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Hyper-Leonardo numbers:
Combinatorial interpretation and some positivities
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Abstract. In this paper, we establish the combinatorial interpretations of the hyper-Leonardo numbers Le(r)
n

and Leonardo numbers Len. We investigate the log-concavity of the Leonardo numbers for n ≥ 3 and the
hyper-Leonardo numbers for n, r ≥ 1. In addition, we prove the log-balancedness of the hyper-Leonardo
numbers for r = 1, 2. Furthermore, we prove the q-log-concavity of the polynomial

∑n
k=0 Le(r)

k qk for n, r ≥ 1.

1. Introduction

The sequence {Len}n≥0 of Leonardo numbers was introduced by Catarino and Borges [9] and is defined
recursively by

Len = Len−1 + Len−2 + 1, n ≥ 2, (1)

with initial values Le0 = Le1 = 1.

This sequence has the following generating function:∑
n≥0

Lenxn =
1 − x + x2

(1 − x)(1 − x − x2)
. (2)

Its Binet formula is:

Len =
2(αn+1

− βn+1)
α − β

− 1, (3)

where α = 1+
√

5
2 and β = 1−

√
5

2 .
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The previous authors [9] proved that this sequence has some relations with the Fibonacci {Fn}, Lucas
{Ln} sequences such as

Len = 2Fn − 1 (4)

and

Len = Ln+2 − Fn+2 − 1. (5)

Alp, and Kocer obtained Cassini’s identity for Leonardo numbers as

(Len)2
− Len−1Len+1 = Len−1 − Len−2 + 4(−1)n. (6)

For other identities and properties of Leonardo number, see the reference [5, 10].

As an extension of Leonardo numbers, Kuhapatanakul and Chobsorn [15] defined the generalized
Leonardo numbers Lk,n recursively by

Lk,n = Lk,n−1 +Lk,n−2 + k, n ≥ 2, (7)

with initial values Lk,0 = Lk,1 = 1, and the parameter k can be a fixed positive integer or an indeterminate.
When k = 1, we obtain the classical Leonardo numbers L1,n = Len.

They established [15] the following generating function of Lk,n :∑
n≥0

Lk,nxn =
1 − x + kx2

(1 − x)(1 − x − x2)
. (8)

Kuhapatanakul and Chobsorn [15] proposed also some identities and an incomplete version of this
numberLk,n. Shattuck [18] interpreted it as the enumerator of two classes of linear colored tilings of length
n. Furthermore, he [18] proposed a (p, q)-generalization of Lk,n by considering the joint distribution of a
pair of statistics on one of the aforementioned classes of colored tilings.

The linear recurrence sequences like Fibonacci and Lucas sequences are generalized in many ways in
the literature. For example, Dil and Mező [13] introduced hyper-Fibonacci and hyper-Lucas numbers as
the generalizations of the Fibonacci and Lucas numbers, by the following formulas

F(r)
n =

n∑
k=0

F(r−1)
k with F(0)

n = Fn, F(r)
0 = 0, F(r)

1 = 1 (9)

and

L(r)
n =

n∑
k=0

L(r−1)
k with L(0)

n = Ln, L(r)
0 = 2, L(r)

1 = 2r + 1. (10)

They obtained also that the hyper-Fibonacci and hyper-Lucas numbers satisfy the following recurrence
relations, respectively:

F(r)
n = F(r)

n−1 + F(r−1)
n (11)

and

L(r)
n = L(r)

n−1 + L(r−1)
n . (12)
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In the same way, Bahsi and Mersin [17] introduced the hyper-Leonardo numbers as follows

Le(r)
n =

n∑
k=0

Le(r−1)
k with Le(0)

n = Len, Le(r)
0 = 1, Le(r)

1 = r + 1. (13)

This relation yields the recurrence relation

Le(r)
n = Le(r)

n−1 + Le(r−1)
n . (14)

The previous authors [17] gave the generating function of the hyper-Leonardo numbers as follows∑
n≥0

Le(r)
n xn =

1 − x + x2

(1 − 2x + x3)(1 − x)r . (15)

They presented also [17] some combinatorial properties of these numbers using the Euler-Seidel symmetric
algorithm. And they gave the recurrence relations and summation formulas.

The first few values of the Leonardo and hyper-Leonardo numbers as follows:

n 0 1 2 3 4 5 6 7 8 9 10
Len 1 1 3 5 9 15 25 41 67 109 177
Le[1]

n 1 2 5 10 19 34 59 100 167 276 453
Le[2]

n 1 3 8 18 37 71 130 230 397 673 1126

Let n and s be two positive integers, the bisnomial coefficients
(n

k
)

s are defined as the kth coefficients in the
expansion,

(1 + x + · · · + xs)n =

sn∑
k=0

(
n
k

)
s
xk,

with
(n

k
)

s = 0 unless sn ≥ k ≥ 0.
The bisnomial coefficients satisfy other properties, see for instance [4, 6, 8]. These coefficients, as for

usual binomial coefficients, are built trough the Pascal triangle, known as s-Pascal triangle or generalized
Pascal triangle. The initial values of this triangle can be found in the OEIS as sequence A027907 for s = 2,
which is also known as the triangle of trinomial coefficients [19].

The outline of the paper is as follows: Section 2 contains the combinatorial interpretations of the
hyper-Leonardo and Leonardo numbers, and the generating function proof of the relation between the
hyper-Leonardo number and Leonardo number. Section 3 contains three subsections, in Subsection 3.1 we
show that {Len}n≥3 and {Le(r)

n }n≥1 for r ≥ 1 are log-concave. In Subsection 3.2 we establish that {Le(1)
n }n≥1 and

{Le(2)
n }n≥1 are log-balanced. Finally, Subsection 3.3 contains the proof of the q-log-concavity of the polynomial∑n

k=0 Le(r)
k qk for n, r ≥ 1.

2. Combinatorial interpretations

Recall to the combinatorial interpretation of the generalized Leonardo number Lk,n given by Shattuck
[18]. To do this, he proposed the following definition:

Definition 2.1. A k-tile is a rectangular piece coming in one of k colors which

• must occur as the first piece in a tiling, if it occurs at all,

• has arbitrary length greater than or equal two.



B. Rezig, M. Ahmia / Filomat 39:19 (2025), 6753–6762 6756

A k-tile of length l will be denoted by kl for all l ≥ 2.

According to this definition, he established the following combinatorial interpretation for the generalized
Leonardo numbers Lk,n.

Proposition 2.2. [18, Proposition 2.1] The generalized Leonardo number Lk,n counts the number of n-board tilings
using squares, dominos and k-tiles.

This proposition allows us to propose the following combinatorial interpretation for the hyper-Leonardo
numbers Le(r)

n .

Theorem 2.3. The hyper-Leonardo number Le(r)
n counts the number of n + 2r-board tilings using squares, one 1-tile

and at least r dominos.

Proof. Let Le(r)
n = l(r)

n+2r. So, in the first step of the proof we show that the sequence of numbers ln+2r obeys
the same recurrence relation (14),

l(r)
n+2r = l(r)

n−1+2r + l(r−1)
n+2r−2.

We consider the last tile in an (n+2r)-board tiling. If the (n+2r)-board ends with a square, then the remaining
(n− 1+ 2r)-board can be tiled in l(r)

n−1+2r ways. If it ends with a domino, the remaining (n+ 2r− 2)-board can
be tiled in l(r−1)

n+2r−2 ways. Otherwise, if it ends with a 1-tile, then from Definition 2.1 this 1-tile takes all cases
of (n + 2r)-board tiling, then it remains zero 0 ways to tile. Thus, board tilings satisfy the same recurrence
relation (14) as hyper-Leonardo numbers.

Now we are testing the initial condition. For n = 0, there is one 2r-board tiling, with at least r dominos,
thus l(r)

2r = 1 and consequently l(r)
2r = Le(r)

0 . For n = 1, the (1+2r)-board can be tiled in
(r+1

r
)
= r+1 = l(r)

1+2r = Le(r)
1

ways with at least r-dominos. For r = 0 there is no constraint on the number of dominoes and clearly we
have l(0)

n = Le(0)
n = Len. This completes the proof.

By setting r = 0 in Theorem 2.3, we obtain immediately the tilling interpretation of the Leonardo numbers.

Corollary 2.4. The Leonardo number Len counts the number of n-board tilings using squares, one 1-tile and dominos.

Bahsi and Mersin [17, Theorem 2] gave the relation between the hyper-Leonardo number and Leonardo
number using recurrence relation (14):

Le(r)
n =

n∑
k=0

(
n + r − k − 1

r − 1

)
Lek. (16)

For r = 1 and r = 2, the previous authors [17] established the following two identities:

Le(1)
n = Len+2 − (n + 2) (17)

and

Le(2)
n = Len+4 −

1
2

(n2 + 7n + 16). (18)

In Proposition 2.6, we present a generalization of the identities 17 and 18. We begin with the following
lemma [11].

Lemma 2.5. For a positive integer r, we have

Le(r)
n = 2F(r)

n+1 −

(
n + r

r

)
(19)

and

F(r)
n = Fn+2r −

r−1∑
k=0

(
n + r + k
r − 1 − k

)
. (20)
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This lemma gives us the following result.

Proposition 2.6. For a positive integer r, we have

Le(r)
n = Len+2r − 2

r−1∑
k=0

(
n + r + k + 1

r − 1 − k

)
−

(
n + r

r

)
+ 1. (21)

Proof. From relations (19) and (20) in Lemma 2.5, we have

Le(r)
n = 2

Fn+1+2r −

r−1∑
k=0

(
n + r + k + 1

r − 1 − k

) − (
n + r

r

)

= Len+2r − 2
r−1∑
k=0

(
n + r + k + 1

r − 1 − k

)
−

(
n + r

r

)
+ 1.

This completes the proof.

In the next proposition, we give the generating function proof of the identity (16) using relation (15).

Proposition 2.7. If n ≥ 1 and r ≥ 1, we have

Le(r)
n =

n∑
k=0

(
n + r − k − 1

r − 1

)
Lek. (22)

Proof. Form (2) and (15), the generating functions of Leonardo and hyper-Leonardo numbers are respec-
tively:∑

n≥0

Lenxn =
1 − x + x2

(1 − 2x + x3)

and ∑
n≥0

Le(r)
n xn =

1 − x + x2

(1 − 2x + x3)(1 − x)r .

We know that ∑
k≥0

(
r + j − 1

r − 1

)
xk =

1
(1 − x)r .

Thus, using this equation together with (15), we readily obtain the desired identity via convolution.

3. Log-concavity, log-balancedness and q-log-concavity

Let {an}n≥0 be a sequence of nonnegative numbers. The sequence is called log-concave (resp. log-convex)
if anan+2 ≤ a2

n+1 (resp. anan+2 ≥ a2
n+1) for all n ≥ 0.

We say that {an}n≥0 is log-balanced [14] if {an}n≥0 is log-convex and {an/n!}n≥0 is log-concave.

The log-convexity, log-concavity are important properties of combinatorial sequences, and they play
an important role in many fields such as quantum physics, white noise theory,probability, economics
and mathematical biology. Clearly, log-balancedness implies log-convexity. The log-concave and log-
convex sequences arise often in combinatorics and have been extensively investigated. We refer the reader
to[7, 20, 21] for the log-concavity and [16, 23] for the log-convexity.
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For two polynomials with real coefficients f (q) and 1(q), denote f (q) ≥q 1(q) if the difference f (q) − 1(q)
has only nonnegative coefficients. For a polynomial sequence

(
fn(q)

)
n≥0, it is called q-log-concave (resp.

q-log-convex, introduced by Liu and Wang [16]), first suggested by Stanley [20], if

fn(q)2
≥q fn−1(q) fn+1(q) (resp. fn(q)2

≤q fn−1(q) fn+1(q)).

The first work about the log-concavity, log-convexity and log-balancedness of the hyper-numbers is
due to Zheng and Liu [22], they proved that the hyper-Fibonacci numbers and the hyper-Lucas numbers
satisfy these properties under some conditions. In addition, they extend their work to the generalized
hyper-Fibonacci and hyper-Lucas numbers. After, Ahmia et al. in [1, 2] do the same for the hyper-Pell, the
hyperpell-Lucas, the hyper-Jacobsthal and the hyerjacobsthal-Lucas numbers.

Motivated by these work, we establish in this section the log-concavity of Leornardo numbers Len

and hyper-Leonardo numbers Le(r)
n , then we investigate the log-balancedness property of hyper-Leonardo

numbers Le(r)
n for r = 1, 2. Finally, we prove that the polynomial

∑n
k=0 Le(r)

k qk is q-log-concave for r,n ≥ 1.

3.1. Log-concavity property

First of all, we start by the following lemmas.

Lemma 3.1. [12, 21] If the sequences {an}n and {bn}n are log-concave, then so is their ordinary convolution cn =∑n
k=0 akbn−k.

Lemma 3.2. [21] If the sequence {xn}n is log-concave, then so is their binomial convolution yn =
∑n

k=0
(n

k
)
xk.

Lemma 3.3. [3] If the sequence {zn}n is log-concave, then so is their bisnomial convolution tn =
∑n

k=0
(n

k
)

szk.

Now, we prove in the following theorem the log-concavity of Leonardo numbers.

Theorem 3.4. The Leonardo numbers {Len}n form a log-concave sequence for n ≥ 3.

Proof. It is clear that the sequence Le0,Le1,Le2 is not log-concave. So, to proof that the sequence of Leonardo
number is log-concave for n ≥ 3, it suffices to check the following inequality:

(Len+1)2
− LenLen−1 ≥ 0, for n ≥ 4.

From relation (4), we obtain

(Len+1)2
− LenLen−1 = Len − Len−1 + 4(−1)2

= Len−2 + 4(−1)2 + 1
≥ 0,

which completes the proof.

By Lemma 3.2, Lemma 3.3 and above theorem, we obtain the following results.

Corollary 3.5. The sequences {
∑n

k=0
(n

k
)
Lek}n≥3 and {

∑sn
k=0

(n
k
)

sLek}n≥3 are log-concave.

From (14), we note that {Le(r)
n }n is the convolution of {Le(r)

n }n and {1}n. Then, we can prove that the hyper-
Leonardo numbers verify the log-concavity property as follows.

Theorem 3.6. The hyper-Leonardo numbers {Le(r)
n }n≥1 (r ≥ 1) form a log-concave sequence.
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Proof. Using equation (17), we show that the sequence {Le(1)
n }n≥1 satisfies the log-concavity property. Con-

sider the following computation:(
Le(1)

n+1

)2
− Le(1)

n Le(1)
n+2 = (Len+3 − (n + 3))2

− (Len+2 − (n + 2)) (Len+4 − (n + 4))

=
(
(Len+3)2

− Len+2Len+4

)
+ (n2 + 6n + 9) − (n2 + 6n + 8)

+ ((n + 4)Len+2 + (n + 2)Len+4 − 2(n + 3)Len+3)

=
(
(Len+3)2

− Len+2Len+4

)
− 1

+(n + 2)(Len+2 − Len+1) − 2Len+1.

From equation (6), we obtain the simplified expression:(
Le(1)

n+1

)2
− Le(1)

n Le(1)
n+2 = (n + 3)Len − 2Len+1 + 4(−1)n+3 + n + 2. (23)

To verify positivity, we first consider the case n = 1:(
Le(1)

2

)2
− Le(1)

1 Le(1)
3 = 4Le1 − 2Le2 + 4(−1)4 + 3 = 4 × 1 − 2 × 3 + 7 = 5 > 0.

Now, assuming by induction that the expression in (23) is positive for some n ≥ 2, we show it remains
positive for n + 1, that is:(

Le(1)
n+2

)2
− Le(1)

n+1Le(1)
n+3 = (n + 4)Len+1 − 2Len+2 + 4(−1)n+4 + n + 3 ≥ 0.

Using equation (1), we compute:(
Le(1)

n+2

)2
− Le(1)

n+1Le(1)
n+3 =

(
(n + 3)Len − 2Len+1 + 4(−1)n+3 + n + 2

)
+

(
(n + 2)Len−1 − 2Len + 4(−1)n+2 + n + 1

)
+Len + 2Len−1 + 4(−1)n+4 + 2
≥ 0.

Thus, we conclude that the sequence {Le(1)
n }n≥1 is log-concave. Then, by Lemma 3.1, it follows that the

sequence {Le(r)
n }n≥1 is also log-concave for all r ≥ 2. This completes the proof of the theorem.

Using Theorem 3.6, Lemma 3.2 and Lemma 3.3, we obtain also the following results.

Corollary 3.7. The sequences {
∑n

k=0
(n

k
)
Le(r)

k }n≥1 and {
∑sn

k=0
(n

k
)

sLe(r)
k }n≥1 (r ≥ 1) are log-concave.

3.2. The log-balancedness property

Theorem 3.8. The sequence {n!Le(1)
n }n≥1 is log-balanced.

Proof. By Theorem 3.6, to prove that the sequence n!Le(1)nn ≥ 1 is log-balanced, it suffices to show that it is
log-convex.

From equations (17) and (23), we obtain

(n + 1)
(
Le(1)

n+1

)2
− (n + 2)Le(1)

n Le(1)
n+2 = (n + 1) ((n + 3)Len − 2Len+1

+4(−1)n+3 + n + 2
)
− (Len+3 − (n + 3))2 .

Let us define
En = (n + 1)

(
(n + 3)Len − 2Len+1 + 4(−1)n+3 + n + 2

)
− (Len+3 − (n + 3))2 .

It is straightforward to verify that En < 0 for 1 ≤ n ≤ 4. Next, we prove by induction the following two
inequalities:

Len ≥ 2n, for n ≥ 4 (24)
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and

Len ≥ n2, for n ≥ 8. (25)

It remains to show that En < 0 for all n ≥ 5.
For n ≥ 5, applying inequalities (25) and the identity (23), we have:

En = (n2 + 4n + 3)Len + 2(n + 1)Len+2 + 2(n + 1) + 4Len+3 + 4(n + 1)(−1)n+3

−(Len+3)2
− 3n − 7

≤ (n2 + 4n + 3)Len + 2(n + 1)Len+2 + 4Len+3 − (Len+3)2 + 3n − 1
≤ (3n − 1) − (Len+3 − (n + 3)2)Len+3

< 0.

Furthermore, observe that (
(n + 1)!Le(1)

n+1

)2
− n!(n + 2)!Le(1)

n Le(1)
n+2 = n!(n + 1)!En,

which implies (
(n + 1)!Le(1)

n+1

)2
− n!(n + 2)!Le(1)

n Le(1)
n+2 < 0, for n ≥ 1.

Therefore, the sequence {n!Le(1)
n }n≥1 is log-convex, and hence, by Theorem 3.6, it is log-balanced.

Lemma 3.9. For n ≥ 0, we have(
Le(2)

n+1

)2
− Le(2)

n Le(2)
n+2 =

1
2

(n2 + 11n + 16)Len+2 − (2n + 7)Len+3

+
1
2

(3n2 + 21n + 36) + 4(−1)n+5. (26)

Proof. From equation (18), we begin with the expression(
Le(2)

n+1

)2
− Le(2)

n Le(2)
n+2,

which can be expanded as(
Len+5 −

1
2

(n2 + 9n + 24)
)2

−

(
Len+4 −

1
2

(n2 + 7n + 16)
) (

Len+6 −
1
2

(n2 + 11n + 34)
)
.

Simplifying this expression yields

2Len+2 + 4(−1)n+5 + 2 +
1
2

(n2 + 5n +
1
2

(n2 + 7n + 16)(Len+2 + 1) − (2n + 7)Len+3.

Combining like terms and simplifying further, we obtain

1
2

(n2 + 11n + 16)Len+2 − (2n + 7)Len+3 + (n2 + 6n + 10) + 4(−1)n+5.

This completes the proof.

Theorem 3.10. The sequence {n!Le(2)
n }n≥1 is log-balanced.
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Proof. By Theorem 3.6, to establish that the sequence {n!Le(2)
n }n≥1 is log-balanced, it suffices to prove that it

is log-convex.
From equation (18) and Lemma 3.9, we obtain the following expression:

(n + 1)
(
Le(2)

n+1

)2
− (n + 2)Le(2)

n Le(2)
n+2 = (n + 2)

(1
2

(n2 + 11n + 16)Len+2

−(2n + 7)Len+3 + (n2 + 6n + 10) + 4(−1)n+5
)

−

(
Len+5 −

1
2

(n2 + 9n + 24)
)2

.

Define

Sn = (n + 2)
(1

2
(n2 + 11n + 16)Len+2 − (2n + 7)Len+3 + (n2 + 6n + 10) + 4(−1)n+5

)
−

(
Len+5 −

1
2

(n2 + 9n + 24)
)2

.

It is straightforward to verify that Sn < 0 for 1 ≤ n ≤ 4. We now show that Sn < 0 for all n ≥ 5.
Expanding Sn, we obtain:

Sn =
1
2

(n3 + 15n2 + 56n + 72)Len+2 + (7n + 26)Len+3 + (4n + 8)(−1)n+5

−4Len+2Len+3 − (Len+2)2
− 4(Len+3)2

−
1
4

(n4 + 14n3 + 89n2 + 272n + 320).

Now, observe that:

Sn <
(1

2
(n3 + 15n2 + 56n + 72)Len+2 − (Len+2)2

− 4(Len+3)2
)

+ ((7n + 26)Len+3 − 4Len+2Len+3) −
1
4

(n4 + 14n3 + 89n2 + 256n + 288)

< 0.

Therefore, Sn < 0 for all n ≥ 1, which implies that the sequence {n!Le(2)
n }n≥1 is log-convex. By Theorem 3.6, it

follows that the sequence is log-balanced.

3.3. q-Log-concavity property
For r ≥ 1, let

Len,r(q) =
n∑

k=0

Le(r)
k qk.

Theorem 3.11. The polynomial Len,r(q) is q-log-concave for n ≥ 0.

Proof. When n ≥ 1 and r ≥ 1, we have

Le2
n+1,r(q) − Len,r(q)Len+2,r(q) =

n+1∑
k=0

Le(r)
k qk


2

−

n∑
k=0

Le(r)
k qk

n+2∑
k=0

Le(r)
k qk

=

n+1∑
k=0

Le(r)
k qk

 n∑
k=0

Le(r)
k qk + Le(r)

n+1qn+1

 − n∑
k=0

Le(r)
k qk

n+1∑
k=0

Le(r)
k qk + Le(r)

n+2qn+2


=

n+1∑
k=0

Le(r)
k Le(r)

n+1qn+k+1
−

n∑
k=0

Le(r)
k Le(r)

n+2qn+k+2

=

n∑
k=0

(
Le(r)

k+1Le(r)
n+1 − Le(r)

k Le(r)
n+2

)
qn+k+2 + Le(r)

n+1qn+1.
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As
{
Le(r)

n

}
n≥1

is log-concave, then the polynomial Len,r(q) is q-log-concave for n ≥ 1.
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