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Singular value inequalities for functions of matrices

Ahmad Al-Natoor?

?Department of Mathematics, Faculty of Sciences, Isra University, Amman 11622, Jordan

Abstract. In this paper, we prove several singular value inequalities for functions of matrices. As special
cases of our results, we give some applications involving the spectral norms and numerical radii of matrices.
Among other results, we prove that if A and B are n X n complex matrices and f is a nonnegative increasing
concave function on [0, o0) such that f(0) = 0, then for a, b > 0, we have

s; (f(laA*B + bB"A))

< si(f(al“”z;b|B|2)®f(b|A|2;f“|B|2))+SjM (f(|bA*B;rﬂB*AI)®f(IaA*BJZrbB*A|))

for1 <i < j < n. A special case of this inequality is related to recent inequalities given in [10] and [12].
Also, we prove that
1
IIRe All < 3 (Al + w(A)) < [IA]l.

Here, Re T, s;(T), IT||, and w(T) are the real part, the j”1 singular value, the spectral norm, and the
numerical radius of the matrix T, respectively.

1. Introduction

Let M,,(C) be the C*-algebra of all n X n complex matrices. A matrix A € IM,(C) is said to be positive
semidefinite if x*Ax > 0 for all x € C". The absolute value of a complex matrix A € M,,(C) is |A| = (A*A)l/ z,
For A € M,(C) the singular values of A, denoted by s1(A), ..., s,(A), are the eigenvalues of |A| = (A*A)l/ 2
arranged in decreasing order and repeated according to multiplicity.

A matrix norm [||-||| on IM,(C) is said to be unitarily invariant if |[[UAV]|| = [||Alll for all A € IM,,(C) and
for all unitary matrices U, V € IM,,(C). One of the most common examples of unitarily invariant norms is
the spectral norm, which is defined by ||A|| = E}\F)l( ||Ax|| for A € M,(C) and x € C". It is known that the

spectral norm of A € IM,,(C) is equal to the largest singular value of A, i.e, ||Al| = s1(A). For A, B € M,,(C),

A®B= [ Ig g ]isthedirectsumoanndB.
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The numerical radius of A € M,,(C) is denoted by w(A) and is defined by

w(A) = ﬂn‘la_>1<{|(Ax,x)| :x e C").

The author in [16] proved that the numerical radius of A € IM,,(C) can be represented by

w(A) = 591611[}: ”Re (eieA)|| .

Here, Re A = AEA* is the real part of the matrix A.

It is clear that
w(A) < Al 1
If A is normal, then inequality (1) becomes an equality, that is
w(A) = [IA]l.

Some of known basic relations involving singular values, spectral norms, and numerical radii of matrices
that we need in our paper can be stated as follows: For A, B € M,,(C), we have

si(1Al) = 5§(A) = 54(A7),

For more facts, definitions, theorems about matrices, we refer the reader to [9], [13]], [17], and [18].
It was proved in [12] that if A, B € IM,,(C), then

si(AB" + BA") < s;((|AF” + |B) @ (AP +1B)) 3)
for j =1,2,...,n. Related to inequality (3), the authors in [10] proved that
si(A'B+ B'A) < s;((JAF + IB) @ (IAP* +BP)) 4)

forj=1,2,..,n

In this paper, we give new singular value inequalities for functions of matrices in which the special cases
of our results are related to inequalities (3) and (@) and give several new upper bounds for s;(A'B + B*A).
As an application of our work, we give a refinement of a well-known basic inequality by involving the
numerical radii of matrices. For more recent results concerning numerical radii of matrices, we refer the
reader to [2], [8], [11], and [14]. Also, for very recent results concerning singular values and norms of
matrices, we refer the reader to [11, [3], [4], [5], [6], and [7].
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2. Main results

To state our first main result, we need the following lemmas. For the first lemma, see, e.g., [9] p. 291],
the second lemma can be found in [15] and for the third lemma, see, e.g., [18, p. 275].

Lemma 2.1. Let A € M, (C) and let f be a nonnegative increasing function on [0, co) . Then

si(FUAD) = £ (5;(A))
forj=1,2,..,n.

M

K 11\<] ] is positive semidefinite and let r = min (m, n).

Lemma 2.2. Let M € M,,,(C) and N € M,,(C) be such that [
Then

forj=1,2,..,r
Lemma 2.3. Let A, B € M,(C). Then

5;(A+B) < 5;(A) +5j-i1 (B) )
for1 <i<j<n. Inparticular, ifi = j, then

s;(A+B) <s;(A)+|Bll. (6)

Theorem 2.4. Let A, B € M,,(C) and let f be a nonnegative increasing concave function on [0, co) such that f(0) = 0.
Then for a,b > 0, we have

s; (f(laA*B + bB"Al))
alAP + b |Bf? b|AP +a|BP
< . L S L s
< g (f( > ®f >
bA*B +aB*A aA*B + bB*A
o 03 203
for1 <i < j<n. lInparticular, we have
s;(@A’B + bB"A)
((a AP +b |B|2) (b AP +a |B|2))
< s ®
2 2
bA*B + aB*A aA*B + bB*A
+Sjis1 > & > (8)
and
sj(@aA’B + bB"A)

AP +b|BP\ _(bIAP +a|BP 1
Ss]-((‘ZI | ; | ')@( Al ;“”' | ))+§||aA*B+bB*A||. )
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Proof. Let X = [A B} and Y = [B A] . Then

T I

0 0 0 0

oflfo o A 0[l0 0
alAP aAB . b|B bB'A
aB'A a|BP*| " |bA*B b|A}?
alAP +b|BP aA*B+bB'A
bA*B +aB*'A b|AP +a|BP|’

which is a positive semidefinite matrix. So, we have

s; (f(laA*B + bB"Al))

IA

IN

f(5(aA’B + bBA)) (by Lemma2-T)

s alAP +b|B? aA'B+bB'A
277\|bA*B +aB*A b|A* +a|Bf

(by Lemma 2.2)
a|AP +b|Bf 0
£l ks, 0 b|AP +a|Bf*
27, 0 aA*B + bB*A
bA*B +aB*A 0
1, ([alAF +bIB! 0
f 2% 0 blAP +a|BP
ey 0 aA*B + bB*A
2%5-#1\|pA*B + aB*A 0
(by inequality (5))
£(2s: (] |AP + b|Bf? 0
27 0 b|AP +a|Bf

bA*B +aB*A 0
(by the concavity of the function f)

£(2s alAP +b|BP 0
27 0 b|AP +a|BP
0

) bA*B + aB*A
+f|25)-in 0 1A*B + bB*A

. f(%sj_m ([ 0 aA’B + bB*A]))

a|lAPP+b|BJ?
FEEEE) o
blAP+alBP
0 ()

bA*B+aB*A 0
2
0 aA*B+bB*A
2

S

+8j-ir1 ( f

|AP+b|B
F(eass) o
blAJ?+a|BP?
0 p(tceet)

[bA*B+aB*A| 0
+8j-i+1 (f ([ (2) |aA”B+bB*A]))
2

)
~—

Si

6486

(10)

(11)
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a|AP+b|B]?
fes) o
blAP+alB]
0 f(mate)

+Sj-i+1 [[f(m?ﬂ) f(@)]]

bA*B +aB*A aA*B + bB*A
) o),

Si

2

which proves inequality (7). The inequality () follows by letting f(t) = t in inequality (7), while inequality
() follows by letting i = j in inequality (8) and using relation 2). O

Remark 2.5. Inequality (9) is related to inequality (@) and they are equivalent if j=T1anda=b = 1.

Theorem 2.6. Let A, B € M,,(C) and let f be a nonnegative increasing concave function on [0, co) such that f(0) = 0.
Then for a,b > 0, we have

s; (f(laA"B + bB*A))

_ si(f(g |A|2)€Bf(g|B|2))+max( f(nglz) , f(glAlz))
. ( ; (le*B ' aB Al ) . f(IaA*B ' bB*Al)) 12

for1 <i < j<n. lInparticular, we have

s;(@A’B + bB"A)

IA

alAP@alBl*\ b 2 1Al
Si(f +§max<||B|| ,||A||)

(bA*B +aB*A) ® (aA*B + bB A)) (13)

+5j-i+1 ( 5

and

IN

2 2
s @A'B+DB'A) < s (‘M) b

2 2
i\==— |+ 5 max(IBIF, 14I)

+% laA*B + bB* Al . (14)

Proof. By inequality (IT), we have

s; (f(laA*B + bB"Al))
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£(zs, alAP +b|Bf 0
- 27 0 alB + blAP
- 1. 0 aA'B + bB"A]
251\ |pa'B + aB'A 0
1 ([ataP o | L |[6BF 0
. f(2sl([ o aiB?|T2|| o plap
T 1 0 aA*B + bB*A
F\281\|paB + aBa 0 |
(by inequality (6))
LIAPF 0 eB? 0
. 2 1
ste (B0 simel) oGS o
< -

o

P i

—
S
bS

O N+
=
[s~]
BS

aA*B+bB*A
2

W o sl 0 ()
= [bA*B+aB* Al 0
+Sj-ir1 [[f( 02 ) f ( |aA*B+2—bB*A| )D

7

s (7 (5148)@ 1 (§ 152+ (3 92) . (3 147)
. (f(le*B + LZB*A|)®f(|aA*B + bB*A|)),

|

which proves inequality (I2). The inequality follows by letting f(t) = t in inequality (12), while
inequality follows by letting i = j in inequality and using relation ). O

Theorem 2.7. Let A, B € M,,(C) and let f be a nonnegative increasing concave function on [0, 00) such that f(0) = 0.
Then for a,b > 0, we have

s; (f(laA*B + bB"Al))

[bAB + aB*A| lnA*B + bB*A|
< sl (M e (M)

2 2 2 2
+Sj-i+1 (f(—a Al ;blBl )@f(—b Al ;—alB| )) (15)

or 1 <i < j<n. Inparticular, we have
) p

s;(@A’B + bB'A)

< 5

BA'B+aB'A\ _(aA’B+bB'A
2 )%\ T 2

2 +b|B]? b|AP + a|BJ?
+Sj_i+1((alAI ;r | ')e( |A] ;al I)) (16)

and

s;(@A’B + bB"A)
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)

bA*B +aB*A aA*B + bB*A
< 5j > (&) >
alAP +b|BP

+max(

Proof. By inequality (10), we have

(17)

7

2 2

lb |A]> +a|B

Sj (f(laA"B + bB*Al))
< 7 1. alAP +b|BP aA*B+ bB*A]
= J\27\|pA*B+aB'A bIAP +a|B
(1 0 aA'B+bB°A] | [alAF +b|B* 0
= S\2%\|pa'B +aB'a 0o 0 bIAP +a B
) QA BHDEA dALHBE 0
< f Si(th*B;aB*A (2) _)+5]’—i+1 0 a‘B‘z_;blAlz
[ bA*B+aB'A 0o ] alAP+b|Bl® 0
= f [Sz‘( R aA*B+bB'A )+Sf—i+1 [ ’ alBP+bIAP
L O 2 | 0 — 72
[ bA"B+aB"A 0 ] alAP +blB[ 0
= f(&‘(» 0 uA*B-iZ-bB‘A_))‘*'f Sj-i+1 (2) uIBIZEb\Alz
[ |bA*B+aB* Al 0 alAP+b|B]? 0
= s (f ( (2) aA*B+bB*AI])) +§j-it1 (f ([ 0 a|3|2+b|A|2DJ
L 2 2
[bA*B+aB*A|
= Si[[f( . ) \aA*g+bB*AI D
0 £ (5
alA*+b|Bf?
[l o
+S]—z+1 0 f (blAIZZﬂIBIZ )
= slr |[bA*B + aB*A| o f |[aA*B + bB*A|
2 2
alAP +b|BP? blAP +a|BP?
+Sj—i+1(f(||2 II)@JC(II2 II))’

which proves inequality (I5). The inequality follows by letting f(t) = t in inequality (I5), while
inequality follows by letting i = j in inequality and using relation (2). O

Corollary 2.8. Let A,B € M,,(C). Then

s;(A’B + B*A)
A'B+ B*A A'B + B*A
o (£255)0 (£2124))  ari

forj=1,2,..,n
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Proof. Letting a = b = 1 in inequality (I7), we have

s; (A'B + B*A)

Replacing A by VtA and B by %EB, where t > 0, and taking the minimum over t, we have

5; (A'B + B'A)

IA

2 2

A'B+B'A\ (AB+BA\ 1, ., .
(25520 (S22 Ly o).

A'B+B'A\ (A'B+B'A |A* + |Bf?
o1l Je( )+

IA

A'B+BA\_ (AB+BA
<5((=5)e!

O

2

=)+ nana.

An application of our work, can be seen in the following corollary.

Corollary 2.9. Let A, B € M,,(C). Then

25;(Re A) <5;(A®A) + |[Re Al

forj=1,2,..,n,and

2si(Re A) <sj(A® A) + w(A).

Proof. Letting B =1and a = b = 1 in inequality (9), we have

5;(2Re A)

Replacing A by tA, where t > 0, and taking the minimum over ¢, we have

IA

AP +1 AP +1

s]-((l '2 )ee(' '2 ))+||ReA||
1[1AP +1 0

Sf(z 0 |A|2+1])+”RQA”

1 ([1 o], [laF o
257([0 I}+[0 AP + |[Re AJ|

(e[S ae]) e

5 (1+5; (1A% ®1AP)) + [IRe Al

1
3 (1 +57 (A eaA)) +|IRe Al

N

25 (Re A) <sj(A®A) + |[Re A,

which proves inequality (I8). To prove inequality (19), we have

ZS]' (Re A)

<

IA

si(A® A) +||Re Al|
si(A®A) + max ”Re (eiaA)”
si(A® A) +w(A).

6490

(18)

(19)
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It follows by the triangle inequality that for A € IM,,(C),
IRe All < [lA]l. (20)

As an application of Corollary 2.9) we give a refinement of inequality (20). This can be seen as follows:

let j = 1 in inequality (I9), we have

2||Re Al < [IA]l + w(A),

or equivalently,

IRe All < 2 (JAI + w(A)),

which is a refinement of inequality (20). In fact, we have

1 1
IRe Al < > [All+ sw(A)
2 2
1 1
< SlAl+ 5 11A
S 1141+ 5 Al
(by inequality (1))
= Al
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