t > 0. Then T (w) = T (d). Let us check this.
Notice first that for all t, ε > 0 and x ∈ X,

Wt,ε(x) =
{

y ∈ X : w(t, x, y) =
d(x, y)

t
< ε

}
= {y ∈ X : d(x, y) < tε} = B(x, tε).

Hence, the neighborhood base at any x ∈ X in T (w) coincides with all the open balls in T (d), so they
generate the same topology.

Remark 2.8. Given a pseudometric modular space (X,w), Chistyakov [4, Theorem 2.2.1] (see also [2, Theo-
rem 2.6]) proved that the function dw(x, y) : X × X→ [0,+∞) given by

dw(x, y) = inf{t > 0 : w(t, x, y) ≤ t}

for all x, y ∈ X, is an extended pseudometric on X (i.e., a pseudometric that it is allowed to take the value
+∞). In case that (X,w) is a quasi-pseudometric modular space, then dw is an extended quasi-pseudometric
on X [27, Theorem 3.1.2].
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Hence we can consider the open ball topology T (dw) generated by the extended quasi-pseudometric dw
on X. For pseudometric modulars, Chistyakov [4, Section 4.1.2] studied this topology, that he called metric
topology. The corresponding study in which w is a quasi-pseudometric modular was performed in [27].

Moreover, in a quasi-pseudometric modular space (X,w), we have that T (dw) = T (w) on X, that is, the
topology generated by the quasi-uniformity Ww is equal to the topology associated with the extended
quasi-pseudometric dw. To see this, it suffices to observe that the quasi-uniformityUdw is in factWw since

{(x, y) ∈ X × X : dw(x, y) < min{t, ε}} ⊆Wt,ε,

Wε,ε ⊆ {(x, y) ∈ X × X : dw(x, y) ≤ ε}.

Therefore, the topology associated with a quasi-pseudometric modular is generated by a quasi-pseudometric,
that is, it is quasi-pseudometrizable. But the converse is also true as we next show.

Definition 2.9. A topological space (X,T ) is said to be quasi-pseudomodulable if T = T (w) for some
quasi-pseudometric modular w on X.

Theorem 2.10. A topological space is quasi-pseudomodulable if and only if is quasi-pseudometrizable.

Proof. Let (X,T ) be a quasi-pseudometrizable topological space. Then there exists some quasi-pseudometric
d on X such that T = T (d). By Example 2.7, T (d) = T (wd), where wd is the standard quasi-pseudometric
modular associated with d. Hence T is quasi-pseudomodulable.

Conversely, suppose that there exists a quasi-pseudometric modular w on X such that T = T (w). Since
T (w) is induced by a quasi-uniformityWw with a countable base, then it is quasi-pseudometrizable [12].

We observe that, in general, the set Wt,ε(x) is not open in T (w) even for metric modulars, as the next
example shows.

Example 2.11. Let X = {x, y} ∪ {zn}n∈N and define w : (0,+∞) × X × X→ [0,+∞] as

w(t, a, a) = 0, ∀ a ∈ X, ∀ t > 0.

w(t, x, y) =

1 if 0 ≤ t < 1,
0 if t ≥ 1,

w(t, x, zn) =

1 if 0 ≤ t ≤ 1,
0 if t > 1,

w(t, y, zn) =

 1
n if 0 ≤ t < 1,
0 if t ≥ 1,

w(t, zn, zm) =

 1
min{n,m} if 0 ≤ t < 1,
0 if t ≥ 1.

It is straightforward to check that (X,w) is a metric modular space.
Let us see that W1, 12

(x) is not open in T (w). Since w(1, x, y) = 0 then y ∈ W1, 12
(x). We show that for all

t, ε > 0, Wt,ε(y) ⊈W1, 12
(x) which shows that W1, 12

(x) is not open.

Given any t, ε > 0, there exists some n0 ∈N such that 1
n0
< ε. Thus,

w(t, y, zn0 ) =
{

1
n0

if 0 ≤ t < 1
0 if t ≥ 1

}
< ε.
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Hence, zn0 ∈Wt,ε(y). Nevertheless,

w(1, x, zn0 ) = 1 >
1
2
,

which implies that zn0 <W1, 12
(x). In conclusion, Wt,ε(y) ⊈W1, 12

(x) for all t, ε > 0.

Observe that in the previous example, w( , x, y) is not left-continuous. This fact is not casual as it is
inferred from the next result.

Proposition 2.12. Let (X,w) be a left-continuous quasi-pseudometric modular space. Then Wt,ε(x) is open for all
t, ε > 0 and for all x ∈ X.

Proof. Let x ∈ X, t, ε > 0, and y ∈ Wt,ε(x). Define η := ε − w(t, x, y) > 0 and tn := t − t
2n , so (tn)n∈N converges

to t. Since w( , x, y) is left-continuous then (w
(
tn, x, y

)
)n∈N converges to w(t, x, y). Hence there exists n0 ∈ N

such that |w(tn, x, y) − w(t, x, y)| < η for all n ≥ n0. In particular

w(tn0 , x, y) < η + w(t, x, y) = ε.

Let us define δ := ε−w(tn0 , x, y). We claim that Wt−tn0 ,δ
(y) ⊆Wt,ε(x). Take z ∈Wt−tn0 ,δ

(y). Then w(t−tn0 , y, z) < δ
so

w(t, x, z) = w(t − tn0 + tn0 , x, z) ≤ w(tn0 , x, y) + w(t − tn0 , y, z) < w(tn0 , x, y) + δ = ε.

Hence, Wt−tn0 ,δ
(y) ⊆Wt,ε(x).

Next, we study which morphisms can be considered between quasi-pseudometric modular spaces to
obtain an appropriate category.

We first recall the following concept introduced in [21, 25] for pseudometric modular spaces (see also
[8]).

Definition 2.13. ([21, 25]) A function f : (X,w1)→ (Y,w2) between two quasi-pseudometric modular spaces
is said to be Lipschitz if there exists k > 0 such that

w2(k · t, f (x), f (y)) ≤ w1(t, x, y)

for every x, y ∈ X and every t > 0.
If k = 1 then f is called nonexpansive.

Remark 2.14. If the above condition is only satisfied when the parameter t belongs to an interval (0, t0],
then f is called modular Lipschitzian [5].

We next introduce a new notion.

Definition 2.15. A function f : (X,w1) → (Y,w2) between two quasi-pseudometric modular spaces is said
to be strongly uniformly continuous if given t > 0 there exists s > 0 such that

w2(t, f (x), f (y)) ≤ w1(s, x, y)

for every x, y ∈ X.

Proposition 2.16. Let (X,w1), (Y,w2) be two quasi-pseudometric modular spaces. Each statement implies its suc-
cessor:

(1) f : (X,w1)→ (Y,w2) is Lipschitz;
(2) f : (X,w1)→ (Y,w2) is strongly uniformly continuous;
(3) f : (X,Ww1 )→ (Y,Ww2 ) is uniformly continuous.
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Proof. (1)⇒ (2) By assumption, there exists k > 0 such that

w2

(
k ·

t
k
, f (x), f (y)

)
= w2(t, f (x), f (y)) ≤ w1

( t
k
, x, y
)

for every x, y ∈ X and every t > 0. Hence, f is strongly uniformly continuous.
(2)⇒ (3) Suppose that f : (X,w1) → (Y,w2) is strongly uniformly continuous. Let V ∈ Ww2 . Then we

can find t, ε > 0 such that Ww2
t,ε ⊆ V. By assumption, there exists s > 0 such that

w2(t, f (x), f (y)) ≤ w1(s, x, y)

for every x, y ∈ X. Hence if (x, y) ∈ Ww1
s,ε then ( f (x), f (y)) ∈ Ww2

t,ε so f : (X,Ww1 ) → (Y,Ww2 ) is uniformly
continuous.

Notice that for standard quasi-pseudometric modulars, Lipschitz functions are equal to strongly uni-
formly continuous functions.

Proposition 2.17. Let (X, d), (Y, q) be two quasi-pseudometric spaces. The following statements are equivalent:

(1) f : (X, d)→ (Y, q) is Lipschitz;
(2) f : (X,wd)→ (Y,wq) is Lipschitz;
(3) f : (X,wd)→ (Y,wq) is strongly uniformly continuous.

Proof. (1)⇒ (2) Since f is Lipschitz there exists k > 0 such that q( f (x), f (y)) ≤ k ·d(x, y) for all x, y ∈ X.Hence,
for any t > 0

wq(k · t, f (x), f (y)) =
q( f (x), f (y))

k · t
≤

d(x, y)
t
= wd(t, x, y)

which proves the statement.
(2)⇒ (3) This follows from the previous Proposition.
(3)⇒ (1). For t = 1 we can find s > 0 such that

wq(1, f (x), f (y)) = q( f (x), f (y)) ≤ wd(s, x, y) =
d(x, y)

s

for every x, y ∈ X. Hence f : (X, d)→ (Y, q) is Lipschitz with constant 1
s .

We denote by QPMod the category whose objects are the quasi-pseudometric modular spaces and whose
morphisms are the strongly uniformly continuous maps. When we consider the nonexpansive maps as
morphisms, we denote this category by QPModn. Then QPModn is a subcategory of QPMod.

Moreover, we denote by LQPMod (resp. LQPModn) the full subcategory of QPMod (resp. QPModn)
whose objects are the left-continuous quasi-pseudometric modular spaces. It turns out that LQPMod is a
reflective subcategory of QPMod.

Proposition 2.18. LQPMod is a reflective full subcategory of QPMod whose reflector is the functor L : QPMod→
LQPMod given by L((X,w)) = (X, w̃) and leaving morphisms unchanged, where w̃ is the left regularization of w
defined as

w̃(t, x, y) =
∧

0<s<t

w(s, x, y),

for every x, y ∈ X and every t > 0 (see [4, Definition 1.2.4]).

Proof. Following [4, Proposition 1.2.5] we have that w̃ is a left-continuous quasi-pseudometric modular on
X.

Moreover, let f : (X,w1) → (Y,w2) be a strongly uniformly continuous mapping. Given t > 0 and
0 < r < t there exists s > 0 such that

w2(r, f (x), f (y)) ≤ w1(s, x, y)
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for all x, y ∈ X. Therefore,

w̃2(t, f (x), f (y)) =
∧

0<t′<t

w2(t′, f (x), f (y)) ≤ w2(r, f (x), f (y))

≤ w1(s, x, y) ≤ w̃1(s, x, y) =
∧

0<s′<s

w1(s′, x, y)

so f : (X, w̃1)→ (Y, w̃2) is strongly uniformly continuous. Hence L is a functor.
We next check that L is the left adjoint of the inclusion functor I : LQPMod → QPMod. Let (X, ω1) ∈

QPMod and (Y,w2) ∈ LQPMod. Suppose that f : (X,w1)→ (Y,w2) is strongly uniformly continuous. Given
t > 0 there exists s > 0 such that w2(t, f (x), f (y)) ≤ w1(s, x, y) for all x, y ∈ X. Since w1(s, x, y) ≤ w̃1(s, x, y) then
f : (X, w̃1)→ (Y,w2) is also strongly uniformly continuous.

Now, let 1 : (X, w̃1)→ (Y,w2) be strongly uniformly continuous. Given t > 0 we can find s > 0 such that

w2(t, f (x), f (y)) ≤ w̃1(s, x, y) =
∧

0<r<s

w1(r, x, y).

Hence 1 : (X,w1)→ (Y,w2) is strongly uniformly continuous.

Remark 2.19. We observe that given x, y ∈ X, then w̃( , x, y) is the upper semicontinuous regularization or
upper envelope of w( , x, y), since this function is non-increasing (see [1, Chapter 1.3]).

Remark 2.20. Observe that the above proof does not work using the categories LQPModn and QPModn,
although the same mapping between these two categories is still a functor. For example, let X be a set with
at least two different points and consider the modular metric x on X given by

w(t, x, y) =


0 if x = y, t > 0,
1 if x , y, 0 < t < 1,
0 if x , y, t ≥ 1,

for all x, y ∈ X, t > 0. It is clear that its left regularization is

w̃(t, x, y) =


0 if x = y, t > 0,
1 if x , y, 0 < t ≤ 1,
0 if x , y, t > 1,

for all x, y ∈ X, t > 0.
The identity map i : X→ X is nonexpansive when X is endowed with the metric modular w. However

i : (X, w̃)→ (X,w) is not nonexpansive since

w̃(1, x, y) = 1 ≰ w(1, x, y) = 0

where x, y are two distinct points of X.

3. Lattices and quantales

The second goal of this paper is to establish an equivalence between the category of quasi-pseudometric
modular spaces and a category enriched over a quantale (see Section 5). Thus we need some preliminary
concepts about order theory that will be useful later. Our main references for this section are [9, 13, 15].

Recall that a partial order ≤ on a nonempty set X is a reflexive, antisymmetric, and transitive relation on
X. In this case, the pair (X,≤) is a partially ordered set (a poset for short). The opposite relation ≤op given by

x ≤op y if and only if y ≤ x



C. López-Pastor et al. / Filomat 39:19 (2025), 6693–6710 6701

for all x, y ∈ X, is also a partial order on X. If no confusion arises, we will write Xop as short for (X,≤op).
A function f : (X,≤1)→ (Y,≤2) between partially ordered sets is called isotone if

x ≤1 y implies f (x) ≤2 f (y)

for all x, y ∈ X. The category of partially ordered sets with isotone maps as morphisms will be denoted by
POSet.

Furthermore, a poset (L,≤) where every finite subset has an infimum and supremum is a lattice. If every
subset has an infimum and supremum, then it is a complete lattice. If A ⊆ L then

∨
A,
∧

A will denote the
supremum and the infimum of A respectively. If we want to emphasize the partial order that is used to

compute the supremum or the infimum, we will write
≤∨
,
≤∧
.

Definition 3.1. Let (L,≤) be a complete lattice. Given a, b ∈ L, then a is well-below b (a ◁ b) if

for all S ⊆ L such that b ≤
∨

S, there exists s0 ∈ S such that a ≤ s0.

Proposition 3.2 (Properties of the well-below order). Let (L,≤) be a complete lattice.

1. x ◁ y⇒ x ≤ y.
2. x ◁ y ≤ z or x ≤ y ◁ z implies x ◁ z.
3. ⊥ ◁ x if and only if x ,⊥ .

Example 3.3. In the complete lattice ([0, 1],≤), we have that x ◁ y if and only if x < y. Let us check this. By
Proposition 3.2, x ◁ y implies x ≤ y. Moreover x , y. Otherwise taking S = {s ∈ [0, 1] : s < y}, we have that
y =
∨

S, although s < x = y for all s ∈ S which contradicts x ◁ y.
Suppose now that x < y. Let S ⊆ [0, 1] such that y ≤

∨
S. Then for all ε > 0, there exists some s0 ∈ S

such that y − ε ≤ s0. Taking ε = y − x > 0 we are done.

Example 3.4. Let us see that in (P(X),⊆), if A,B , ∅, then A ◁ B if and only if A = {b} for some b ∈ B.
Suppose that A ◁ B, then taking S = {{b}}b∈B we have that B =

∨
S =
⋃
S and thus, there exists some b0 ∈ B

such that A ⊆ {b0}, so A = {b0}.
Conversely, suppose that A = {b} for some b ∈ B. Let S ⊆ P(X) such that B ⊆

∨
S. Since b ∈ B ⊆

∨
S,

then there is some S0 ∈ S such that b ∈ S0, which means that A = {b} ⊆ S0. Hence A ◁ B.
Observe that ∅ ◁ A for all A ∈ P(X).

The proof of the following result is trivial so it is omitted.

Lemma 3.5. Suppose that (L,≤) is a complete lattice. Then ⊥ ◁⊤ if and only if L is not trivial.

Definition 3.6. ([13, Definition I-2.8.]) A complete lattice (L,≤) is said to be completely distributive if given
{ai j : i ∈ I, j ∈ K(i)} ⊆ L then∧

i∈I

∨
j∈K(i)

ai j =
∨
f∈M

∧
i∈I

ai, f (i),

where M =
∏

i∈I K(i).

Theorem 3.7. ([26]) A complete lattice (L,≤) is completely distributive if and only if ∀b ∈ L,

b =
∨
{a ∈ L : a ◁ b}.

Example 3.8. The complete lattice ([0, 1],≤) is completely distributive. By Example 3.3, b =
∨
{a ∈ [0, 1] :

a < b} =
∨
{a ∈ [0, 1] : a ◁ b}.
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Example 3.9. The complete lattice (P(X),⊆) is completely distributive. By Example 3.4, B =
⋃

b∈B{b} =⋃
{A ⊆ X : A ◁ B} for every nonempty set B. On the other hand, by Proposition 3.2 (3), {A ⊆ X : A ◁ ∅} = ∅

and this concludes our claim.

Remark 3.10. Notice that if {(Lλ,≤λ) : λ ∈ Λ} is an arbitrary family of completely distributive lattices then
its Cartesian product (

∏
λ∈Λ Lλ,⪯) endowed with the componentwise partial order ⪯ is also completely

distributive. This is clear since given {ai j : i ∈ I, j ∈ K(i)} ⊆
∏
λ∈Λ Lλ, then for every λ ∈ Λ∧

i∈I

∨
j∈K(i)

ai j(λ) =
∨
f∈M

∧
i∈I

ai, f (i)(λ),

where M =
∏

i∈I K(i), since (Lλ,≤λ) is completely distributive. As the supremum and infimum on
∏
λ∈Λ Lλ

is computed componentwisely then

∧
i∈I

∨
k∈K(i)

ai j =
∨
f∈M

∧
i∈I

ai, f (i),

so (
∏
λ∈Λ Lλ,⪯) is completely distributive.

Definition 3.11. ([10, 11]) A value distributive lattice is a completely distributive lattice (L,≤) such that

(VDL1) ⊥ ◁⊤;
(VDL2) a, b ◁⊤ ⇒ a ∨ b ◁⊤.

Remark 3.12. Notice that:

• (VDL1) just means that L is not trivial by Lemma 3.5.

• (VDL2) just means that {a : a ◁⊤} is directed.

Example 3.13. Let 2 be the two element set {0, 1} endowed with the usual order ≤ . Then (2,≤) is a value
distributive lattice.

Example 3.14. ([0,+∞],≤) (where+ represents the usual sum on the real numbers extended to+∞ as usual)
is a value distributive lattice.

We next introduce a crucial notion in our work: a quantale. This structure is a combination of order and
a binary operation with some compatibility between them.

Definition 3.15. ([9]) A quantale is a triple (Q,⪯, ∗) where (Q,⪯) is a complete lattice and ∗ is a binary
operation on Q such that

(q1) (Q, ∗) is a semigroup.
(q2) a ∗ (

∨
i∈I bi) =

∨
i∈I(a ∗ bi).

(q3) (
∨

i∈I bi) ∗ a =
∨

i∈I(bi ∗ a).

where {bi : i ∈ I} ⊆ Q and a ∈ Q.

A quantale (Q,⪯, ∗) is said to be:

• commutative if ∗ is commutative;

• unital if (Q, ∗) is a monoid with unit 1Q;

• integral if it is unital and the unit is the top element of (Q,⪯), that is, 1Q = ⊤Q. If no confusion arises
we will simply write ⊤ instead of ⊤Q.
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In the remainder of the paper, we will refer to commutative integral quantales as CI-quantales. Moreover,
if no confusion arises, we will denote a quantale (Q,⪯, ∗) only by its underlying set Q.

Notice that in an integral quantale (Q,⪯, ∗) we have that u∗v ⪯ u∧v for all u, v ∈ Q. In fact, u = u∗(v∨⊤) =
(u ∗ ⊤) ∨ (u ∗ v) = u ∨ (u ∗ v) so u ∗ v ⪯ u. In a similar way, u ∗ v ⪯ v.

Example 3.16. (2,≤,∧) is a CI-quantale.

Example 3.17. ([0,+∞],≤,+) is a commutative unital quantale, but it is not integral since its unit is 0 , ⊤ =
+∞.

On the other hand, P+ = ([0,+∞],≤op,+) is a CI-quantale. This quantale is sometimes called the Lawvere
quantale [7] (see also [15, Example II.1.10.1.(3)]).

Example 3.18. Let X be a nonempty set and (Q,⪯, ∗) be a quantale. Then we can endow the set QX of all
maps f : X → Q with the pointwise order that for simplicity we also denote by ⪯ . Then (QX,⪯) is also
a complete lattice (see for example [9, Example 2.1.9]). Notice that meet and joins in QX are computed
pointwisely.

Moreover, defining a binary operation on QX pointwisely by means of ∗, that we again denote by ∗, turns
(QX,⪯, ∗) into a quantale.

Furthermore, if X is not only a set but also a partially ordered set, then the family I(QX) of all the isotone
maps between X and Q is a sublattice of QX which is also a quantale.

Example 3.19. A complete lattice (X,⪯) such that (X,⪯,∧) is a quantale, is called a complete Heyting
algebra or a frame [13].

In particular, a topology T on a nonempty set X has a quantale structure (T ,⊆,∩).

The following concept was introduced in [10] to obtain a generalization of the notion of a metric, as it
replicates the essential properties of [0,+∞], the codomain of an extended metric.

Definition 3.20. ([6, 10, 11]) A value quantale is a quantale (Q,⪯, ∗) such that (Q,⪯) is a value distributive
lattice.

Example 3.21. (2,≤,∧) is a value quantale.

Example 3.22. ([0, 1],≤, ·) is a value quantale. It is obvious that it is a quantale. Notice that ◁ is precisely <, so it
immediately follows that it is a value quantale.

Example 3.23. (P(X),⊆,
⋂

) is a quantale but not a value quantale if |X| > 1. Let x, y ∈ X be two different
points. By Example 3.4, {x} ◁ X and {y} ◁ X. Nevertheless, {x} ∨ {y} = {x, y} ⋪ X again by Example 3.4, so
(VDL2) does not hold.

4. Q-categories

As we have mentioned in the introduction, one of our main goals is to present quasi-pseudometric
modular spaces as a particular example of a Q-category, that is, an enriched category over a commutative
unital quantale (see [15, 16]). This will be developed in the next section but we first present a summary of
the notions that will be needed.

Definition 4.1. ([15, Section III.1.3], c.f. [11, Definition 3.1]) Let (Q,⪯, ∗) be a commutative unital quantale.
A Q-category is a pair (X, q) where X is a nonempty set and q : X × X→ Q is a map such that:

(QC1) ⊤ ⪯ q(x, x),
(QC2) q(x, z) ∗ q(z, y) ⪯ q(x, y),
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for all x, y, z ∈ X.
A Q-functor is a map f : (X, a)→ (Y, b) between Q-categories such that

a(x, y) ⪯ b( f (x), f (y))

for every x, y ∈ X.
Q-categories and Q-functors form a category denoted by Q-Cat.

Definition 4.2. A Q-category (X, q) is said to be:

• separated if given x, y ∈ X, whenever ⊤ ⪯ q(x, y) and ⊤ ⪯ q(y, x) then x = y.

• symmetric if q(x, y) = q(y, x) for all x, y ∈ X.

We next provide several well-known examples of Q-categories [10, 15].

Example 4.3. ([15, Example III.1.3.1.(1)]) 2-categories and preordered sets are equivalent concepts. If (X, a)
is a 2-category, the binary relation ⪯a on X given by

x ⪯a y⇔ a(x, y) = 1

is a preorder on X. A similar argument allows to convert a preordered set (X,⪯) into a 2-category.
Furthermore, a 2-functor between two 2-categories (X, a) and (Y, b) is an isotone function between the

preordered sets (X,⪯a) and (Y,⪯b). So 2-Cat is isomorphic to the category of preordered sets and isotone
maps.

Example 4.4. ([15, Example III.1.3.1.(2)]) P+-categories (see Example 3.17) are extended quasi-pseudometric
spaces.

If (X, a) is a P+-category then a : X × X→ [0,+∞] is a map verifying

0 ≥ a(x, x) and a(x, z) + a(z, y) ≥ a(x, y)

for all x, y, z ∈ X, so (X, a) is an extended quasi-pseudometric space [19] or an hemi-metric space [14].
Moreover, a P+-functor between two P+-categories (X, a), (Y, b) is map f : (X, a)→ (Y, b) verifying

a(x, y) ≥ b( f (x), f (y))

for all x, y ∈ X, that is, a nonexpansive mapping between the extended quasi-pseudometric spaces (X, a),
(Y, b).

Thus, P+-Cat is exactly the category EQPMet of extended quasi-pseudometric spaces.

In [10] (see also [6]), Flagg introduced a topology in a continuity space, that is, a Q-category where Q is
a value quantale. This topology was inspired by the classic open ball topology of a metric space, and the
topology of the original continuity spaces of Kopperman [18], where metrics are valued in what he called
a value semigroup (see [6]). This topology is important since it allows to prove that every topology comes
from a Q-category for a certain value quantale Q ([6, 10]). We recall the definition of this topology.

Definition 4.5. ([10, 11]) Let (X, a) be a Q-category, with Q being a value quantale. Given x ∈ X and r ∈ Q

such that r ◁⊤, the open ball centered in x with radius r is defined as

B(x, r) := {y ∈ X : r ◁ a(x, y)}.

Proposition 4.6. ([10, 11]) Let (X, a) be a Q-category, with Q being a value quantale. Then {B(x, r) : r ◁ ⊤, x ∈ X}
is a base for a topology T (a) on X.
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5. Quasi-pseudometric modular spaces as Q-categories

In this section, we address the main goal of the paper: to establish an equivalence between quasi-
pseudometric modular spaces and certain Q-categories. To achieve this, we need to consider a particular
quantale that we define using the next few results.

Lemma 5.1. Let us consider the set

∇ :=
{

f : (0,+∞)→ [0,+∞]op such that f is isotone
}

endowed with the pointwise order induced by the order ≤op on the codomain [0,+∞], that is,

f ≤op 1⇔ f (t) ≤op 1(t), for all t ∈ (0,∞).

Then (∇,≤op) is a completely distributive lattice where the top and bottom elements are the constant 0 function
denoted by 0, and the constant∞ function denoted by∞, respectively.

Proof. It is straightforward to verify that (∇,≤op) is a partially ordered set. Moreover, it is easy to check that
the supremum and infimum in ∇ are computed pointwisely, that is, if F ⊆ ∇ then ≤

op∨
F

 (t) =
≤

op∨
{ f (t) : f ∈ F} ≤

op∧
F

 (t) =
≤

op∧
{ f (t) : f ∈ F}

for all t > 0. Hence (∇,≤op) is a complete lattice.
Moreover, ([0,+∞](0,+∞),≤op) is completely distributive since it is the Cartesian product of completely

distributive lattices (see Remark 3.10.) Since (∇,≤op) is a sublattice of ([0,+∞](0,+∞),≤op) then it is completely
distributive.

Proposition 5.2. Let

∇L =

 f : (0,+∞)→ [0,+∞]op such that f is isotone and f (t) =
≤

op∨
0<s<t

f (s)

 .
Then (∇L,≤op) is a complete sublattice of (∇,≤op).

Proof. We only prove that the supremum of a family F ⊆ ∇L belongs to ∇L and that this supremum is
computed pointwisely. In this way, let us define F : (0,+∞) → [0,+∞]op as F(t) =

∨
≤

op
{ f (t) : f ∈ F } for all

t ∈ (0,+∞).
It is obvious that F is isotone. Moreover, let t ∈ (0,+∞). Since F is isotone then

∨
≤

op

0<s<t F(s) ≤op F (t) . On
the other hand, for all f ∈ F we have that f (t) =

∨
≤

op

0<s<t f (s) so

F(t) =
≤

op∨
{ f (t) : f ∈ F } =

≤
op∨{ ≤op∨

0<s<t

f (s) : f ∈ F
}
≤

≤
op∨

0<s<t

{ ≤op∨
f (s) : f ∈ F

}
=

≤
op∨

0<s<t

F(s).

Therefore, F ∈ ∇L.

To prove that (∇,≤op) is a value distributive lattice, the following lemma will be useful.
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Lemma 5.3. Let∞ , f ∈ ∇. Then f ◁op 0 if and only if

(1) there exists s ∈ (0,+∞) such that f (t) = ∞ for every t ∈ (0, s) and
(2)
∨
≤

op
{ f (t) : t ∈ (0,+∞)} <op 0.

Proof. Suppose that f ◁op 0.
We first prove (1). Suppose that f (t) , ∞ for every t ∈ (0,+∞). For each n ∈N, let 1n : (0,+∞)→ [0,+∞]

defined as

1n(t) =

 f (t) + 1 if 0 < t < 1
n ,

0 if 1
n ≤ t.

It is obvious that 1n ∈ ∇ for every n ∈ N and
∨
≤

op
1n = 0. However, f ≰op 1n for every n ∈ N, which

contradicts f ◁op 0.
Consequently, there exists t0 ∈ (0,+∞) such that f (t0) = +∞. Since f is isotone then f (t) = +∞ for very

t ≤ t0. Define s :=
∨
{t ∈ (0,+∞) : f (t) = ∞} < ∞ since f ,∞. Therefore f (t) = ∞ for every t ∈ (0, s).

We next prove (2). Suppose that
∨
≤

op
{ f (t) : t ∈ (0,+∞)} = 0. For every n ∈ N, let hn : (0,+∞)→ [0,+∞]

defined as
hn(t) =

1
n

for all t ∈ (0,+∞).

Obviously, hn ∈ ∇ for every n ∈ N and
∨
≤

op

n∈N hn = 0. However, given n ∈ N we can find tn ∈ (0,+∞) such
that hn(tn) = 1

n <
op f (tn) ≤op 0. Hence f ≰op hn for all n ∈N, which contradicts f ◁op 0.

Conversely, let s ∈ (0,+∞) such that f (t) = ∞ for very t ∈ (0, s) and let a =
∨
≤

op
{ f (t) : t ∈ (0,+∞)} <op 0.

Let us prove that f ◁op 0. Let F ⊆ ∇ such that
∨
≤

op
F = 0. Then we can find 1 ∈ F such that a ≤op 1(s).

Now, if t < s, then by hypothesis (1), f (t) = ∞ ≤op 1(t). On the other hand, if t ≥ s, then by hypothesis (2)
and the fact that 1 is isotone, f (t) ≤op a ≤op 1(s) ≤op 1(t).

Corollary 5.4. (∇,≤op) is a value distributive lattice.

Proof. We already know by Lemma 5.1 that (∇,≤op) is completely distributive.
Moreover, it is obvious that∞ ◁op 0.
Consider f , 1 ∈ ∇ such that f ◁op 0 and 1 ◁op 0. By the previous lemma, we can find s f , s1 ∈ (0,+∞)

such that f (t) = ∞ for every t ∈ (0, s f ) and 1(t) = ∞ for every t ∈ (0, s1). Hence ( f ∨≤op
1)(t) = ∞ for every

t ∈ (0, s f ∧ s1) so f ∨≤op
1 verifies condition (1) of the above lemma.

Furthermore,
∨
≤

op
{ f (t) : t ∈ (0,+∞)} <op 0 and

∨
≤

op
{1(t) : t ∈ (0,+∞)} <op 0 which obviously implies∨

≤
op
{( f ∨≤op

1)(t) : t ∈ (0,+∞)} <op 0. By the preceding lemma, f ∨≤op
1 ◁op 0. Consequently, (∇,≤op) is a

value distributive lattice.

Proposition 5.5. Consider the binary operation ⊕ : ∇ × ∇ → ∇ given by

( f ⊕ 1)(t) :=
≤

op∨
r+s≤t

( f (r) + 1(s)) =
≤

op∨
r+s=t

( f (r) + 1(s))

for all t > 0. Then (∇,≤op,⊕) and (∇L,≤op,⊕) are CI-value quantales.

Proof. It is straightforward to check that f ⊕ 1 ∈ ∇ for every f , 1 ∈ ∇.
Given t > 0,we prove that

≤
op∨

r+s=t

f (r) + 1(s) =
≤

op∨
r+s≤t

f (r) + 1(s).

Notice that { f (r) + 1(s) : r + s = t} ⊆ { f (r) + 1(s) : r + s ≤ t}, so

≤
op∨

r+s=t

( f (r) + 1(s)) ≤
≤

op∨
r+s≤t

( f (r) + 1(s)) = ( f ⊕ 1)(t).
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On the other hand, if r + s ≤ t, then s ≤ t − r. By isotonicity of 1, 1(s) ≤op 1(t − r) so

f (r) + 1(s) ≤op f (r) + 1(t − r) ≤op
≤

op∨
r≤t

( f (r) + 1(t − r)) =
≤

op∨
r+s=t

( f (r) + 1(s)).

Hence,

( f ⊕ 1)(t) =
≤

op∨
r+s≤t

( f (r) + 1(s)) ≤op
≤

op∨
r+s=t

( f (r) + 1(s)),

proving the desired equality.
We next check that (∇,⊕) is a commutative monoid.
First, commutativity is clear from the commutativity of the sum. Furthermore, given f ∈ ∇,

( f ⊕ 0)(t) =
≤

op∨
r+s=t

f (r) + 0(s) =
≤

op∨
r+s=t

f (r) = f (t),

where the last inequality holds since f is isotone. So 0 is the neutral element for ⊕.
Finally, to prove the associativity property, one has that

(( f ⊕ 1) ⊕ h)(t) =
≤

op∨
r+s=t

( f ⊕ 1)(r) + h(s) =
≤

op∨
r+s=t

 ∨
u+v=r

f (u) + 1(v)

 + h(s) =

=

≤
op∨

r+s=t
u+v=r

f (u) + 1(v) + h(s) =
≤

op∨
u+v+s=t

f (u) + 1(v) + h(s),

where the last equalities hold by the continuity of the sum. Since the final expression does not depend on
the order of the elements, we can assure that ⊕ is associative.

To prove the distributivity property of ⊕ with respect to suprema, we only need to show it for one side
because of the commutativity of the operation. For any {1i}i∈I ⊆ ∇, f ⊕

≤
op∨

i∈I

1i

 (t) =
≤

op∨
r+s=t

 f (r) +
∨
i∈I

1i(s)

 = ≤
op∨

r+s=t

≤
op∨

i∈I

f (r) + 1i(s)

=

≤
op∨

i∈I

≤
op∨

r+s=t

f (r) + 1i(s) =

∨
i∈I

( f ⊕ 1i)

 (t).

Finally, since f ≤op 0 for all f ∈ ∇ then 0 = ⊤ so the quantale (∇,≤op,⊕) is integral.
Additionally, a routine check shows that f ⊕ 1 ∈ ∇L for every f , 1 ∈ ∇L. Since (∇L,≤op) is a sublattice of

(∇,≤op) with the same top and bottom, then (∇L,≤op,⊕) is also a CI-quantale.

We arrive at the main result of the paper that proves that the category of quasi-pseudometric modular
spaces with nonexpansive maps is isomorphic to the category of ∇-categories.

Theorem 5.6. ∇-Cat is isomorphic to QPModn.

Proof. Let us define E∇ : ∇-Cat→ QPModn leaving morphisms unchanged and E∇((X, a)) = (X,wa) for every
∇-category (X, a), where wa(t, x, y) = a(x, y)(t) for all x, y ∈ X, t > 0. It is clear that E∇ is a functor.

On the other hand, consider EMod : QPModn → ∇-Cat leaving morphisms unchanged and EMod((X,w)) =
(X, aw) for every quasi-pseudometric modular space (X,w), where aw(x, y)(t) = w(t, x, y) for all x, y ∈ X,
t > 0. It is straightforward to check that (X, aw) is a ∇-category (notice that, due to Proposition 2.3, aw(x, y)
is isotone for every x, y ∈ X).



C. López-Pastor et al. / Filomat 39:19 (2025), 6693–6710 6708

To check (QC1), notice that for any x ∈ X, aw(x, x)(t) = w(t, x, x) = 0 by (M1). Hence, aw(x, x) = 0, where 0
is the unit element of ∇.

We next prove (QC2). Take any x, y, z ∈ X. Then

(aw(x, z) ⊕ aw(z, y))(t) =
≤

op∨
r+s=t

(aw(x, z)(r) + aw(z, y)(s))

=

≤
op∨

r+s=t

(w(r, x, z) + w(s, z, y)) ≤op

≤
op

≤
op∨

r+s=t

w(r + s, x, y) = w(t, x, y) = aw(x, y)(t),

for all t > 0. Consequently, aw(x, z) ⊕ aw(z, y) ≤op aw(x, y).
Moreover, it is obvious that a nonexpansive function between quasi-pseudometric modular spaces is a

∇-functor between their corresponding ∇-categories.
Finally, it easily follows that EMod ◦ E∇ = I∇-Cat and E∇ ◦ EMod = IQPModn .

If we change the quantale ∇ by ∇L, we obtain the category of left-continuous quasi-pseudometric
modular spaces.

Theorem 5.7. ∇L-Cat is isomorphic to LQPModn.

Proof. Let us define E∇L as the restriction of the functor E∇ to the category ∇L-Cat. Notice that in this case
E∇L ((X, a)) = (X,wa) is a left-continuous quasi-pseudometric modular space. In fact,

wa(t, x, y) = a(x, y)(t) =
≤

op∨
0<s<t

a(x, y)(s) = wa(s, x, y)

for every x, y ∈ X and t > 0. Consequently, E∇L : ∇L-Cat→ LQPModn is well-defined.
The rest of the proof is similar to the previous one.

Theorem 5.8. The following diagram commutes:

∇-Cat QPModn

∇L-Cat LQPModn

E∇

E∇L

U L

where U : ∇-Cat→ ∇L-Cat is the functor given by U((X, a)) = (X, ã) and leaving morphisms unchanged, where ã is
given by

ã(x, y)(t) =
∧

0<s<t

a(x, y)(s).

Proof. It is straightforward to check that U is a functor. By Remark 2.20, L is a functor.
Moreover,

wã(t, x, y) = ã(x, y)(t) =
∧

0<s<t

a(x, y)(s) =
∧

0<s<t

wa(s, x, y) = w̃a(t, x, y)

for all x, y ∈ X and all t > 0. Hence
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(E∇L ◦ U)(X, a) = (X,wã) = (X, w̃a) = (L ◦ E∇)(X, a)

which proves the commutativity of the diagram.

We finish the paper by showing that the isomorphism between the categories ∇-Cat and QPModn also
behaves well with respect to topology.

Theorem 5.9. Let (X,w) be a quasi-pseudometric modular space. Then T (w) = T (aw).

Proof. Let G ∈ T (w). Then given x ∈ G there exists t, ε > 0 such that x ∈ Wt,ε(x) ⊆ G. Define ft,ε : (0,+∞)→
[0,+∞] by

ft,ε(s) =

+∞ if 0 < s < t
ε if t ≤ s

.

By Lemma 5.3, ft,ε ◁op 0. We next show that x ∈ Baw (x, ft,ε) ⊆ Wt,ε(x) ⊆ G. If y ∈ Baw (x, ft,ε) then
ft,ε ◁op aw(x, y). In particular, ft,ε(t) = ε <op aw(x, y)(t) = w(t, x, y) so y ∈Wt,ε(x).

Conversely, let O ∈ T (aw) and x ∈ O. Then we can find 1 ∈ ∇ with 1 ◁op 0 such that Baw (x, 1) ⊆ G. By
Lemma 5.3 we know that ε :=

∨
≤

op
{1(t) : t ∈ (0,+∞)} <op 0 and there exists s ∈ (0,+∞) such that 1(t) = ∞

for every t ∈ (0, s). Let 0 < t0 < s. We assert that x ∈ Wt0,ε(x) ⊆ Baw (x, 1) ⊆ G. In fact, let y ∈ Wt0,ε(x), that is,
w(t0, x, y) < ε. Then 1 ≤op ft0,ε ◁

op w( , x, y) = aw(x, y) so y ∈ Baw (x, f ).
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