
Filomat 39:19 (2025), 6711–6722
https://doi.org/10.2298/FIL2519711S

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Isotropic space form Riemannian submersions

Müge Serta,∗, Feyza Esra Erdoğana

aFaculty of Science, Department of Mathematics Ege University İzmir Türkiye

Abstract. We introduce the notion of isotropic space form submersions between Riemannian manifolds
in this paper. We begin with a concrete example to demonstrate this new concept. We then characterize
isotropic space form submersions in terms of O’Neill’s tensor field, T̃, and explore some relationships
between the sectional curvatures of the base manifold and the total manifold. Particularly, considering an
isotropic lift M̃ℓ (where ℓ ≥ 3) into a space form Ñn+p(c̈) with constant c̈ sectional curvature, We demonstrate
that the T̃-fundamental tensor of Ñℓ+p with respect to M̃ℓ is parallel if the mean curvature vector of M̃ℓ is
parallel and the sectional curvature K̃ of Ñℓ+p satisfies a given inequality. Accordingly, Ñℓ+p is a space form
with lift.

1. Introduction

Let M̃ be a submanifold of the Riemannian manifold (Ñ, 1̃). If for a point q̃ ∈ M̃ and for any tangent
vector Ỹ at q̃, the condition

1(h(Ỹ, Ỹ), h(Ỹ, Ỹ)) = λ̃(q̃)1(Ỹ, Ỹ)2 (1)

is satisfied, then the manifold M̃ is said to be isotropic at the point q̃. Here, λ̃ is a function on (M̃, 1),
and h denotes the second fundamental form of the immersion. O’Neill first proposed the idea of isotropic
submanifolds in [23]. Although all umbilical submanifolds are known to be isotropic, the opposite is not
always true. A number of isotropic immersion-related topics have been examined in publications like
[4, 19, 20].

The idea of Riemannian submersions was independently put forward by O’Neill [22] and Gray [14].
They were seen as the opposite of isometric immersions in semi-Riemannian, Lorentzian, almost Hermitian,
and contact-complex submersions, among other contexts. Isometric immersions have been the main focus
of differential geometry research on smooth maps, resulting in the production of multiple volumes and
monographs on the subject [7–9]. Riemannian submersions have been the focus of a number of specialized
works, despite being less well studied [13, 17, 18, 26]. Numerous studies on Riemannian submersions have
been published recently, and many different kinds of Riemannian submersions titled semi-Riemannian sub-
mersions, Lorentzian submersions [13], almost Hermitian submersions [29], contact-complex submersions
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[17], and quaternionic submersions [18] have been introduced under multiple names. Riemannian submer-
sions have been used practically in different areas of study in addition to their theoretical advancement.
Notably, they have been utilized in robotics for forward kinematics [2] and mathematical physics, namely
in the Kaluza-Klein model and superstring theories [5, 13].

Sahin [25] recently introduced the concept of anti-invariant Riemannian submersions, which are Rie-
mannian submersions defined on almost Hermitian manifolds, where the vertical distribution is invariant
under the almost complex structure in an anti-invariant manner. This concept has been extended and
explored in numerous other works, including [1, 3, 6, 10, 12, 15, 16, 21, 24, 26–28, 30].

The idea of isotropic space form submersions is put forward in this paper together with an analysis of
the connection between the base and total manifolds in this context. The paper is organized as follows:
We give an overview of the fundamental ideas needed to develop the subject in Section 2. The definition
of isotropic space form submersions and the necessary and sufficient requirements for these submersions
to possess qualities like being minimum, entirely geodesic, and totally umbilical are established in Section
3. We analyze the connection between the base manifold’s and the total manifold’s curvatures. O’Neill’s
tensor field T̃ is applied to analyze this relationship, and we additionally investigate the connections that
exist among the sectional curvatures of the two manifolds. In particular, for a space form Ñℓ+p with constant
sectional curvature c̈ and an isotropic lift M̃ℓ (with ℓ ≥ 3), we demonstrate that the fundamental tensor T̃
of Ñℓ+p in M̃ℓ is parallel if the mean curvature vector of M̃ℓ is parallel and the sectional curvature K̈ of Ñℓ

satisfies particular criteria. In turn, a space form is formed by the lift in Ñℓ+p.

2. Preliminaries

Let M̃ and Ñ be Riemannian manifolds of dimensions m and n, respectively. A smooth map θ̃ : M̃ −→ Ñ
is called a Riemannian submersions if it fulfills the following criteria.

(S1) The map θ̃ is required to have max rank.

(S2) The lengths of horizontal vectors are preserved for every point q̃ ∈ M̃ by the differential θ̃∗.

The fiber θ̃x = θ̃−1(x) creates a submanifold of (M̃, 1) with dimension s = (m − n)− for any point x ∈ Ñ. The
kernel of the differential map θ̃∗q̃ denoted by M̃ is defined by ϑ̇q̃ = Kerθ̃∗q̃, defines an integrable distribution
on M̃. This distribution is referred to as vertical distribution of submersion θ̃.

We observe that for any point q̃ ∈ M̃, the tangent space of the submanifold θ̃−1 is identical. The

distribution κ̇q̃ =
(
ϑ̇q̃

)⊥
, which is orthogonal and complementary to the vertical distribution, is called the

horizontal distribution of the submersion. Thus for every q̃ ∈ M̃,

T̃q̃M̃ = ϑ̇q̃ ⊕ κ̇q̃ = ϑ̇q̃ ⊕
(
ϑ̇q̃

)⊥
.

O’Neill’s tensors T̃ and Ã provide a description of the geometry of a Riemannian submersion. These tensors
are defined for vector fields Ẽ and F̃ on the manifold M̃ as follows:

ÃẼF̃ = κ̇▽κ̇Ẽϑ̇F̃ + ϑ̇▽κ̇Ẽκ̇F̃, T̃ẼF̃ = κ̇▽ϑ̇Ẽϑ̇F̃ + ϑ̇▽ϑ̇Ẽκ̇F̃ (2)

where ▽ is the Levi-Civita connection of M̃. It is clear that a Riemannian submersion θ̃ : (M̃m, 1)→ (Ñn, 1̃)
has totally geodesic fibres if and only if T̃ vanishes everywhere. It is also straightforward to observe that T̃
is vertical, T̃Ẽ = T̃ϑ̇Ẽ, and Ã is horizontal, ÃẼ = Ãκ̇Ẽ. Additionally, we note that the tensor field T̃ satisfies

T̃ŨW̃ = T̃W̃Ũ ∀Ũ, W̃ ∈ Γ(ker θ̃∗),

from here we have

▽ṼW̃ = T̃ṼW̃ + ∇̂ṼW̃ ∀Ṽ, W̃ ∈ Γ(ker θ̃∗),

where ∇̂ṼW̃ = ϑ̇▽ṼW̃.

Now, let’s go over some of the theorems and lemmas that will be referenced throughout this paper.
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Theorem 2.1. [22] Let (M̃m, 1) and (Ñn, 1̃) be Riemannian manifolds with θ̃ : (M̃m, 1) → (Ñn, 1̃) denote a Rie-
mannian submersion. Assuming that α : I → M̃ is a regular curve, let E1(t) and W̃(t) stand for the horizontal and
vertical components of its tangent vector field, respectively. On M̃, α is a geodesic if and only if

(∇̂α̇E1 + T̃W̃E1)(t) = 0

and

(∇̂E1E1 + 2ÃE1 W̃ + T̃W̃W̃)(t) = 0,

where E1 ∈ χ(M̃) and ∇̂ is Schouten connection.

Lemma 2.2. [22] Let θ̃ : (M̃m, 1)→ (Ñn, 1̃) be a Riemannian submersion betweeen (M̃m, 1) and (Ñn, 1̃) Riemannian
manifolds. For

(▽ṼÃ)W̃ = −ÃT̃ṼW̃ , (▽X̃T̃)Ỹ = −T̃ÃX̃Ỹ,

(▽X̃Ã)W̃ = −ÃÃX̃W̃ (▽ṼT̃)Ỹ = −T̃T̃ṼỸ,

where X̃, Ỹ ∈ χv(M̃) and W̃, Ṽ ∈ χh(M̃)

Theorem 2.3. [22] Let θ̃ : (M̃m, 1) → (Ñn, 1̃) be a Riemannian submersion between Riemann manifolds (M̃m, 1)
and (Ñn, 1̃). Sectional curvatures K, K̂, and K̇, which represent the whole space, base space, and fibers, respectively,
are thus represented.

K(Ũ, Ṽ) = K̇(Ũ, Ṽ) +
∥∥∥T̃ŨṼ

∥∥∥2
− 1(T̃ŨŨ, T̃ṼṼ),

K(X̃, Ỹ) = K̂(X̃, Ỹ) ◦ θ̃ − 3
∥∥∥ÃX̃Ỹ

∥∥∥2
,

K(X̃, Ṽ) = 1((▽X̃T̃)ṼṼ, X̃) +
∥∥∥T̃ṼX̃

∥∥∥2
−

∥∥∥ÃX̃Ṽ
∥∥∥2
,

for X̃, Ỹ ∈ χh(M̃) and Ũ, Ṽ ∈ χv(M̃).

It is important to remember that a Riemannian submersion θ̃ is said to have totally umbilical fibers if
the following criteria is met:

T̃ṼW̃ = 1(Ṽ, W̃)H,

where Γ(ker θ̃∗) contains Ṽ, W̃ and H stands for the fibers’ mean curvature vector field.

Definition 2.4. [23] Let (M̃, 1) be a submanifold embedded in a Riemannian manifold (Ñ, 1̃). For a point q̃ on M̃
and any tangent vector Ỹ at q̃, if the equation (1.1) is satisfied, then M̃ is said to be isotropic at the point q̃. Here, λ̃ is
a function on (M̃, 1), and h denotes the second fundamental form of the immersion.

Definition 2.5. [11] θ̃ : M̃ −→ Ñ is known to be a Riemannian submersion. If the following holds for u1 ∈ χv(M̃)

1(T̃u1 u1, T̃u1 u1) = λ̃1(u1,u1)2,

θ̃ is called λ̃-isotropic for every q̃ ∈ M̃. For each q̃ ∈ M̃, if λ̃ is constant, then θ̃ is known as λ̃− constant isotropic.

Theorem 2.6. [11] Let θ̃ : (M̃, 1)→ (Ñ, 1̃) be a Riemannian submersion between Riemannian manifolds M̃ and Ñ.
If θ̃ is λ̃-isotropic, then for any orthogonal vectors Ỹ, Ũ ∈ χv(M̃), we have

1(T̃ỸỸ, T̃ỸŨ) = 0.

We now give an example of isotropic submersions.
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Example 2.7. [11] Let (R4, 1) and (R2, 1̃) be Riemannian manifolds and 1 = dx2
1 + dx2

2 + dx2
3 + dx2

4 and 1̃ =
1−λ
λ (dx2

1 + dx2
2), 0 < λ < 1. Let’s look at the map below.

ϕ̃ : R4
→ R2

(x1, x2, x3, x4) → (
√

1 − x2
1 − x2

2,
√

1 − x2
3 − x2

4),

such that x2
1 + x2

2 = λ < 1, x2
3 + x2

4 = λ < 1. Given that rankϕ̃∗ = dim R2, ϕ̃ is a submersion. Taking the above
condition into account, we obtain

ker ϕ̃∗ = ϑ̇ = span {ṽ = (x2,−x1, 0, 0), ũ = (0, 0, x4,−x3)}

ker ϕ̃⊥∗ = κ̇ = span
{
X̃ = (−x1,−x2, 0, 0), Ỹ = (0, 0,−x3,−x4)

}
.

Given that we have

1(ϕ̃∗X̃, ϕ̃∗X̃) = 1̃(X̃, X̃),
1(ϕ̃∗Ỹ, ϕ̃∗Ỹ) = 1̃(Ỹ, Ỹ).

1 is a submersion of Riemannians. In addition, we discover that

▽ṽṽ = X̃ ∈ ker ϕ̃⊥∗ , ▽ũũ = Ỹ ∈ ker ϕ̃⊥∗ .

Thus, we demonstrate that ϕ̃ is an isotropic Riemannian submersion.

Lemma 2.8. [11]Let θ̃ : (M̃m, 1)→ (Ñn, 1̃) be a λ̃- isotropic Riemannian submersion. Then we have

1.

1(T̃u1 u1, T̃u2 u2) + 21(T̃u1 u2, T̃u1 u2) = λ̃, f or ∥u1∥ = ∥u2∥ = 1,

2.

1(T̃u1 u1, T̃u3 u4) + 21(T̃u1 u3, T̃u1 u4) = 0,

3.

1(T̃u1 u2, T̃u3 u4) + (T̃u1 u3, T̃u2 u4) + 1(T̃u1 u4, T̃u2 u3) = 0,

for all orthogonal u1,u2,u3,u4 ∈ χv(M̃).

Lemma 2.9. [11]Let θ̃ : (M̃m, 1) → (Ñn, 1̃) be a λ̃ isotropic Riemannian submersion. We have the following for
orthonormal u1, v1 ∈ χv(M̃)

K(u1, v1) = K̂(u1, v1) + 3
∥∥∥T̃u1 v1

∥∥∥2
− λ̃, (3)

2K(u1, v1) = 2K̂(u1, v1) − 31(T̃u1 u1, T̃v1 v1) + λ̃. (4)

Using the previously mentioned Lemma 2.9, we arrive at the following conclusion.

Proposition 2.10. [11]Let θ̃ : (M̃m, 1) → (Ñn, 1̃) be a λ̃- isotropic Riemannian submersion. The following expres-
sions are equivalent for orthonormal u1, v1 ∈ χv(M̃) the following expressions are equivalent

1. K(u1, v1) = K̂(u1, v1) − λ̃,
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2. T̃u1 v1 = 0.

Applying Proposition 2.1, we obtain the following result.

Theorem 2.11. [11]Let θ̃ : (M̃m, 1) → (Ñn, 1̃) be a λ̃- isotropic Riemannian submersion between M̃ and Ñ. The
relation K(P̃) = K̂(P̃) − λ̃ is satisfied for any vertical plane P̃ spanned by the vectors u1 and v1 if and only if θ̃ is a
Riemannian submersion with minimal fibers.

The results of applying Proposition 2.10 are as follows.

Corollary 2.12. [11]Consider the Riemannian submersion θ̃ : (M̃m, 1)→ (Ñn, 1̃) which is λ̃− isotropic. Denote by
{uℓ}1≤ℓ≤r a local orthonormal frame for the vertical distribution of M̃m. LetN∗ be a horizontal vector field on (M̃m, 1),
where

∥N∗∥2 = s2λ̃.

Corollary 2.13. [11]Let θ̃ : (M̃m, 1) → (Ñn, 1̃) be a λ̃− isotropic Riemannian submersion. When considering a
geodesic curve α : I→ M̃m, the curve γ = θ̃◦α is geodesic if and only if the condition 2ÃE1 W̃+ T̃W̃W̃ = 0 is fulfilled.

∥∥∥ÃE1 W̃
∥∥∥2
=
λ̃
4

∥∥∥W̃
∥∥∥2
,

where the horizontal component of curve α is E1(t), and the vertical component is W̃(t).

Let θ̃ : (M̃m, 1)→ (Ñn, 1̃) be a λ̃− isotropic Riemannian submersion, then we have

1(T̃u1 u1, T̃u1 u1) = λ̃.

As a result, we obtain

1(▽u1 T̃u1 u1, T̃u1 u1) = 0⇒ 1((▽u1 T̃1)u1 u1, T̃u1 u1) + 21(T̃u1▽u1 u1, T̃u1 u1) = 0.

If (▽u1 T̃)u1 u1 = 0, then 1(T̃u1▽u1 u1, T̃u1 u1) = 0. If ▽u1 u1 ∈ χh(M̃m), then we can conclude that ▽u1 u1 ⊥ u1 ∈ ϑ̇q̃.
If ▽u1 u1 ∈ χh(M̃m), then we find T̃u1 u1 = 0. Hence we conclude that M̃ is totally geodesic when T̃ = 0.
The opposite is easy to see. As a consequence, the following theorem emerges.

Theorem 2.14. [11]Let θ̃ : (M̃m, 1)→ (Ñn, 1̃) be a constant λ̃- isotropic Riemannian submersion. For any u1 ∈ ϑ̇q̃,
if (▽u1 T̃)u1 u1 = 0, then one of the following is true:

1. ▽u1 u1 ⊥ u1 in χv(M̃m).
2. With totally geodesic fibers, θ̃ is a Riemannian submersion.

3. Isotropic Riemannian Space Form

In this section, we define isotropic space form submersions between Riemannian manifolds and explore
their properties. We give a characterisation and investigate the relationships between the sectional curva-
tures of the base space and the total space using the O’Neill’s tensor field T̃. For an isotropic lift M̃ℓ(ℓ ≥ 3)
over a space form Ñℓ+p(c̈) having constant sectional curvature c̈, We show that if the sectional curvature
K̃ of Ñℓ meets a particular inequality and the mean curvature vector of M̃ℓ is parallel, The fundamental
tensor T̃ of Ñℓ+p in M̃ℓ is parallel, therefore. This suggests that a space form is formed by the lift in Ñℓ+p.
Furthermore, in isotropic Riemannian submersions, some relations are known to hold.
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< T̃u1 u1, T̃u1 u1 > = λ̃2 < u1,u1 > (5)
< T̃u1 u1, T̃u1 u2 > = 0 < T̃u1 u2, T̃u3 u4 >

+ < T̃u1 u3, T̃u2 u4 >
+ < T̃u1 u4, T̃u2 u3 >

 = λ̃2

 < u1,u2 >< u3,u4 >
+ < u1,u3 >< u2,u4 >
+ < u1,u4 >< u2,u3 >

 (6)

for any u1,u2,u3,u4 ∈ χv(M̃(ċ)). Let M̃(ċ) and Ñ(c̈) are Riemannian manifolds and

θ̃ : (M̃(ċ), 1) −→ (Ñ(c̈), 1̃)

is a Riemannian submersion and R̃, ˙̃R are curvature tensors of M̃ and leaf (θ̃−1(p), 1̃p), respectively. The
equations are

< R̃(u1, v1)w̃, f1 > = < ˙̃R(u1, v1)w̃, f1 > + < T̃u1 w̃, T̃v1 f1 > − < T̃v1 w̃, T̃u1 f1 > (7)
< R̃(u1, v1)w̃, x̃ > = < (▽u1 T̃)v1 w̃, x̃ > − < (▽v1 T̃)u1 w̃, x̃ > (8)

Gauss and Codazzi equations for submersions, respectively, for u1, v1, w̃, f1 ∈ χv(M̃) and x̃ ∈ χh(M̃). If both
spaces with constant curvature, then we obtain

⟨T̃(u1,u2), T̃(u3,u4)⟩ − ⟨T̃(u3,u2), T̃(u1,u4)⟩ = (ċ − c̈){⟨u1,u2⟩⟨u3,u4⟩ − ⟨u3,u2⟩⟨u1,u4⟩}

(▽u1 T̃)(u2,u3) = (▽u2 T̃)(u1,u3).

Now let’s prepare a lemma. Let’s define

∆u1u2 =
〈
T̃u1 u1, T̃u2 u2

〉
−

∥∥∥T̃u1 u2

∥∥∥2
(9)

for orthonormal u1,u2 ∈ χϑ̃(M̃(ċ)). Thus, from the result〈
T̃u1 u1, T̃u2 u2

〉
+ 2

〈
T̃u1 u2, T̃u1 u2

〉
= λ̃2, ∥u1∥ = ∥u2∥ = 1 (10)

for isotropic Riemannian submersions, we obtain the following lemma.

Lemma 3.1. If T̃ is λ̃- isotropic

∆u1u2 + 3
∥∥∥T̃u1 u2

∥∥∥2
= λ̃2

2∆u1u2 + λ̃
2 = 3

〈
T̃u1 u1, T̃u2 u2

〉
for u1,u2 ∈ χϑ̃(M̃(ċ)).

Proof. If we subtitude
∥∥∥T̃u1 u2

∥∥∥2
into equation (10) and simplify, we obtain,〈

T̃u1 u1, T̃u2 u2

〉
+ 2

〈
T̃u1 u2, T̃u1 u2

〉
+

∥∥∥T̃u1 u2

∥∥∥2
−

∥∥∥T̃u1 u2

∥∥∥2
= λ̃2,

from this, we derive

∆u1u2 + 3
∥∥∥T̃u1 u2

∥∥∥2
= λ̃2,

which proves first equation. Similarly, if equation (9) is taken into account in the expression (10), we obtain

3
〈
T̃u1 u1, T̃u2 u2

〉
= 2∆u1u2 + λ̃

2,

which gives us the proof of the second equation of the above lemma.
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Corollary 3.2. If T̃ is λ̃- isotropic, the followings are equivalent.

1 ∆u1u2 = −2λ̃2

2
∥∥∥T̃u1 u2

∥∥∥ = λ̃
3 T̃u1 u1 + T̃u2 u2 = 0

Proof. (1)⇒ (2) is evident from Lemma 3.1 Also〈
T̃u1 u1 + T̃u2 u2, T̃u1 u1 + T̃u2 u2

〉
=

∥∥∥T̃u1 u1

∥∥∥2
+ 2

〈
T̃u1 u1, T̃u2 u2

〉
+

∥∥∥T̃u2 u2

∥∥∥2
(11)

here, from the equation (11), we obtain〈
T̃u1 u1, T̃u2 u2

〉
= λ̃2.

Also, from (11), we have∥∥∥T̃u1 u1 + T̃u2 u2

∥∥∥2
= 0 =⇒ T̃u1 u1 + T̃u2 u2 = 0.

From this result and Lemma 3.1 we can give the following theorem.

Theorem 3.3. If T̃ is λ̃- isotropic, then the discriminant of T̃ satisfies the condition −2λ̃2
≤ ∆ ≤ λ̃2. Moreover, if II

is the plane at (M̃(ċ)), ∆(II) = λ̃2 iff T̃ is umbilical in the II plane, ∆(II) = −2λ̃2 iff T̃ is minimal in the II plane.

Let {ė1, ė2, ..., ėp} be a orthonormal basis for χh(M̃n(ċ)). Also, Let Ai j be any p(p+1)
2 vectors in χh(M̃n(ċ)) for

1 ≤ i ≤ j ≤ n . Then,

• There is only one symmetric bilinear function from χv(M̃n(ċ)) × χv(M̃n(ċ)) to χh(Ñℓ−k(c̈)) such that
T̃ei e j = Ai j

• If Ai j satisfies conditions

⟨T̃ei ei, T̃e j e j⟩ = 0 (12)

⟨T̃u1 u1, T̃v1 v1⟩ + 2∥T̃u1 v1∥ = λ̃2, ∥u1∥∥v1∥ = 1 (13)
⟨T̃u1 u1, T̃u2 u3⟩ + 2⟨T̃u1 u2, T̃u1 u3⟩ = 0 (14)

⟨T̃u1 u2, T̃u3 u4⟩ + ⟨T̃u1 u3, T̃u2 u4⟩⟨T̃u1 u4, T̃u2 u3⟩ = 0 (15)

T̃ is λ̃ isotropic.

• The discriminant ∆ of T̃ is constant if and only if ∆ is constant on all planes spanned by ei, e j, and

⟨Ai j,Akl⟩ = ⟨Ail,Akj⟩ and ⟨Aii,A jk⟩ = ⟨Ai j,Aik⟩

for all different i, j, k, l.

From now on, we accept that T̃ is λ̃-isotropic and ∆ is constant. Let the first normal fiber ß of T̃ be a
subfiber of χh(M̃n(ċ)) spanned by T̃u1 v1 vectors for any u1, v1 ∈ χ(M̃n(ċ)). Now we have to show that the
dimension of the first normal fiber is −2λ̃2

≤ ∆ ≤ λ̃2. Since T̃ is minimal in general, we have the expression
−2λ̃2

≤ ∆ ≤ λ̃2 for every frame e1, ..., ep. Also, T̃ being umbilical ensures that χh(M̃n(ċ)) has the same value
for each unit vector in T̃u1 u1.
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Theorem 3.4. Let T̃ be λ̃- isotropic for λ̃ > 0 and discriminant be ∆. Then

−hpλ̃
2
≤ ∆ ≤ λ̃2

moreover, if ß is the first normal fiber of T̃,

• 1- ∆ = λ̃2
⇐⇒ T̃ is umbilical⇔ dim ß = 1

• 2- ∆ = −hpλ̃2
⇐⇒ T̃ is minimal⇔ dim ß = mp − 1

• 3- −hpλ̃2 < ∆ < λ̃2
⇔ dim ß = mp,

where mp =
p(p+1)

2 and hp =
p+2

2(p−1) .

Proof. From the fundamental effect of the constancy of ∆ on T̃, we have

∆u1u2 =
〈
T̃u1 u1, T̃u2 u2

〉
−

〈
T̃u1 u2, T̃u1 u2

〉
.

From the definition, the permutations of
〈
T̃u1 u2, T̃u3 u4

〉
and

〈
T̃u1 u1, T̃u3 u4

〉
with respect to u1,u2,u3,u4 do

not change for orthogonal u1,u2,u3,u4 ∈ χv(M̃(ċ)). From the equation (13)-(15),
〈
T̃u1 u2, T̃u3 u4

〉
,
〈
T̃u1 u1, T̃u3 u4

〉
,

and
〈
T̃u1 u3, T̃u1 u4

〉
are zero when u1,u2,u3,u4 are orthogonal. Let the orthonormal basis for χh(M̃n(ċ)) be

ė1, ė2, ..., ėp and zi = T̃ei ei, 1 ≤ i ≤ p . Now let p(p−1)
2 number T̃e1 e j, (i < j) be perpendicular and orthogonal to

the lower fiber Z, each of which is stretched by z1, z2, ..., zp. Claim 1 is clear. Now let’s prove the second
claim. We exclude ∆ = λ̃2 in case of being minimal. Then, if T̃, λ̃ is isotropic, then for the u1,u2 orthonormal
vectors, the T̃ei e j, i < j all have nonzero length. Hence dimß = mp − 1. Also, Lemma 3.1 shows that all
⟨zi, z j⟩, (i , j) are equal. Then we have ⟨zi, z j⟩ = λ̃2 cosθ. According to Euclidean geometry, cosθ ≤ −1

p−1 and
equivalence are valid when vectors z1, z2, ..., zp are linearly dependent. The reverse is obvious. If cosθ = −1

p−1 ,

we find∆ = −(p+1)λ̃2

2(p−1) , If hp =
p+2

2(p−1) , found∆ = −hpλ̃2 and dimZ = n−1, dimß = mp−1. From z1+z2+ ...+zp = 0,
T̃ is minimal. Similarly, ∆ > −λ̃2hp, dim Z = n, boyß = mp. But with lemma3.1 we always have ∆2

≤ λ̃,
so excluding case ∆2 = λ̃, the proof is complete.

This theorem shows us that in the case of fixed ∆ large co-dimension is required if the isotropic submersion
is not umbilical.

Theorem 3.5. Let the transformation ϕ̇ be an isotropic Riemannian submersion from an ℓ(≥ 2) spaceform M̃n(ċ)
with dimension (k < ℓ) to a with dimension (k < ℓ) space form (Ñ(c̈)). Suppose it is k ≤ 1

2ℓ(ℓ + 1) − 1. Then ϕ̇ is
parallel submersion, furthermore ϕ̇ is locally equivalent to one of the followings.

1- π̇ : M̃ℓ(ċ)→ Ñℓ−k(c̈), ċ > c̈ and k ≤ 1
2ℓ(ℓ + 1) − 1 is a totally umbilical submersion.

2- π̇ : M̃ℓ(ċ) = Sℓ(ċ)→ Ñℓ−k(c̈) = Sℓ−k(c̈), c̈ = 2(ℓ+2)ċ
ℓ and k = ℓ(ℓ+1)

2 − 1 is a second standard minimal submersion.

Proof. From our hypothesis, we have (5) and (6) for any u1,u2,u3,u4 ∈ χv(M̃(ċ)). If M̃ℓ and Ñℓ−k are space
forms, from the Gauss and Codazzi equations, we obtain〈

T̃u1 u3, T̃u2 u4

〉
−

〈
T̃u2 u3, T̃u1 u4

〉
= (ċ − c̈){⟨u2,u3⟩ ⟨u1,u4⟩ − ⟨u1,u3⟩ ⟨u2,u4⟩} (16)

also we have


〈
T̃u1 u2, T̃u3 u4

〉
+

〈
T̃u1 u3, T̃u2 u4

〉
+

〈
T̃u1 u4, T̃u2 u3

〉  = λ̃2

(
⟨u1,u2⟩ ⟨u3,u4⟩

+ ⟨u1,u3⟩ ⟨u2,u4⟩ + ⟨u1,u4⟩ ⟨u2,u3⟩

)
. (17)
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from the (16) and (17), we find 2
〈
T̃u1 u3, T̃u2 u4

〉
+

〈
T̃u1 u2, T̃u3 u4

〉  =
λ̃2

(
⟨u1,u2⟩ ⟨u3,u4⟩

+ ⟨u1,u3⟩ ⟨u2,u4⟩ + ⟨u1,u4⟩ ⟨u2,u3⟩

)
+(ċ − c̈){⟨u2,u3⟩ ⟨u1,u4⟩ − ⟨u1,u3⟩ ⟨u2,u4⟩}.

(18)

Therefore from (16) and (18), we have

3
〈
T̃u1 u3, T̃u2 u4

〉
= λ̃2

(
⟨u1,u2⟩ ⟨u3,u4⟩ + ⟨u1,u3⟩ ⟨u2,u4⟩

+ ⟨u1,u4⟩ ⟨u2,u3⟩

)
(19)

+(ċ − c̈){⟨u2,u3⟩ ⟨u1,u4⟩ − 2 ⟨u1,u3⟩ ⟨u2,u4⟩

+ ⟨u1,u2⟩ ⟨u3,u4⟩}.

If the total geodesic submersion of π̇ is considered first, the first case of the theorem is realized. Let us now
consider the case where π̇ is not a total geodesic submersion. Since λ̃ is a constant function in M̃ℓ(ċ), x0 has
a U neighborhood such that λ̃ > 0 on U. (From now on we will work on the open subset U). From Theorem
3.2, from the assumption of our theorem and from the fact that λ̃ is constant, we see that λ̃ is constant on
U. So it is λ̃2 = (ċ − c̈) or λ̃2 =

2(p−1)(c̈−ċ)
2(ℓ+2) . If λ̃2 = (ċ − c̈), the first case of our theorem from equation (19) is

realized. If λ̃2 =
2(p−1)(c̈−ċ)

2(ℓ+2) then it is dim ß = p(p+1)
2 − 1 from Theorem3.2 and since λ̃ is constant, if we derive

the equation (19), then〈
(▽vT̃)(u1,u3), T̃(u2,u4)

〉
+

〈
(▽vT̃)(u2,u4), T̃(u1,u3)

〉
= 0

according to v ∈ M̃ℓ(ċ). From here, we have〈
(▽vT̃)(u1,u3), T̃(u2,u4)

〉
= −

〈
(▽vT̃)(u2,u4), T̃(u1,u3)

〉
. (20)

Considering the codazzi equation repeatedly in equation (20), we find〈
(▽vT̃)(u1,u3), T̃(u2,u4)

〉
= −

〈
(▽u2 T̃)(v,u4), T̃(u1,u3)

〉
,

= −

〈
(▽u3 T̃)(v,u4), T̃(u1,u2)

〉
,

=
〈
(▽u4 T̃)(u1,u2), T̃(v,u3)

〉
,

= −

〈
(▽u1 T̃)(v,u3), T̃(u4,u2)

〉
,

= −

〈
(▽vT̃)(u1,u3), T̃(u4,u2)

〉
.

From here, we have〈
(▽vT̃)(u1,u3), T̃(u2,u4)

〉
= 0.

This shows that dim ß = co dim M̃ℓ(ċ) and π̇ are parallel on U. Thus, we show the second case of the
theorem.

Lemma 3.6. Let θ̃ : M̃ℓ(ċ)→ Ñℓ−k(c̈), ℓ ≥ 2, ℓ > q̃ be an isotropic Riemannian submersion. For any u1, v1 ∈ M̃ℓ(ċ),
we have〈

(▽u1 T̃)(u1,u1), T̃(u1, v1)
〉
=

dλ̃2(u1) < u1,u1 >< u1, v1 >
−

1
2 dλ̃2(v1) < u1,u1 >< u1,u1 > .

Proof. Let u1, v1 ∈ M̃ℓ(ċ) be arbitrary vectors. Let γ : (−ε, ε)→ θ̃−1(q̃), where θ̃(q̃) = u1, be a curve. Such that
γ′(0) = v1 and define a parallel vector field u(t) along γwith γ(0) = u1. Then, for any t ∈ (−ε, ε), we have〈

T̃(u1(t),u1(t)), T̃(u1(t),u1(t))
〉
= λ̃2

⟨u1(t),u1(t)⟩
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and if this expression is derived at t = 0, for u1, v1 ∈ χϑ̃(M̃(ċ)), we obtain

2
〈
(▽v1 T̃)(u1,u1), T̃(u1,u1)

〉
= dλ̃2(v1) ⟨u1,u1⟩

2 (21)

If we set u1 = v1 in equation (21), we get the equation below,

2
〈
(▽u1 T̃)(u1,u1), T̃(u1,u1)

〉
= dλ̃2(u1) ⟨u1,u1⟩

2 .

Using the Codazzi equation in (21) and considering the symmetry of ▽T̃, we obtain〈
(▽u1 T̃)(u1,u1), T̃(u1, v1)

〉
= dλ̃2(u1) < u1,u1 >< u1, v1 > −

1
2

dλ̃2(v1) < u1,u1 >
2 . (22)

Proposition 3.7. Let π̇ : M̃ℓ(ċ) → Ñℓ−k(c̈), n ≥ 2, ℓ − 1 ≥ p be the isotropic Riemannian submersion. Then λ̃ is a
constant.

Proof. We need to show that λ̃(p) = 0 at any point in M̃ℓ. First, let’s work on λ̃(p) = 0, p ∈ M̃. If we take
u1 = v1 in equation (22), we get〈

▽u1 T̃(u1,u1), T̃(u1,u1)
〉
=

1
2

dλ̃2(u1) ⟨u1,u1⟩
2 = 0

for any u1 ∈ χv(M̃(ċ)). Thus, dλ̃2 = 0 for p ∈ M̃. Now let’s work on a p ∈ M̃ point where λ̃(p) > 0. Let
χh(M̃(ċ)) ≤ χv(M̃(ċ)) − 1 be χh(M̃(ċ)) being the horizontal fiber at point p. for any v1 ∈ χv(M̃(ċ)) there is a
nonzero u1 ∈ χv(M̃(ċ)) such that T̃(u1, v1) = 0. Then, from the equation (17) becomes ⟨u1, v1⟩ = 0. Thus,
from equation (22), it is seen that for any v1 ∈ χv(M̃(ċ)), λ̃ is constant since dλ̃2 = 0.

Using the fundamental tensor Ã, we will build the notion of an isotropic Riemannian submersion, which we
previously described based on the fundamental tensor T̃, and derive the corresponding characterizations
in this section.

Definition 3.8. Let θ̃ : (M̃, 1)→ (Ñ, 1̃) be a Riemannian submersion. If, for each q̃ ∈ M̃, the following condition is
satisfied for u, v ∈ Γ(ker, θ̃∗)⊥, then θ̃ is called λ̃-horizontally isotropic.

1(Ãuv, Ãuv) = λ̃1(u − v,u + v)2

If λ̃ is constant for q̃ ∈ M̃, λ̃ is constant horizontally isotropic.
If Ã is horizontally isotropic,

1(v▽ŨṼ, v▽ŨṼ) = λ̃1(Ũ − Ṽ, Ũ + Ṽ)2

Let us introduce a 4-linear function on the Riemannian manifold M̃:

φ̃ : χh(M̃) × χh(M̃) × χh(M̃) × χh(M̃) −→ C∞(M̃)

given by

φ̃(X̃, Z̃, Ũ, Ṽ) = 1(ÃX̃Z̃, ÃX̃Z̃) − λ̃1(X̃ − Ỹ, X̃ + Ỹ)1(Ũ − Ṽ, Ũ + Ṽ)

The function φ̃ satisfies the following properties:
1)φ̃(X̃, Z̃, Ũ, Ṽ) = φ̃(Ũ, Ṽ, X̃, Z̃)
2)φ̃(X̃, Z̃, Ũ, Ṽ) = φ̃(Z̃, X̃, Ṽ, Ũ)
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for Ũ ∈ χh(M̃).
If the distribution F̃ is horizontally λ̃- isotropic, then for every Ũ ∈ χh(M̃), we have

ϕ̃(Ũ) = φ̃(Ũ, Ũ, Ũ, Ũ) = 0.

From here, for all X̃, Z̃ ∈ χh(M̃), we obtain

ϕ̃(X̃ + Z̃) + ϕ̃(X̃ − Z̃) = 0,

ϕ̃(X̃ + Z̃) − ϕ̃(X̃ − Z̃) = 0.

Let’s find the expressions for ϕ̃(X̃ + Z̃) and ϕ̃(X̃ − Z̃). After performing the necessary operations and simplifications,
we obtain

ϕ̃(X̃ + Z̃) = φ̃(X̃, Z̃, Z̃, X̃) + φ̃(Z̃, X̃, X̃, Z̃) = 0.

This result follows from the property of the function φ̃ given above.

2φ̃(X̃, Z̃, Z̃, X̃) = 0⇒ φ̃(X̃, Z̃, Z̃, X̃) = 0.

Likewise, if performing the necessary operations and simplifications, we obtain

ϕ̃(X̃ − Z̃) = φ̃(X̃, Z̃, Z̃, X̃) = 0,

and from here,

ϕ̃(X̃ + Z̃) + ϕ̃(X̃ − Z̃) = 2φ̃(X̃, Z̃, Z̃, X̃) + 2φ̃(X̃, Z̃, Z̃, X̃) = 0,

φ̃(X̃, Z̃, Z̃, X̃) = 0 (23)

and

ϕ̃(X̃ + Z̃) − ϕ̃(X̃ − Z̃) = 2φ̃(X̃, Z̃, Z̃, X̃) − 2φ̃(X̃, Z̃, Z̃, X̃) = 0. (24)

For (22) equation,

φ̃(X̃, Z̃, Z̃, X̃) =1(ÃX̃Z̃, ÃZ̃X̃) − λ̃1(X̃ − Z̃, X̃ + Z̃)1(Z̃ − X̃, Z̃ + X̃) = 0

1(ÃX̃Z̃, ÃZ̃X̃) = λ̃1(X̃ − Z̃, X̃ + Z̃)2

1(ÃX̃Z̃, ÃZ̃X̃) = −1(ÃX̃Z̃, ÃX̃Z̃)

Specifically, if we take X̃ ⊥ Z̃ and ∥X̃∥ = ∥Z̃∥, then we have

1(ÃX̃Z̃, ÃX̃Z̃) = −λ̃1(X̃ − Z̃, X̃ + Z̃)2

= −λ̃
[
1(X̃, X̃) − 1(Z̃, Z̃)

]2

= −λ̃
[
∥X̃∥2 − ∥Z̃∥2

]
= 0.

Here,

1̃(ÃX̃Z̃, ÃX̃Z̃) = 0⇔ ∥ÃX̃Z̃∥ = 0

⇔ ÃX̃Z̃ = 0.

Also,

ÃX̃X̃ = 0⇔ Ã = 0.

Based on this result, we can state the following theorem.
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Theorem 3.9. Let θ̃ : M̃m
→ Ñn be a λ̃-horizontally isotropic Riemannian submersion. For any orthogonal

Ũ1, Ũ2 ∈ χ̃h(M̃), we have Ã = 0, which corresponds to the integrability of the horizontal distribution.

Theorem 3.10. Let θ̃ : M̃m
→ Ñn be a horizontally isotropic Riemannian submersion. Let K and K̂ denote the

sectional curvatures of the manifolds M̃ and Ñ, respectively. For orthonormal horizontal vector fields X̃1 and Ỹ1, the
following equality holds between these curvatures:

K(X̃1, Ỹ1) = K̂(X̃1, Ỹ1) ◦ θ̃.
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[15] Y. Gündüzalp, Slant submersions from almost product Riemannian manifolds, Turkish J. Math., 37(5), (2013), 863–873.
[16] L. Haizhon, W. Xianfeng, Isotropic Lagrangian submanifolds in complex Euclidean space and complex hyperbolic Space, Results in

Mathematics, 56, (2009), 387.
[17] S. Ianus, M. Ionescu, R. Mazzocco, G.E. Vilcu, Riemannian submersions from almost contact metric manifolds, Abh. Math. Semin.

Univ. Hamb., 81, (2011), 101–114.
[18] S. Ianus, R. Mazzocco, G.E. Vilcu, Riemannian submersions from quaternionic manifolds, Acta Appl. Math., 104, (2008), 83–89.
[19] S. Maeda, A Characterization of constant isotropic immersions by circles, Arch. Math. (Basel), 81, (2003), 90–95.
[20] S. Maeda, K. Tsukada, Isotropic immersions into a real space form, Canad. Math. Bull., 37(2), (1994), 245–253.
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