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Abstract. We are devoted to the study of the Cauchy problem for Love equation.We establish the existence
and uniqueness of the solution under different conditions imposed on the nonlinear source function.We
analyze the continuous dependence of the solution with respect to the parameters involved in the equation.
Additionally, in this paper, we also shown that the solution to the Love equation converges to the solution
of the wave equation.

1. Introduction

Let Ω be a simply connected and bounded domain in Rn with a smooth boundary ∂Ω. Let T be a
positive real number. In this paper, we study the initial value problem of the Love equation utt(x, t) + (−∆)qu(x, t) − µ∆utt(x, t) = Z(u(x, t)), in Ω × (0,T],

u|∂Ω = 0, in Ω,
(1)

with the initial conditions

u(x, 0) = φ(x), ut(x, 0) = ψ(x) in Ω, (2)

where Z is the source function, representing the effect of an external force, and u describes the distribution
at time t and space x. Here φ and ψ are the initial conditions which are defined later. Let us describe the
main equation in (1) which is called the Love equation.
In mathematical physics, partial differential equations that govern wave propagation and elastic behavior
form a fundamental framework for analyzing and modeling complex physical phenomena. A substantial
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body of research on models associated with this class of equations is documented in [6], [7],[1], [11]. Among
these, the Love equation represents a prototypical model in the theory of linear elasticity, particularly well-
suited for describing the motion of isotropic elastic materials. This equation is frequently employed to
investigate shear wave propagation in elastic media, with wide-ranging applications in geophysics and
solid mechanics. The classical Love equation originates from the study of elastic wave propagation in
layered media, with particular emphasis on the behavior of surface waves that are now referred to as Love
waves. This model was first introduced by A. E. H. Love in 1911. In recent decades, considerable attention
has been devoted to extending the classical formulation to incorporate more realistic physical effects such
as nonlinearity, dispersion, and various forms of dissipation and scattering.
In order to fully comprehend the significance of the model under study, we provide a detailed interpretation
of the physical meaning of the terms involved in the problem (1)-(2).
From a physical perspective, the inclusion of the fractional Laplacian accounts for nonlocal interactions
within the material. Unlike the standard Laplacian, which models purely local diffusion or elasticity, the
operator (−∆)q with q ∈ (0, 1) introduces long-range spatial dependence, which is crucial for accurately
modeling heterogeneous, fractal-like, or memory-influenced media. This is particularly relevant in geo-
physics, where Earth’s subsurface structures often display irregular, layered properties that cannot be fully
described by classical integer-order models. The parameter q in (−∆)q controls the degree of nonlocality
and thus significantly affects the dispersion and regularity properties of the solution. Smaller values of q
indicate stronger nonlocal effects and can lead to slower decay or different wavefront propagation charac-
teristics compared to the standard wave equation.
In parallel, the damping term µ∆utt models internal friction or viscoelastic resistance. This term arises in
many physical contexts involving energy dissipation, such as in polymers, biological tissues, or stratified
rock formations. The coefficient µ > 0 determines the intensity of the damping effect. Mathematically, this
introduces a pseudo-parabolic component to the equation, enriching the model’s structure by balancing
the dispersive effects of the fractional operator with dissipative behavior.
The nonlinearity of the function Z(u(x, t)) plays a pivotal role in determining the behavior of the solutions,
and different forms of nonlinearity (e.g., power-type, exponential) will lead to varying outcomes.
The initial data φ(x) and ψ(x) prescribe the initial displacement and velocity fields, respectively, thereby
establishing the foundational state governing the subsequent motion and interaction of material points.
From these initial conditions, the entire temporal evolution of the system is uniquely determined via the
governing equations, elucidating the spatiotemporal propagation of waves or stresses throughout the ma-
terial domain.
From a mathematical viewpoint, this problem presents a rich interplay between hyperbolic, parabolic, and
nonlocal phenomena. The combined effect of nonlinearity Z(u), nonlocal dispersion (−∆)qu, and viscous
dampingµ∆utt makes the analysis of existence, uniqueness, regularity, and qualitative behavior of solutions
both challenging and meaningful. In particular, understanding how the parameters q and µ influence the
behavior of solutions, including aspects such as smoothing effects, energy decay, and the possibility of
blowup, is essential for both theoretical analysis and practical modeling. Moreover, the imposed Dirichlet
boundary condition u|∂Ω = 0 reflects a physically constrained system, such as a fixed boundary in an elastic
medium. The well-posedness and stability of this boundary-initial value problem thus become important
for ensuring that the model behaves consistently with physical expectations.
As previously analyzed, the Love equation, or wave equations of Love-type, possesses a wide range of
practical applications. In recent years, substantial research has been conducted by various mathematicians
on this model. The following section is devoted to presenting several notable results from prominent works
related to this model.
In [8], Ngoc, Triet, Duy and Long investigated an initial-boundary value problem for a nonlinear Love-type
equation of the form

wtt(x, t) − wxx(x, t) − wxxtt = H(x, t,w,wt), in 0 < x < 1, 0 < t < T
w|∂Ω = 0, in Ω,

w(x, 0) = w̃0(x), wt(x, 0) = w̃1(x), 0 < x < 1.
(3)
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Here some function w̃0, w̃1,H are are specified later. To establish the local existence of solutions to Problem
(3), the Faedo-Galerkin method was employed.
In [9] Ngoc, Duy and Long considered a nonlinear Love-type equation supplemented with initial conditions
and mixed nonhomogeneous boundary conditions, given by the following problem

wtt − wxx − εwxxtt+κ |wt|
k−2 wt + K|w|h−2w

= H(x, t), x ∈ Ω = (0, 1), 0 < t < T,

δwxtt(0, t) + wx(0, t) = mu(0, t) + v(t), (4)

w(1, t) = 0, (5)

w(x, 0) = w̃0(x),wt(x, 0) = ũ1(x), (6)

where k > 1, h > 1, δ > 0, κ > 0,K > 0,m ≥ 0 are constants and w̃0, w̃1,H, v are assumed to be given
and to satisfy certain regularity and compatibility conditions, which will be specified in the subsequent
sections. The existence of solutions was obtained by means of the Faedo-Galerkin method, together with
compactness techniques and monotonicity arguments. The authors established the existence, uniqueness,
regularity, and asymptotic behavior of the weak solution.
In [4] Nam, Nghia, Phuong study the initial value problem wtt(x, t) + (−∆)sw(x, t) −m∆wtt(x, t) = G(x, t), in Ω × (0,T],

w|∂Ω = 0, in Ω,
(7)

with the initial conditions

w(x, 0) = f (x), wt(x, 0) = 1(x) in Ω. (8)

The authors are interested to study a mild solution of the Love equation.They present the regularity of
the mild solution and show the convergence of the solution of Love’s equation to the solution of the wave
equation.
A majority of the existing literature on the Love-type equation has focused primarily on the analysis of weak
and mild solutions in the linear case. The study of mild solutions in the nonlinear case poses significant
difficulties and demands the application of sophisticated analytical methods. To the best of our knowledge,
research on mild solutions for the nonlinear case is still relatively scarce. Therefore, this paper investigates
mild solutions of the Love equation in the nonlinear case.
The contributions of this paper are organized as follows. In Section 2, we give some preliminaries and
demonstrate an approach to the formula of the mild solution.In this section, We also provide estimates for
certain operators in the mild solution formula. In Section 3,We prove the existence and uniqueness of the
solution with a source function satisfying the global or local Lipschitz condition by making use usual fixed
point arguments, in the nonlinear case. Next, in Section 4, We investigate the continuity of the solution
with respect to the intensity coefficient of the damping effect and the initial data.Moreover, in this section,
we show that the solution to the Love equation converges to the solution of the wave equation as µ→ 0.

2. Preliminaries

In this section, we establish the preliminary results required for the proof of the main theorem of
this paper. Throughout this paper, we recall some basic settings of some functional spaces. Throughout
this paper, we consider the Laplace operator ∆ defined on W1,2

0 (Ω) ∩ W2,2(Ω). Denote by {λk}k≥1 and
{ek(x)}k≥1, the spectrum and sequence of eigenfunctions of · respectively, which satisfy ∆ek(x) = −λkek(x),
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0 < λ0 < λ1 ≤ λ2 ≤ ... ≤ λk ≤ ..., and lim
k→∞

λk = ∞. The sequence {ek(x)}k≥1 forms an orthonormal basis of the

space L2(Ω). The fractional power ∆q, q > 0, of the Laplacian operator ∆with fractional order q > 0 on Ω is
defined by

∆qu(x) :=
∞∑

k=1

(u, ek)λq
kek(x). (9)

Definition 2.1. We begin by recalling the Hilbert scale of function spaces associated with the spectral decomposition
of a self-adjoint, positive definite operator. This framework provides a natural setting for describing various levels of
regularity in the spectral sense.

Hϵ(Ω) :=

 f ∈ L2(Ω),
∞∑

k=1

λ2ϵ
k

( ∫
Ω

f (x)ek(x)dx
)2
< ∞

 ,
for any ϵ ≥ 0. And the norm is given by

∥ f ∥Hϵ(Ω) :=
( ∞∑

j=1

λ2ϵ
k

( ∫
Ω

f (x)ek(x)dx
)2
)1/2

, f ∈Hϵ(Ω).

The spacesHϵ(Ω) constitute a Hilbert scale in the sense that they interpolate between different degrees of
regularity encoded via the spectral decay of the Fourier coefficients.

To characterize the time-dependent behavior of functions taking values in these spaces, we introduce
the following Bochner-type space:

Definition 2.2. Let us denote L∞ (0,T;Hγ(Ω)), the space of all function v : Ω × (0,T)→Hγ(Ω) such that

∥v∥L∞(0,T;Hγ(Ω)) := ess sup
t∈(0,T)

∥v(., t)∥Hγ(Ω) < ∞,

We also make use of the following weighted-in-time function space, which plays a key role in capturing
the behavior of solutions near the initial time.

Definition 2.3. Let B be a Banach space and let a, q > 0. The weighted space Oa,q((0,T]; B) is defined by

Oa,q((0,T]; B) :=:=
{
ψ ∈ C((0,T]; B), ∥ψ∥Oa,q((0,T];B) < ∞

}
,

where

∥ψ∥Oa,q((0,T];B) := ess sup
t∈(0,T]

tae−qt
∥ψ(t, ·)∥B < ∞, (10)

where a, q > 0 (see [5]).

The following auxiliary result provides a technical estimate that will be instrumental in our subsequent
analysis (this lemma can be found in [5], Lemma 8, page 9).

Lemma 2.4. Let k1 > −1, k2 > −1 such that k1 + k2 ≥ −1, ρ > 0 and t ∈ [0,T]. For h > 0, the following limit holds

lim
ρ→∞

 sup
t∈[0,T]

th
∫ 1

0
ξk1 (1 − ξ)k2 e−ρt(1−ξ)dξ

 = 0.

This lemma asserts the uniform decay of a class of singular integrals with exponential weight, and will be
useful for controlling remainder terms in time-weighted estimates.
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2.1. Solution formulation
Since the domainΩ is bounded, the solution of the problem (1)-(2)can be represented by a Fourier series:

u(x, t) =
∞∑

k=1

ukek(x).

where uk(t) = (u(., t), ek) satisfies the following equation:

∂2
t uk(t) +

λq
k

1 + µλk
uk(t) =

Zk(t)
1 + µλk

, uk(0) = φk,
d
dt

uk(0) = ψk.

By applying the Laplace transform to solve the differential equation, the solution for uk(t) is given by

uk(t) = cos
(√

λq
k

1 + µλk
t
)
φk +

√
1 + µλk

λq
k

sin
(√

λq
k

1 + µλk
t
)
ψk

+
1√

(1 + µλk)λq
k

∫ t

0
sin

(√
λq

k

1 + µλk
(t − r)

)
Zk(u(r))dr.

Substituting uk(t) into the series form solution above, we have the solution to the problem (1)-(2) represented
in the following form

u(x, t) =
∞∑

k=1

cos
(√

λq
k

1 + µλk
t
)
φkek(x) +

∞∑
k=1

√
1 + µλk

λq
k

sin
(√

λs
k

1 + µλk
t
)
ψkek(x)

+

∞∑
k=1

[
1√

(1 + µλk)λq
k

∫ t

0
sin

(√
λq

k

1 + µλk
(t − r)

)
Zk(u(r))dr

]
ek(x). (11)

The mild solution of (1)-(2) is given by

u(t) =Mq(t)φ +Nq(t)ψ +
∫ t

0
Qq(t − r)Z(u(r))dr, (12)

where the operator familiesM(t),N(t), and Q(t) are defined as follows

Mq(t)v =
∞∑

k=1

cos
(√

λq
k

1 + µλk
t
)(

v(.), ek(.)
)
ek(x),

Nq(t)v =
∞∑

k=1

√
1 + µλk

λq
k

sin
(√

λq
k

1 + µλk
t
)(

v(.), ek(.)
)
ek(x),

and

Qq(t)v =
∞∑

k=1

1√
(1 + µλk)λq

k

sin
(√

λq
k

1 + µλk
t
)(

v(.), ek(.)
)
ek(x).

To prove the results in the next section, we need to investigate the properties of the three operators
Mq(t),Nq(t) and Qq(t). Specifically, we have the following estimates for these three operations
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Lemma 2.5. Let q < 1, and suppose that the regularity parametersγ and ζ satisfy 0 < ζ−γ < 1−q
2 and β = 1− 2(ζ−γ)

1−q .
Then the following bounds hold for the operatorsM(t),N(t), and Q(t)
a) For any function v belonging to the intersection space v ∈ Hγ(Ω) ∩ Hγ+

(q−1)β
2 (Ω), the operatorM(t) satisfies the

estimate∥∥∥∥Mq(t)v
∥∥∥∥
Hγ(Ω)

≤

∥∥∥∥v
∥∥∥∥
Hγ(Ω)

+ C(β, µ)tβ
∥∥∥∥v

∥∥∥∥
Hγ+

(q−1)β
2 (Ω)

,

(13)

b) For any function v ∈Hζ(Ω) the operatorN(t) satisfies∥∥∥∥Nq(t)v
∥∥∥∥
Hγ(Ω)

≤ C(µ, β, λ1)t1− 2(ζ−γ)
1−q

∥∥∥∥v
∥∥∥∥
Hζ(Ω)

,

(14)

c) Similarly, for all v ∈Hζ(Ω)the operator Q(t) satisfies the same estimate:∥∥∥∥Qq(t)v
∥∥∥∥
Hγ(Ω)

≤ C(µ, β, λ1)t1− 2(ζ−γ)
1−q

∥∥∥∥v
∥∥∥∥
Hζ(Ω)

.

(15)

Proof. First, we start the proof of part a by estimatingMq(t). Using Parseval’s identity, we find that∥∥∥∥∥∥Mq(t)v

∥∥∥∥∥∥
2

Hγ(Ω)

=

∥∥∥∥∥∥ ∞∑
k=1

cos
(√

λq
k

1 + µλk
t
)(

v(.), ek(.)
)
ek(x)

∥∥∥∥∥∥
2

Hγ(Ω)

=

∞∑
k=1

λ2γ
k cos2

(√
λq

k

1 + µλk
t
)∣∣∣∣(v(.), ek(.)

)∣∣∣∣2
Thank to the inequality | cos(x)| ≤ 1 + Cβxβ, for any 0 < β ≤ 1, thus, we deduce that∥∥∥∥∥∥Mq(t)v

∥∥∥∥∥∥
2

Hγ(Ω)

≤

∞∑
k=1

λ2γ
k

∣∣∣∣(v(.), ek(.)
)∣∣∣∣2 + Cβ

∞∑
k=1

λ2γ
k

( λq
k

1 + µλk

)β
t2β

≤

∞∑
k=1

λ2γ
k

∣∣∣∣(v(.), ek(.)
)∣∣∣∣2 + C(β, µ)t2β

∞∑
k=1

λ
2γ+(q−1)β
k

∣∣∣∣(v(.), ek(.)
)∣∣∣∣2, (16)

for any 0 < β ≤ 1.
Consequently, we conclude that∥∥∥∥Mq(t)v

∥∥∥∥
Hγ(Ω)

≤

∥∥∥∥v
∥∥∥∥
Hγ(Ω)

+ C(β, µ)tβ
∥∥∥∥ f

∥∥∥∥
Hγ+

(q−1)β
2 (Ω)

, (17)

Here, note that from the conditions involving the parameters q, γ, ζ and β, we ensure that
γ+

(q−1)β
2 > 0. Next, we prove part b. To do so, we apply inequality | sin(x)| ≤ Cβxβ, 0 < β ≤ 1, we derive that∣∣∣∣∣∣ sin

(√
λq

k

1 + µλk
t
)∣∣∣∣∣∣ ≤ Cβ

( λq
k

1 + µλk

) β
2 tε ≤ C(β, µ)λ

(q−1)β
2

k tβ. (18)

In addition, we obtain that the following bound√
1 + µλk

λq
k

≤

√
µ + λ−1

1 λ
1−q

2
k . (19)
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Combining (18) and (19), we find that

∥∥∥∥∥∥Nq(t)v

∥∥∥∥∥∥
2

Hγ(Ω)

=

∥∥∥∥∥∥ ∞∑
k=1

√
1 + µλk

λq
k

sin
(√

λq
k

1 + µλk
t
)(

v(.), ek(.)
)
ek(x)

∥∥∥∥∥∥
2

Hγ(Ω)

=

∞∑
k=1

λ2γ
k

1 + µλk

λq
k

sin2
(√

λq
k

1 + µλk
t
)∣∣∣∣(v(.), ek(.)

)∣∣∣∣2
≤ C(µ, β, λ1)t2β

∞∑
k=1

λ
2γ+(1−q)(1−β)
k

∣∣∣∣(v(.), ek(.)
)∣∣∣∣2.

= C(µ, β, λ1)t2β
∥∥∥∥v

∥∥∥∥2

Hγ+
(1−q)(1−β)

2 (Ω)
.

By setting β = 1 − 2(ζ−γ)
1−q , we follow from the latter estimate that

∥∥∥∥∥∥Nq(t)v

∥∥∥∥∥∥
Hγ(Ω)

=

∥∥∥∥∥∥ ∞∑
k=1

√
1 + µλk

λq
k

sin
(√

λq
k

1 + µλk
t
)(

v(.), ek(.)
)
ek(x)

∥∥∥∥∥∥
Hγ(Ω)

≤ C(µ, β, λ1)t1− 2(ζ−γ)
1−q

∥∥∥∥v
∥∥∥∥
Hζ(Ω)

. (20)

Finally, we estimate the operator Qq(t) in part c). It is easy to see that

∥∥∥∥∥∥Qq(t)v

∥∥∥∥∥∥
2

Hγ(Ω)

=

∥∥∥∥∥∥ ∞∑
k=1

1√
(1 + µλk)λq

k

sin
(√

λq
k

1 + µλk
t
)(

v(.), ek(.)
)
ek(x)

∥∥∥∥∥∥
2

Hγ(Ω)

=

∞∑
k=1

λ2γ
k

1
(1 + µλk)λq

k

sin2
(√

λq
k

1 + µλk
t
)∣∣∣∣(v(.), ek(.)

)∣∣∣∣2
=

∞∑
k=1

λ2γ
k

1
(1 + µλk)2

1 + µλk

λq
k

sin2
(√

λq
k

1 + µλk
t
)∣∣∣∣(v(.), ek(.)

)∣∣∣∣2. (21)

Using the estimate forNq(t)v and noting that 1
(1+µλk)2 < 1 , we deduce that∥∥∥∥Qq(t)v

∥∥∥∥
Hγ(Ω)

≤ C(µ, β, λ1)t1− 2(ζ−γ)
1−q

∥∥∥∥v
∥∥∥∥
Hζ(Ω)

.

3. Globally solution existence and uniqueness under lipschitz of source function

In this section, we establish the existence and uniqueness of the mild solution to the problem, under a
nonlinear assumption. In order to prove the results, we require the Lipschitz condition for the function Z,
as stated below
Let Z :Hκ1 (Ω)→Hκ2 (Ω) such that Z(0) = 0 and

∥Z(θ1) − Z(θ2)∥Hκ2 (Ω) ≤ L∥θ1 − θ2∥Hκ1 (Ω), (22)

with L is a positive constant.
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Theorem 3.1. Let 0 < q < 1, and suppose that φ ∈ Hγ(Ω) for any γ ≥ 0. Assume further that ψ ∈ Hζ(Ω) and
Z ∈ L2(0,T;Hζ(Ω)) with 0 < ζ − γ < 1−q

2 . Then, problem (1)-(2) admits a unique solution u ∈ Oa,b((0,T];Hγ(Ω)).
In addition, the following estimate holds for the solution u:∥∥∥∥u(., t)

∥∥∥∥
Hγ(Ω)

≤ 2
∥∥∥∥φ∥∥∥∥

Hγ(Ω)
+ 2C(β, µ)Tβ

∥∥∥∥φ∥∥∥∥
Hγ+

(q−1)β
2 (Ω)

+ 2C(µ, β, λ1)T1− 2(ζ−γ)
1−q

∥∥∥∥ψ∥∥∥∥
Hζ(Ω)

, (23)

where β = 1 − 2(ζ−γ)
1−q .

Proof. The proof is carried out via an application of the contraction mapping principle. Accordingly, we
first introduce the function

P : Oa,b((0,T];Hγ(Ω))→ Oa,b((0,T];Hγ(Ω)),

defined by

Pu(t) :=Mq(t)φ +Nq(t)ψ +
∫ t

0
Qq(t − r)Z(u(r))dr. (24)

Since the property Z(0) = 0, and by combining this with Lemma (2.5), we deduce the following estimate∥∥∥∥P (u = 0) (t)
∥∥∥∥
Hγ(Ω)

=
∥∥∥∥Mq(t)φ +Nq(t)ψ

∥∥∥∥
Hγ(Ω)

≤

∥∥∥∥φ∥∥∥∥
Hγ(Ω)

+ C(β, µ)tβ
∥∥∥∥φ∥∥∥∥

Hγ+
(q−1)β

2 (Ω)
+ C(µ, β, λ1)t1− 2(ζ−γ)

1−q

∥∥∥∥ψ∥∥∥∥
Hζ(Ω)

≤

∥∥∥∥φ∥∥∥∥
Hγ(Ω)

+ C(β, µ)Tβ
∥∥∥∥φ∥∥∥∥

Hγ+
(q−1)β

2 (Ω)
+ C(µ, β, λ1)T1− 2(ζ−γ)

1−q

∥∥∥∥ψ∥∥∥∥
Hζ(Ω)

Consequently, we obtain the weighted estimate

tae−bt
∥∥∥∥P (u = 0) (t)

∥∥∥∥
Hγ(Ω)

≤ tae−bt
∥∥∥∥φ∥∥∥∥

Hγ(Ω)
+ tae−btC(β, µ)Tβ

∥∥∥∥φ∥∥∥∥
Hγ+

(q−1)β
2 (Ω)

(25)

+ tae−btC(µ, β, λ1)T1− 2(ζ−γ)
1−q

∥∥∥∥ψ∥∥∥∥
Hζ(Ω)

(26)

It can be observed that e−bt < 1, which leads to the conclusion that P(u = 0) ∈ Oa,b((0,T];Hγ(Ω)). Hence, we
contend that the mapping P is well defined. Next, we proceed to show that proving that P is a contraction
mapping. To this end, let u1 and u2 be arbitrary functions in the corresponding function space. Then, by
the definition of P, we have

Pu1(t) − Pu2(t) =
∫ t

0
Qq(t − r)

(
Z(u1(r)) − Z(u2(r))

)
dr

By an argument analogous to that used in Lemma (2.5), we obtain the following estimate∥∥∥∥∥∥
∫ t

0
Qq(t − r)

(
Z(u1(r)) − Z(u2(r))

)
dr)

∥∥∥∥∥∥
Hγ(Ω)

≤C(µ, β, λ1)
∫ t

0
(t − r)1− 2(ζ−γ)

1−q

×

∥∥∥∥(Z(u1(r)) − Z(u2(r))
)∥∥∥∥
Hζ(Ω)

dr.

Invoking the Lipschitz continuity of the nonlinear functionZ, we deduce the following estimate for the
difference of the operator P

∥Pu1(t) − Pu2(t)∥Hγ(Ω) ≤ C(µ, β, λ1)
∫ t

0
(t − r)1− 2(ζ−γ)

1−q

∥∥∥∥u1(r) − u2(r)
∥∥∥∥
Hγ(Ω)

dr.
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Multiplying both sides of the above estimate by tae−bt, we derive the following inequality

tae−bt
∥Pu1(t) − Pu2(t)∥Hγ(Ω) ≤ C(µ, β, λ1)

∫ t

0
tar−aeb(r−t)(t − r)1− 2(ζ−γ)

1−q rae−br
∥∥∥∥u1(r) − u2(r)

∥∥∥∥
Hγ(Ω)

dr.

Noting that ess sup0≤r≤T rae−br
∥∥∥∥u1(r) − u2(r)

∥∥∥∥
Hγ(Ω)

=
∥∥∥∥u1 − u2

∥∥∥∥
Oa,b((0,T];Hγ(Ω))

, it follows that

tae−bt
∥Pu1(t) − Pu2(t)∥Hγ(Ω) ≤ C(µ, β, λ1)

∫ t

0
tar−aeb(r−t)(t − r)1− 2(ζ−γ)

1−q dr
∥∥∥∥u1 − u2

∥∥∥∥
Oa,q((0,T];Hγ(Ω))

.

By the change of variables r = tξ, we transform the integral as follows∫ t

0
tar−aeb(r−t)(t − r)1− 2(ζ−γ)

1−q dr = t2− 2(ζ−γ)
1−q

∫ 1

0
ξ−aebt(1−ξ)(1 − ξ)1− 2(ζ−γ)

1−q dξ.

From the condition 0 < γ, 0 < ζ < γ+ 1−q
2 , we see that 2− 2(ζ−γ)

1−q > 0 and 1− 2(ζ−γ)
1−q > −1. Therefore, by virtue

of Lemma (2.4) we conclude that

lim
b→+∞

sup
0≤t≤T

(
t2− 2(ζ−γ)

1−q

∫ 1

0
ξ−aebt(1−ξ)(1 − ξ)1− 2(ζ−γ)

1−q dξ
)
= 0.

Consequently, there exists a constant b > 0 such that

C(µ, β, λ1)
∫ t

0
tar−aeb(r−t)(t − r)1− 2(ζ−γ)

1−q dr ≤
1
3
, (27)

this implies immediately that

tae−bt
∥Pu1(t) − Pu2(t)∥Hγ(Ω) ≤

1
3

∥∥∥∥u1 − u2

∥∥∥∥
Oa,b((0,T];Hγ(Ω))

.

It is to be noticed that the right above is independent of t. So, by taking esssupremum with respect to t, we
obtain

∥Pu1 − Pu2∥Oa,b((0,T];Hγ(Ω)) ≤
1
3

∥∥∥∥u1 − u2

∥∥∥∥
Oa,b((0,T];Hγ(Ω))

.

We have thus proved that P is a contraction in space Oa,b((0,T];Hγ(Ω)). By applying Banach fixed point
theorem, we conclude that (1)-(2) has a unique mild solution in Oa,b((0,T];Hγ(Ω)).
It follows readily from u = Pu that∥∥∥∥u

∥∥∥∥
Oa,b((0,T];Hγ(Ω))

=
∥∥∥∥Pu − P(u = 0)

∥∥∥∥
Oa,b((0,T];Hγ(Ω))

+
∥∥∥∥P(u = 0)

∥∥∥∥
Oa,b((0,T];Hγ(Ω))

(28)

≤
1
3

∥∥∥∥u
∥∥∥∥
Oa,b((0,T];Hγ(Ω))

+ ess sup
t∈(0,T]

tae−at
∥P(u = 0)(t)∥Hγ(Ω). (29)

On account of (26), we observe that

ess sup
t∈(0,T]

tae−bt
∥P(u = 0)(t)∥Hγ(Ω) ≤ Ta

∥∥∥∥φ∥∥∥∥
Hγ(Ω)

+ C(β, µ)Ta+β
∥∥∥∥φ∥∥∥∥

Hγ+
(q−1)β

2 (Ω)
(30)

+ C(µ, β, λ1)T1− 2(ζ−γ)
1−q +a

∥∥∥∥ψ∥∥∥∥
Hζ(Ω)

. (31)
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By combining (29) with (31), we have∥∥∥∥u
∥∥∥∥
Oa,b((0,T];Hγ(Ω))

≤ 2Ta
∥∥∥∥φ∥∥∥∥

Hγ(Ω)
+ 2C(β, µ)Ta+β

∥∥∥∥φ∥∥∥∥
Hγ+

(q−1)β
2 (Ω)

+ 2C(µ, β, λ1)T1− 2(ζ−γ)
1−q +a

∥∥∥∥ψ∥∥∥∥
Hζ(Ω)

. (32)

Hence, we can assert that∥∥∥∥u(., t)
∥∥∥∥
Hγ(Ω)

≤ 2
∥∥∥∥φ∥∥∥∥

Hγ(Ω)
+ 2C(β, µ)Tβ

∥∥∥∥φ∥∥∥∥
Hγ+

(q−1)β
2 (Ω)

+ 2C(µ, β, λ1)T1− 2(ζ−γ)
1−q

∥∥∥∥ψ∥∥∥∥
Hζ(Ω)

.

This completes the proof of the theorem.

We next establish the existence and uniqueness of solutions under the assumption that the source function
satisfies a local Lipschitz condition.

Theorem 3.2. Assume that 0 < q < 1, 0 < ζ − γ < 1−q
2 , and β = 1 − 2(ζ−γ)

1−q . Let

Z :Hζ(Ω)→Hγ(Ω)

be a locally Lipschitz nonlinearity satisfying Z(0) = 0, and the polynomial growth estimate

∥Z(u)∥Hγ ≤ L∥u∥m
Hζ ,

for some m ≥ 1. Furthermore, assume that φ ∈Hγ(Ω), ψ ∈Hζ(Ω). Then, there exists T∗ > 0 such that the problem

u(t) =Mq(t)φ +Nq(t)ψ +
∫ t

0
Qq(t − s) Z(u(s)) ds,

u(0) = φ, ut(0) = ψ,

admits a unique mild solution u ∈ Oa,b((0,T∗];Hγ(Ω)), for any a, b > 0.

Proof. We first define a truncated nonlinearity in order to convert the locally Lipschitz property into a global
one. For R > 0 be fixed. We select a smooth cutoff function χ ∈ C∞(R) satisfying

χ(s) =

 1, |s| ≤ 1,

0, |s| ≥ 2,

Define the truncated nonlinearityHζ
→Hγ by ZR(u) := χ

(
∥u∥Hζ

R

)
Z(u). It follows directly from the definition

of χ that if ∥u∥Hζ ≤ R, then χ
(
∥u∥Hζ

R

)
= 1 and thus ZR(u) = Z(u)in this case. Furthermore, one can verify that

ZR is globally Lipschitz onHζ with Lipschitz constant given by

LR = 2L(2R)m−1,

where L denotes the local Lipschitz constant of Z and m ≥ 1 is the degree of nonlinearity. In particular, we
have the estimate

∥ZR(u)∥Hγ ≤ LR ∥u∥Hζ .

Next, we define the closed ball in the functional space Oa,b((0,T];Hγ(Ω)) by

BR = {u ∈ Oa,b((0,T];Hγ(Ω)) : ∥u∥Oa,b ≤ R},
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where the constants a, b > 0 are chosen such that Ta+1− 2(ζ−γ)
1−q e−bt

≤ 1. We now define the operator PR acting
on functions u : (0,T]→Hγ(Ω)) by

PR(u)(t) =Mq(t)φ +Nq(t)ψ +
∫ t

0
Qq(t − s) ZR(u(s)) ds.

Our objective is to demonstrate that there exists a sufficiently small time T∗ > 0 such that the mapping PR
defines a contraction on the closed ball BR.

We begin by recalling the bounds provided in Lemma 2.2. For all t ∈ (0,T], the following estimates hold

tae−bt
∥Mq(t)φ∥Hγ ≤ C1∥φ∥Hγ

(
tae−bt + ta+βe−bt

)
and

tae−bt
∥Nq(t)ψ∥Hγ ≤ C2 ta+1− 2(ζ−γ)

1−q e−bt
∥ψ∥Hζ .

where C1,C2 are constants independent of t.
Based on the choice of a and b, we deduce that tae−bt

∥Nq(t)ψ∥Hγ ≤ C2∥ψ∥Hζ .
For the nonlinear contribution, we employ the Lipschitz continuity of

tae−bt

∥∥∥∥∥∥
∫ t

0
Qq(t − s)ZR(u(s)) ds

∥∥∥∥∥∥
Hγ

≤ C3LR ∥u∥Oa,b ta+2− 2(ζ−γ)
1−q

×

∫ 1

0
ξ−ae−bt(1−ξ)(1 − ξ)1− 2(ζ−γ)

1−q dξ.

Thus, we obtain

∥PR(u)∥Oa,b ≤ C1∥φ∥Hγ + C2∥ψ∥Hζ + C3LR(T∗)a+2− 2(ζ−γ)
1−q ∥u∥Oa,b .

We now choose R = 2
(
C1∥φ∥Hγ + C2∥ψ∥Hζ

)
, and select T∗ > 0 sufficiently small so that

C3LR(T∗)a+2− 2(ζ−γ)
1−q ≤

1
2
.

Under this choice, the operatorPR maps BR into itself. Moreover, for all u, v ∈ BR, it holds that

∥PR(u) − PR(v)∥Oa,b ≤
1
2
∥u − v∥Oa,b .

Hence, by the Banach fixed-point theorem, there exists a unique u ∈ BR such that

u(t) =Mq(t)φ +Nq(t)ψ +
∫ t

0
Qq(t − s) ZR(u(s)) ds.

Since the embeddingHγ(Ω) ↪→Hζ(Ω) holds (by the assumption γ > ζ + (1−q)(1−β)
2 ), it follows that

∥u(t)∥Hζ ≤ C ∥u(t)∥Hγ ≤ CR for t ∈ [0,T∗].

Thus, in the time interval [0,T∗] we have ∥u(t)∥Hζ ≤ R and so ZR(u) = Z(u). Therefore, u is indeed a mild
solution of the original problem.
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Theorem 3.3. Let 0 < q < 1,and assume that the regularity parameters satisfy 0 < ζ − γ < 1−q
2 , with β = 1 − 2(ζ−γ)

1−q
and σ > 0 Suppose the initial data fulfill

φ ∈Hγ+σ(Ω), ψ ∈Hζ+σ(Ω),

and that the source function Z : Hγ+σ(Ω) → Hζ+σ(Ω) is Lipschitz with constant Lσ. Then there exist constants
a > 0, b > 0,and a time T∗ > 0such that the mild solution

u(t) =Mq(t)φ +Nq(t)ψ +
∫ t

0
Qq(t − s) Z(u(s)) ds

belongs to the function space Oa,b((0,T∗];Hγ+σ(Ω)).

Proof. We consider the solution spaceOa,b((0,T];Hγ+σ(Ω)), which is well-suited for capturing the temporal
decay and spatial regularity inherent to the problem. In this framework, and in view of Lemma 2.2
(extended to accommodate higher-order Sobolev regularity), the linear operatorsMq(t),Nq(t) and Qq(t)
satisfy the following estimates for any v ∈Hγ+σ(Ω)

∥Mq(t)v∥Hγ+σ ≤ C1∥v∥Hγ+σ + C1 tβ ∥v∥
Hγ+σ+

(q−1)β
2
,

∥Nq(t)v∥Hγ+σ ≤ C2 t1− 2(ζ−γ)
1−q ∥v∥Hζ+σ ,

∥Qq(t)v∥Hγ+σ ≤ C3 t1− 2(ζ−γ)
1−q ∥v∥Hζ+σ ,

where the constants C1, C2, and C3 depend on parameters such as µ, q, β, and the first eigenvalue λ1. We
define the mapping

Pσ(u)(t) =Mq(t)φ +Nq(t)ψ +
∫ t

0
Qq(t − s) Z(u(s)) ds.

Our goal is to show that Pσ is a contraction on a closed ball

BR =
{
u ∈ Oa,b((0,T∗];Hγ+σ(Ω)) : ∥u∥Oa,b ≤ R

}
.

For any u ∈ Oa,b((0,T∗];Hγ+σ(Ω)), we estimate the norm of Pσ(u)(t) as follows:

∥Pσ(u)(t)∥Hγ+σ ≤ ∥Mq(t)φ∥Hγ+σ + ∥Nq(t)ψ∥Hγ+σ +

∥∥∥∥∥∥
∫ t

0
Qq(t − s) Z(u(s)) ds

∥∥∥∥∥∥
Hγ+σ

≤ ∥φ∥Hγ+σ + C1 tβ ∥φ∥
Hγ+σ+

(q−1)β
2
+ C2 t1− 2(ζ−γ)

1−q ∥ψ∥Hζ+σ

+ C3

∫ t

0
(t − s)1− 2(ζ−γ)

1−q ∥Z(u(s))∥Hζ+σ ds.

Because Z :Hγ+σ(Ω)→Hζ+σ(Ω)is Lipschitz continuous with constant Lσ, and the Sobolev embeddings

Hγ+σ(Ω) ↪→Hγ+σ(Ω) and Hζ+σ(Ω) ↪→Hζ+σ(Ω)

are continuous, it follows that ∥Z(u(s))∥Hζ+σ ≤ Lσ C ∥u(s)∥Hγ+σ , for some constant C > 0. Therefore, we arrive
at the bound

∥Pσ(u)(t)∥Hγ+σ ≤ ∥φ∥Hγ+σ + C1 tβ ∥φ∥
Hγ+σ+

(q−1)β
2

+ C2 t1− 2(ζ−γ)
1−q ∥ψ∥Hζ+σ

+ C3Lσ C
∫ t

0
(t − s)1− 2(ζ−γ)

1−q ∥u(s)∥Hγ+σ ds.
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Multiplying both sides of the inequality by tae−bt and taking the supremum over t ∈ (0,T∗], we obtain the
estimate

∥Pσ(u)∥Oa,b ≤ C′1∥φ∥Hγ+σ + C′2(T∗)1− 2(ζ−γ)
1−q +a

∥ψ∥Hζ+σ + C′3Lσ (T∗)2− 2(ζ−γ)
1−q +a

∥u∥Oa,b ,

for some constants C′1,C
′

2,C
′

3 > 0 depending only on the structural parameters of the problem. To construct
a suitable invariant set, we define

R = 2
(
C′1∥φ∥Hγ+σ + C′2(T∗)1− 2(ζ−γ)

1−q +a
∥ψ∥Hζ+σ

)
.

Then, choosing T∗ > 0 sufficiently small such that C′3Lσ (T∗)2− 2(ζ−γ)
1−q +a

≤
1
2 , it can be concluded that ∥Pσ(u)∥Oa,b ≤

R, so thatPσ maps the closed ball BR into itself. Moreover, a similar argument yields the contraction estimate
∥Pσ(u) − Pσ(v)∥Oa,b ≤

1
2∥u − v∥Oa,b , for all u, v ∈ BR. demonstrating that Pσ is a contraction. Therefore, by the

Banach fixed-point theorem, there exists a unique fixed point
u ∈ Oa,b((0,T∗];Hγ+σ(Ω)) satisfying the integral equation

u(t) =Mq(t)φ +Nq(t)ψ +
∫ t

0
Qq(t − s) Z(u(s)) ds.

which corresponds to the unique mild solution of the problem on the interval [0,T∗] The enhanced regu-
larity of the initial data and the Lipschitz condition for Z ensure that the solution u propagates the extra
smoothness. Hence, u(t) belongs toHγ+σ(Ω) for every t ∈ (0,T∗].
This completes the proof.

4. The continuity of the mild solution with respect to the parameters involved in the model

In this section, we aim to establish the continuity of the mild solution with respect to the parameter µ.
We consider the following assumptions on the function Z.
Let the function Z satisfying the following global Lipschitz conditions

H1 :∥Z(u1(t)) − Z(u2(t))∥Hκ2 (Ω) ≤ K∥u1(t) − u2(t)∥Hκ1 (Ω), (33)
H2 :∥Z(u(t))∥Hκ2 (Ω) ≤ k∥u(t)∥Hκ1 (Ω), (34)

with K, k are positive constants.

Theorem 4.1. Suppose Z is a function such that assumption H1 and H2 hold. Letφ ∈Hγ(Ω)∩Hθ1 (Ω), ψ ∈Hθ2 (Ω)
for γ > 0, 0 < q < 1, 0 < θ1 < γ, γ +

q−1
2 < θ2. Assume that 0 < µ0 ≤ µ, µ

′ . Let uµ and uµ
′

be two solutions of
Problem (1)-(2) corresponding to the parameters µ and µ′ . Then we get∥∥∥∥uµ − uµ

′

∥∥∥∥
Lp(0,T;Hγ(Ω))

≲ epbT
[
C1

∥∥∥∥∥∥φ
∥∥∥∥∥∥
Hθ1 (Ω)

|µ
′

− µ|2
(θ1−γ)

q−1 + C2

(
|µ
′

− µ|
2(θ2−γ)

q−1 −1 + |µ
′

− µ|
)∥∥∥∥∥∥ψ

∥∥∥∥∥∥
Hθ2 (Ω)

(35)

+ R(φ,ψ)
(
C6|µ

′

− µ|
2(θ2−γ)

q−1 −1 + C7|µ
′

− µ|
)]
. (36)

where R(φ,ψ) = C3∥φ∥Hγ + C4∥φ∥Hθ1 + C5∥ψ∥Hθ2 , and C j, j = 1, ..7 are constants that depend on the parameters.
Here 1 < p < 1

a .

Proof. We begin by expressing the difference between the two mild solutions corresponding to parameters
µ and µ′:

uµ
′

(t) − uµ(t) =
(
Mq,µ′ (t) −Mq,µ(t)

)
φ +

(
Nq,µ′ (t) −Nq,µ(t)

)
ψ

+

∫ t

0

(
Qq,µ′ (t − r) − Qq,µ(t − r)

)
Z
(
uµ(r)

)
dr

+

∫ t

0
Qq,µ′ (t − r)

[
Z
(
uµ
′

(r)
)
− Z

(
uµ(r)

)]
dr.
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We now estimate the contribution of each term in theHγ-norm. We commence our analysis by providing
an estimate for the first term.

O1(t) =
(
Mq,µ′ (t) −Mq,µ(t)

)
φ =

∞∑
k=1

cos
(√ λq

k

1 + µλk
t
)
− cos

(√ λq
k

1 + µ′λk
t
) (φ, ek

)
ek(x).

Using the inequality | cos a − cos b| ≤ Cϵ |a − b|ϵ, for any 0 < ϵ ≤ 1, we have

∣∣∣∣cos
(√ λq

k

1 + µλk
t
)
− cos

(√ λq
k

1 + µ′λk
t
)∣∣∣∣ ≤ Cϵ tϵ

∣∣∣∣∣∣∣∣
√

λq
k

1 + µλk
−

√
λq

k

1 + µ′λk

∣∣∣∣∣∣∣∣
ϵ

.

It is readily seen, through a straightforward calculation, one that√
λq

k

1 + µλk
−

√
λq

k

1 + µ′λk
=

λq/2
k λk (µ′ − µ)√

(1 + µλk)(1 + µ′λk)
(√

1 + µλk +
√

1 + µ′λk

) .
From result

√
(1 + µλk)(1 + µ′λk)

(√
1 + µλk +

√
1 + µ′λk

)
≥ 2µ3/2

0 λ3/2
k , it can be inferred that∣∣∣∣∣∣∣∣

√
λq

k

1 + µλk
−

√
λq

k

1 + µ′λk

∣∣∣∣∣∣∣∣ ≤ |µ
′
− µ|

2µ3/2
0

λ
q−1

2
k .

Thus, we obtain

∣∣∣∣cos
(√ λq

k

1 + µλk
t
)
− cos

(√ λq
k

1 + µ′λk
t
)∣∣∣∣ ≤ Cϵ tϵ

 |µ′ − µ|λ
q−1

2
k

2µ3/2
0


ϵ

.

Here we set ϵ = q−1
2 (θ1 − γ), which is positive since q − 1 < 0 and θ1 − γ < 0. Taking theHγ-norm (that is,

squaring the Fourier coefficients weighted by λ2γ
k ) and applying Parseval’s identity, we obtain

∥O1(t)∥2Hγ ≤ C t2ϵ
|µ′ − µ|2ϵ

∞∑
k=1

λ2γ+ϵ(q−1)
k |(φ, ek)|2.

Since 2γ + ϵ(q − 1) = 2γ + q−1
2 (θ1 − γ)(q − 1) = 2θ1, the summation is equivalent to ∥φ∥2

Hθ1
.

Hence,

∥O1(t)∥Hγ ≤ C(µ0) t
q−1

2 (θ1−γ)
|µ′ − µ|

q−1
2 (θ1−γ)

∥φ∥Hθ1 .

The remaining terms those arising from the sine-type operator difference, the convolution operator
difference, and the Lipschitz nonlinearity are estimated by analogous techniques.The estimates will be
presented in a summarized form. We continue by estimating the operator O2.
By applying inequality | sin x| ≤ Cϵ2 |x|ϵ2 , 0 < ϵ2 ≤ 1, in conjunction with identity√

λ
q
k

1+µ′λk
=

λ
q/2
k

(1+µ′λk)1/2 and utilizing inequality (1 + µ′λk)1/2
≥ (µ′λk)1/2, we deduce that

∣∣∣∣sin
(√ λq

k

1 + µ′λk
t
)∣∣∣∣ ≤ Cϵ2 tϵ2 (µ′)−ϵ2/2λ

ϵ2(q−1)
2

k .
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A similar approach controls the difference in the corresponding prefactors so that, after summation, we
derive a bound of the form

∥O2(t)∥Hγ ≤ C(µ0,T)
(
|µ′ − µ|

2(θ2−γ)
q−1 −1 + |µ′ − µ|

)
∥ψ∥Hθ2 .

The convolution term O3(t) is treated similarly (using the Lipschitz bound on Z(uµ) and the Beta function
for time integration), and we obtain

∥O3(t)∥Hγ ≤ C(µ0,T, k)
(
|µ′ − µ|

2(θ2−γ)
q−1 −1 + |µ′ − µ|

)
R(φ,ψ),

where

R(φ,ψ) = C3∥φ∥Hγ + C4∥φ∥Hθ1 + C5∥ψ∥Hθ2 .

Finally, we evaluate term

O4(t) =
∫ t

0
Qq,µ′ (t − r)

[
Z(uµ

′

(r)) − Z(uµ(r))
]

dr,

By applying the Lipschitz property of the function Z, we derive the following estimate

∥Z(uµ
′

(r)) − Z(uµ(r))∥Hζ ≤ K ∥uµ
′

(r) − uµ(r)∥Hγ ,

and an analogous estimate shows that

∥O4(t)∥Hγ ≤ C(µ0)K
∫ t

0
(t − r)1− 2(ζ−γ)

1−q ∥uµ
′

(r) − uµ(r)∥Hγdr.

To handle this term we introduce the weighted norm

∥v∥Oa,b = sup
t∈[0,T]

tae−bt
∥v(t)∥Hγ(Ω).

Multiplying the integral inequality for ∥uµ′ (t) − uµ(t)∥Hγ by tae−bt and taking the supremum produces an
inequality of the form

∥uµ
′

− uµ∥Oa,b ≤ A + C∥uµ
′

− uµ∥Oa,b Ia,b,

where A collects the contributions of O1, O2, and O3, and

Ia,b =

∫ T

0
tae−b(t−r)r−a(t − r)β dr, β = 1 −

2(ζ − γ)
1 − q

.

A change of variables shows that for a sufficiently large b (and provided ap < 1 to ensure integrability), the
integral Ia,b can be made small so that the term with ∥uµ′ − uµ∥Oa,b can be absorbed into the left-hand side.
Next, one proves that the weighted norm is equivalent to the usual Lp(0,T;Hγ(Ω))-norm. Indeed, since

∥v(t)∥Hγ ≤ t−aebt
∥v∥Oa,b ,

we have

∥v∥pLp(0,T;Hγ) =

∫ T

0
∥v(t)∥p

Hγdt ≤ ∥v∥p
Oa,b

∫ T

0
t−apebpt dt.
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Since the integral is finite for ap < 1, we deduce that ∥v∥Lp(0,T;Hγ) ≤ C ebT
∥v∥Oa,b , with a similar reverse

inequality. Collecting all the estimates, we finally obtain that there exist constants C > 0 and b > 0 such that

∥uµ − uµ
′

∥Lp(0,T;Hγ(Ω)) ≤ C ebT
[
|µ′ − µ|2

(θ1−γ)
q−1 ∥φ∥Hθ1 +

(
|µ′ − µ|

2(θ2−γ)
q−1 −1 + |µ′ − µ|

)
∥ψ∥Hθ2

+
(
C3 ∥φ∥Hγ + C4 ∥φ∥Hθ1 + C5 ∥ψ∥Hθ2

)(
|µ′ − µ|

2(θ2−γ)
q−1 −1 + |µ′ − µ|

)]
.

The only correction made relative to previous versions is that in the estimate for ∥O1(t)∥Hγ the exponent of
t is given by ϵ = q−1

2 (θ1 − γ) rather than an erroneous variant. This minor typo does not affect the overall
rigor of the argument. This completes the proof.

Theorem 4.2. Let u1 and u2 be the mild solutions corresponding to initial data (φ1, ψ1) and (φ2, ψ2) with φ1, φ2 ∈

Hγ(Ω), ψ1, ψ2 ∈Hζ(Ω),under the assumption ζ < γ+ 1−q
2 .Assume the nonlinear mapping Z :Hκ1 (Ω)→Hκ2 (Ω)

satisfies the global Lipschitz condition

∥Z(u1) − Z(u2)∥Hκ2 (Ω) ≤ L∥u1 − u2∥Hκ1 (Ω).

Then there exists a constant C > 0 (depending on T, µ, q, γ, ζ,L) such that

∥u1 − u2∥Oa,b((0,T];Hγ(Ω)) ≤ C
(
∥φ1 − φ2∥Hγ(Ω) + ∥ψ1 − ψ2∥Hζ(Ω)

)
,

where ∥w∥Oa,b = supt∈(0,T] tae−bt
∥w(t)∥Hγ(Ω), for some choice of a > 0 and b > 0 (to be chosen later).

Proof. We define the difference w(t) := u1(t) − u2(t).
Since the mild solution for each ui(t), i = 1, 2 is given by

ui(t) =Mq(t)φi +Nq(t)ψi +

∫ t

0
Qq(t − r)Z(ui(r)) dr.

Subtracting the expression for u2(t) from that for u1(t) yields

w(t) =Mq(t)(φ1 − φ2) +Nq(t)(ψ1 − ψ2) +
∫ t

0
Qq(t − r)

[
Z(u1(r)) − Z(u2(r))

]
dr.

For clarity, we now state the following operator bounds from Lemma 2.2. These estimates hold under
the conditions on the parameters assumed in the theorem. For any φ ∈ Hγ(Ω) and for all t > 0, we have
∥Mq(t)φ∥Hγ(Ω) ≤ C1∥φ∥Hγ(Ω) + C1tβ∥φ∥

Hγ+
(q−1)β

2 (Ω)
, where C1 depends on µ, q and β > 0 is chosen

so that γ + (q−1)β
2 ≤ γ. Since q < 1, it follows that (q−1)β

2 ≤ 0. By the continuous embedding of Sobolev spaces
(i.e.,Hs(Ω) ↪→Hr(Ω) for s ≥ r), we have

∥φ∥
Hγ+

(q−1)β
2 (Ω)

≤ C′∥φ∥Hγ(Ω).

For ψ ∈Hζ(Ω) and for all t > 0, we known that

∥Nq(t)ψ∥Hγ(Ω) ≤ C2 t1− 2(ζ−γ)
1−q ∥ψ∥Hζ(Ω),

where the exponent 1 − 2(ζ−γ)
1−q is positive provided ζ < γ + 1−q

2 .
Given that f belonging to an appropriate Sobolev space (e.g., f ∈Hζ(Ω)),

∥Qq(t) f ∥Hγ(Ω) ≤ C3 t1− 2(ζ−γ)
1−q ∥ f ∥Hζ(Ω).
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It is worth noting that the weighted norm

∥w∥Oa,b = sup
t∈(0,T]

tae−bt
∥w(t)∥Hγ(Ω).

Multiplying the expression for w(t) by tae−bt and using the above bounds, we have:

tae−bt
∥Mq(t)(φ1 − φ2)∥Hγ(Ω) ≤ tae−bt

(
C1∥φ1 − φ2∥Hγ(Ω) + C1tβ∥φ1 − φ2∥

Hγ+
(q−1)β

2 (Ω)

)
≤ C1∥φ1 − φ2∥Hγ(Ω)

(
tae−bt + C′ta+βe−bt

)
.

Since tae−bt and ta+βe−bt are bounded on (0,T], the contribution of this term is bounded by a constant multiple
of ∥φ1 − φ2∥Hγ(Ω). Proceeding as in the previous part, we obtain

tae−bt
∥Nq(t)(ψ1 − ψ2)∥Hγ(Ω) ≤ C2 ta+1− 2(ζ−γ)

1−q e−bt
∥ψ1 − ψ2∥Hζ(Ω).

Taking the supremum over t ∈ (0,T], this term is controlled by a constant times ∥ψ1 − ψ2∥Hζ(Ω). In order to
handle the nonlinear term, we define

I(t) :=
∫ t

0
Qq(t − r)

[
Z(u1(r)) − Z(u2(r))

]
dr.

By the Lipschitz condition on Z and the bound for Qq, we have

∥Qq(t − r)[Z(u1(r)) − Z(u2(r))]∥Hγ(Ω) ≤ C3 (t − r)1− 2(ζ−γ)
1−q L∥w(r)∥Hγ(Ω).

Therefore, it can be concluded that

∥I(t)∥Hγ(Ω) ≤ C3L

∫ t

0
(t − r)1− 2(ζ−γ)

1−q ∥w(r)∥Hγ(Ω) dr.

Multiplying by tae−bt yields

tae−bt
∥I(t)∥Hγ(Ω) ≤ C3L

∫ t

0
tae−bt(t − r)1− 2(ζ−γ)

1−q ∥w(r)∥Hγ(Ω) dr.

It is immediate that

∥w(r)∥Hγ(Ω) ≤ r−aebr
∥w∥Oa,b .

we obtain

tae−bt
∥I(t)∥Hγ(Ω) ≤ C3L∥w∥Oa,b

∫ t

0
tae−bt(t − r)1− 2(ζ−γ)

1−q r−aebr dr.

Changing variable via r = tξ (with dr = t dξ and t − r = t(1 − ξ)) gives∫ t

0
tae−bt(t − r)1− 2(ζ−γ)

1−q r−aebr dr = ta+1− 2(ζ−γ)
1−q −ae−bt

∫ 1

0
(1 − ξ)1− 2(ζ−γ)

1−q ξ−aebtξ dξ

= t2− 2(ζ−γ)
1−q e−bt

∫ 1

0
(1 − ξ)1− 2(ζ−γ)

1−q ξ−aebtξ dξ.

From this, we can deduce that

tae−bt
∥I(t)∥Hγ(Ω) ≤ C3L t2− 2(ζ−γ)

1−q

(∫ 1

0
(1 − ξ)1− 2(ζ−γ)

1−q ξ−ae−bt(1−ξ) dξ
)
∥w∥Oa,b .
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The integral is finite provided that a < 1 and 1− 2(ζ−γ)
1−q > −1 (which is ensured by ζ < γ+ 1−q

2 ). By Lemma 2.1
we may choose b > 0 sufficiently large so that

C3LT2− 2(ζ−γ)
1−q

∫ 1

0
(1 − ξ)1− 2(ζ−γ)

1−q ξ−a dξ ≤
1
3
.

Hence, tae−bt
∥I(t)∥Hγ(Ω) ≤

1
3∥w∥Oa,b . Collecting the estimates, we have

∥w∥Oa,b ≤ C1∥φ1 − φ2∥Hγ(Ω) + C2 T1− 2(ζ−γ)
1−q ∥ψ1 − ψ2∥Hζ(Ω) +

1
3
∥w∥Oa,b .

Subtracting 1
3∥w∥Oa,b from both sides yields

2
3
∥w∥Oa,b ≤ C1∥φ1 − φ2∥Hγ(Ω) + C2 T1− 2(ζ−γ)

1−q ∥ψ1 − ψ2∥Hζ(Ω).

Multiplying by 3
2 we deduce the final stability estimate

∥w∥Oa,b ≤
3
2

max{C1, C2 T1− 2(ζ−γ)
1−q }

(
∥φ1 − φ2∥Hγ(Ω) + ∥ψ1 − ψ2∥Hζ(Ω)

)
.

In other words ∥u1 − u2∥Oa,b((0,T];Hγ(Ω)) ≤ C
(
∥φ1 − φ2∥Hγ(Ω) + ∥ψ1 − ψ2∥Hζ(Ω)

)
,

with C = 3
2 max{C1, C2 T1− 2(ζ−γ)

1−q }, which depends on T, µ, q, γ, ζ,L. This completes the proof.

Next, we show that the mild solution the Love equation convergences to the mild solution of the wave
equation .

Theorem 4.3. Let uµ be the mild solution to

utt + (−∆)qu − µ∆utt = Z(u), u|∂Ω = 0, u(0) = φµ, ut(0) = ψµ,

and let u0 be the mild solution of the limiting problem

utt + (−∆)qu = Z(u), u|∂Ω = 0, u(0) = φ0, ut(0) = ψ0.

Assume thatφµ → φ0 inHγ(Ω),ψµ → ψ0 inHζ(Ω), and that the nonlinearity Z is globally Lipschitz with Lipschitz
constant L. Then,

∥uµ − u0
∥L∞(0,T;Hγ) → 0 as µ→ 0.

Proof. The mild solutions uµ and u0 satisfy the following integral equations, respectively:

uµ(t) =Mq,µ(t)φµ +Nq,µ(t)ψµ +
∫ t

0
Qq,µ(t − s)Z(uµ(s)) ds,

u0(t) =Mq,0(t)φ0 +Nq,0(t)ψ0 +

∫ t

0
Qq,0(t − s)Z(u0(s)) ds.

We introduce the function w(t) as the difference between the perturbed solution uµ(t) and the unperturbed
solution u0(t), namely

w(t) = uµ(t) − u0(t).

By subtracting the equation satisfied by u0(t) from that satisfied byuµ(t) we obtain the following relation

w(t) =
[
Mq,µ(t)φµ −Mq,0(t)φ0

]
+

[
Nq,µ(t)ψµ −Nq,0(t)ψ0

]
+

∫ t

0

[
Qq,µ(t − s)Z(uµ(s)) − Qq,0(t − s)Z(u0(s))

]
ds.
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In order to isolate the contributions arising from the initial data, we decompose the corresponding terms
as follow

Mq,µ(t)φµ −Mq,0(t)φ0 =Mq,µ(t)(φµ − φ0) +
(
Mq,µ(t) −Mq,0(t)

)
φ0,

Nq,µ(t)ψµ −Nq,0(t)ψ0 = Nq,µ(t)(ψµ − ψ0) +
(
Nq,µ(t) −Nq,0(t)

)
ψ0.

By Theorem 4.1 the families of operators {Mq,µ(t)}µ≥0 and {Nq,µ(t)}µ≥0 depend continuously on µ in the
operator norms

L(Hγ(Ω),Hγ(Ω)) and L(Hζ(Ω),Hγ(Ω)),

respectively. Since φµ → φ0 inHγ(Ω) and ψµ → ψ0 inHζ(Ω), the terms

Mq,µ(t)(φµ − φ0) and Nq,µ(t)(ψµ − ψ0)

converge to zero uniformly inHγ(Ω) on [0,T] as µ→ 0. Moreover, by the continuity with respect to µ, the
terms(

Mq,µ(t) −Mq,0(t)
)
φ0 and

(
Nq,µ(t) −Nq,0(t)

)
ψ0

also converge to zero uniformly in Hγ(Ω) on [0,T]. Next, we proceed with the analysis of the nonlinear
term: ∫ t

0

[
Qq,µ(t − s)Z(uµ(s)) − Qq,0(t − s)Z(u0(s))

]
ds =

∫ t

0
Qq,µ(t − s)

[
Z(uµ(s)) − Z(u0(s))

]
ds

+

∫ t

0

[
Qq,µ(t − s) − Qq,0(t − s)

]
Z(u0(s))ds.

We define the following terms for convenience:

I3,1(t) =
∫ t

0
Qq,µ(t − s)

[
Z(uµ(s)) − Z(u0(s))

]
ds,

I3,2(t) =
∫ t

0

[
Qq,µ(t − s) − Qq,0(t − s)

]
Z(u0(s))ds.

Since Z is globally Lipschitz with constant L, we have

∥Z(uµ(s)) − Z(u0(s))∥Hζ(Ω) ≤ L∥uµ(s) − u0(s)∥Hγ(Ω) = L∥w(s)∥Hγ(Ω).

Moreover, Theorem 4.1 implies that the operator Qq,µ(t − s) mapsHζ(Ω) toHγ(Ω) with the estimate

∥Qq,µ(t − s)∥L(Hζ(Ω),Hγ(Ω)) ≤ C(t − s)−α,

for some constant C > 0 and exponent α > 0. Consequently, we obtain the following bound for

∥I3,1(t)∥Hγ(Ω) ≤ CL
∫ t

0
(t − s)−α∥w(s)∥Hγ(Ω) ds.

Similarly, by the continuity of the family {Qq,µ(t−s)}µ≥0 in the operator norm and the boundedness of Z(u0(s))
inHζ(Ω), the Dominated Convergence Theorem ensures that

∥I3,2(t)∥Hγ(Ω) → 0 uniformly in t ∈ [0,T] as µ→ 0.
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Next, we define the function ϵ(µ) as follows:

ϵ(µ) = sup
t∈[0,T]

{
∥Mq,µ(t)(φµ − φ0)∥Hγ(Ω) + ∥(Mq,µ(t) −Mq,0(t))φ0

∥Hγ(Ω)

+ ∥Nq,µ(t)(ψµ − ψ0)∥Hγ(Ω) + ∥(Nq,µ(t) −Nq,0(t))ψ0
∥Hγ(Ω) + ∥I3,2(t)∥Hγ(Ω)

}
.

It follows thatϵ(µ)→ 0 as µ→ 0. Therefore, we have the inequality

∥w(t)∥Hγ(Ω) ≤ ϵ(µ) + CL
∫ t

0
(t − s)−α∥w(s)∥Hγ(Ω) ds.

By applying the singular Grönwall inequality (which is applicable for kernels of the form (t − s)−α with
0 < α < 1), we deduce that there exists a constant CT > 0 (depending on T, C, L, and α) such that

∥w(t)∥Hγ(Ω) ≤ CT ϵ(µ), for all t ∈ [0,T].

Taking the supremum over t ∈ [0,T] yields

∥uµ − u0
∥L∞(0,T;Hγ) = sup

t∈[0,T]
∥w(t)∥Hγ(Ω) ≤ CT ϵ(µ).

Since ϵ(µ)→ 0 as µ→ 0, we conclude that ∥uµ − u0
∥L∞(0,T;Hγ) → 0 as µ→ 0.

This completes the proof.
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