
Filomat 39:19 (2025), 6763–6770
https://doi.org/10.2298/FIL2519763N

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. A k-edge coloring of a graph G is considered injective if any two edges that are at distance
2 or reside within the same triangle receive distinct colors. The minimum integer k for which G admits
a k-injective-edge coloring is referred to as the injective edge chromatic number of G, denoted by χ′i (G).
This paper presents findings on the injective edge chromatic numbers for graphs with maximum degrees
of 4 and 5. In particular, we show that if the maximum average degree (mad(G)) of a graph G, where the
maximum degree is 4, is less than 38

11 , then it follows that χ′i (G) ≤ 13, thereby enhancing the previous result
established by Bu and Qi [Discrete Math. Algorithms Appl., 2018]. Additionally, we prove that for any
graph G with a maximum degree of 5, it holds true that if mad(G) < 1501

384 , then χ′i (G) ≤ 21, furthermore, if
mad(G) < 4, then also χ′i (G) ≤ 22.

1. Introduction

In this article, we concentrate exclusively on finite, undirected simple graphs. Let ϕ represent a k-edge
coloring of the graph G. If for any three consecutive edges e1, e2, and e3 that lie on the same path or triangle
within G, it holds true that ϕ(e1) , ϕ(e3), then ϕ is referred to as an injective k-edge coloring of G. The
smallest integer k allows for such an injective edge coloring is referred to as its injective chromatic index,
denoted by χ

′

i(G). It is important to note that an injective edge-coloring need not be proper. Cardoso et
al. [4] introduced the notion of injective edge coloring to address challenges in packet radio networks and
demonstrated that computing χ

′

i(G) is NP-hard.
The injective chromatic index is intricately linked to several other concepts. A proper injective edge

coloring corresponds precisely to a strong edge coloring, which divides the edges of a graph into induced
matchings. The induced star arboricity isa(G) of a graph G represents the minimum number of induced star
forests required to cover the edges of G, as detailed in [1]. Ferdjallah, Kerdjoudj, and Raspaud [5] utilized
Proposition 2.2 from [4] to note that the induced star arboricity of a graph precisely equals its injective
chromatic index, leading to the following conclusion.

Theorem 1.1. [5] Let G be a simple graph that is not a cycle, then it follows that χ′i(G) ≤ 2(∆ − 1)2.
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Let ∆ represent the maximum degree of G. The relationships between the injective chromatic index and
both the acyclic chromatic number, as well as the star chromatic number are also examined in [5].

In 2021, Lv et al. [10] investigated the list version of injective edge coloring for subcubic graphs. Further
results concerning the injective chromatic index for graphs with girth and maximum degree constraints
can be found in [3, 6, 8, 9, 12]. Additionally, Lu et al. [7] and Yang et al. [11] have explored the injective
chromatic index in the context of graphs with small weights.

The maximum average degree of a graph G, referred to as mad(G), is defined as the maximum average
calculated across all subgraphs H of G; specifically, it can be expressed as mad(G) = max

{
2|E(H)|
|V(H)| : H ⊆ G

}
. In

2018, Bu and Qi [2] initiated an investigation into the injective chromatic index of graphs with a maximum
degree not exceeding four.

Theorem 1.2. [2] For any graph G with ∆ ≤ 4, it follows that χ′i(G) ≤ 13 if mad(G) < 10
3 .

In this article, we explore the injective edge coloring of sparse graphs with a maximum degree ∆ ≤ 4
and establish the following theorem, which advances the findings of Bu and Qi [2].

Theorem 1.3. For any graph G with ∆ ≤ 4, it follows that χ′i(G) ≤ 13 if mad(G) < 38
11 .

It is widely recognized that for any graph with a maximum degree of 5, the trivial upper bound on the
injective chromatic index is 32. A pertinent question arises regarding the possibility of reducing this bound.
Zhu et al. [13] examine the χ

′

i(G) for graphs with ∆ ≤ 5, providing several sufficient conditions for those
graphs that satisfy χ

′

i(G) ≤ 20. In this paper, we will explore the injective chromatic index of graphs with a
maximum degree not exceeding 5 and present the subsequent theorems.

Theorem 1.4. Let G be a graph with ∆(G) = 5,
(1) χ

′

i(G) ≤ 21 if mad(G) < 1501
384 ;

(2) χ
′

i(G) ≤ 22 if mad(G) < 4.

2. Injective edge coloring of sparse graphs

In this section, we begin by establishing some essential notation. Let G = (V(G),E(G)) denote a graph.
For any vertex v ∈ V(G), the set of all neighbors of v is denoted as NG(v). The degree of vertex v is defined
as dG(v) = |NG(v)|. A vertex with degree k (resp. at least k) is referred to as a k-vertex (resp. a k+-vertex). A
(v1, v2, . . . , vl)-vertex is defined as an l-vertex whose neighbors have degrees corresponding to v1, v2, . . . , vl.

Let ϕ be an injective edge coloring of the subgraph G′, we define the set of available colors for an edge
e ∈ E(G) \ E(G′) as Lϕ(e), and reduce Lϕ(e) to L(e) if G is obvious from the context. We define the coloring ϕ
as complete when it is extended from G′ to encompass all edges in G.

2.1. Proof of Theorem 1.3
In the present section, we will demonstrate Theorem 1.3 using a proof by contradiction. Assume

G is a counterexample that minimizes the sum |V(G)| + |E(G)| for Theorem 1.3. Consequently, G must be
connected and satisfy the conditions ∆(G) ≤ 4, mad(G) < 38

11 , and χ
′

i(G) > 13. Additionally, every proper
subgraph of G is injective 13-edge colorable. To begin our analysis, we will first outline several properties
of G.

Lemma 2.1. δ(G) ≥ 3.

Proof. Suppose d(v) = 2 and N(v) = {v1, v2}. Based on the minimality of G, it can be deduced that χ
′

i(G−v) ≤
13. Moreover, it is noted that |L(vv1)| ≥ 1 and |L(vv2)| ≥ 1, which indicates that both edges vv1 and vv2 can
be colored, resulting in a contradiction.

Lemma 2.2. Every 3+-vertex has at least one 4-neighbor.
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Proof. We will show that each 3-vertex has at least one 4-neighbor, and a similar argument holds for 4-
vertex. Let N(v) = {v1, v2, v3}. Assume d(vi) = 3 for i = 1, 2, 3. Based on the minimality of G, it follows
that χ

′

i(G − v) ≤ 13. If there exist an edge viv j ∈ E(G), where 1 ≤ i, j ≤ 3, then |L(vvi)| ≥ 6, |L(vv j)| ≥ 6 and
|L(vvk)| ≥ 4, where k ∈ {1, 2, 3} − {i, j}. Consequently, vvi, vv j, and vvk can be sequentially colored, leading to
a contradiction. Otherwise, for 1 ≤ i ≤ 3, |L(vvi)| ≥ 3 and thus vvi can be assigned a color distinct from the
forbidden colors, resulting in a contradiction.

Claim 2.3. Let v be a 3-vertex with t 4-neighbors in G.
(1) If t = 1, then v is incident with a (3, 4, 4, 4)-vertex.
(2) If t = 2, then v has incident with at most one (3, 3, 3, 4)-vertex.

Proof. (1) Assume instead that vertex v has a (3, 3, 4, 4)-vertex v1. Let N(v1) = {v,w1,w2,w3}, where d(w1) = 3
and d(w2) = d(w3) = 4. Based on the minimality of G, we can obtain a coloring ϕ of G − v. Note that
|L(vv1)| ≥ 1, |L(vv2)| ≥ 2, and |L(vv3)| ≥ 2. Therefore, we can extend ϕ by sequentially assigning colors to
vv1, vv2, vv3, which leads to a contradiction.

(2) Assume instead that v has two (3, 3, 3, 4)-vertices v1 and v2. Denote N(v1) = {v,u1,u2,u3}, N(v2) =
{v,w1,w2,w3}, where d(u1) = d(u2) = d(w1) = d(w2) = 3 and d(u3) = d(w3) = 4. Based on the minimality of G,
we can derive a coloring ϕ for the G − v. Note that |L(vv1)| ≥ 1, |L(vv2)| ≥ 1, and |L(vv3)| ≥ 1. Consequently,
we can extend ϕ by sequentially assigning colors to vv1, vv2, vv3, which results in a contradiction.

For every vertex v ∈ V(G), we establish a weight function w defined as w(v) = d(v) − 38
11 . Let R1, R2, and

R3 be three discharging rules. Our goal is to show that w′(v) ≥ 0 for every v ∈ V(G) upon the completion of
the discharging process.

Discharging Rules

R1 Every (3, 4, 4, 4)-vertex sends 6
11 to each of its incident 3-vertex.

R2 Every (3, 3, 4, 4)-vertex sends 3
11 to each of its incident 3-vertices.

R3 Every (3, 3, 3, 4)-vertex sends 2
11 to each of its incident 3-vertices.

We will now demonstrate that w′(v) ≥ 0 for all v ∈ V(G).
Case 1. d(v) = 3.
In this case, we find w(v) = 3 − 38

11 = −
5
11 . According to Lemma 2.2, v has at least one 4-neighbor. If

there exists exactly one 4-vertex in N(v), then by Claim 2.3(1), this 4-vertex is a (3, 4, 4, 4)-vertex. According
to R1, the 4-neighbor of v sends charge 6

11 to v. Consequently, we have w′(v) = w(v) + 6
11 > 0. If there exist

exactly two 4-vertices in N(v), then by Claim 2.3(2), v has incident with at most one (3, 3, 3, 4)-vertex. By
R1-R3, 4-neighbors of v sends charge at least min{ 6

11 ,
3

11 } +
2
11 =

5
11 to v. Thus, w′(v) = w(v) + 5

11 = 0. If there
exist three 4-vertices in N(v), then by R1-R3, every 4-neighbor sends charge at least 2

11 to v. Therefore, we
conclude that w′(v) = w(v) + 3 × 2

11 > 0.
Case 2. d(v) = 4.
In this case, we have w(v) = 4 − 38

11 =
6
11 . According to Lemma 2.2, v can be incident to at most three

3-neighbors. If v has three such neighbors, by R3, v sends charge 3 × 2
11 =

6
11 to its 3-neighbors. Hence,

w′(v) = w(v) − 6
11 = 0. If v has exactly two 3-neighbors, then v sends charge at least 2 × 3

11 =
6

11 to its
3-neighbors by R2. Therefore, w′(v) = w(v) − 6

11 = 0. If v has at most one 3-neighbor, then by R1, v sends
charge 6

11 to its 3-neighbor. Hence, w′(v) = w(v) − 6
11 = 0.

Given that mad(G) < 38
11 , it follows that

∑
v∈V(G) w′(v) < 0. However, from Case 1 and Case 2, we have

0 ≤
∑

v∈V(G)

w′(v) =
∑

v∈V(G)

w(v) < 0,

which result in a contradiction. □
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2.2. Proof of Theorem 1.4
Suppose, to the contrary, that G is a minimal counterexample to Theorem 1.4 in terms of |V(G)|+ |E(G)|.

Specifically, G is a graph that satisfies ∆(G) ≤ 5 and mad(G) < l (l is equal to 1501
384 , 4 respectively), χ

′

i(G) > k (k
is equal to 21, 22, respectively), but every proper subgraph of G is k-injective-edge colorable. We will begin
by establishing several properties of G.

Lemma 2.4. δ(G) ≥ 3.

Proof. Assume that d(v) = 2 and let N(v) = {v1, v2}. Based on the minimality of G, it follows thatχ
′

i(G−v) ≤ 21.
It is important to note that |L(vv1)| ≥ 1, |L(vv2)| ≥ 1, which implies that vv1 and vv2 can be colored. This
leads to a contradiction.

Lemma 2.5. Every 3-vertex has at most one 3-neighbor and at least one 5-neighbor.

Proof. We will show that each 3-vertex has at most one 3-neighbor, and a similar argument holds for 5-
neighbor. Let N(v) = {v1, v2, v3}, where d(v1) = d(v2) = 3. Based on the minimality of G, χ

′

i(G − v) ≤ 21. If
there exist viv j ∈ E(G), where 1 ≤ i, j ≤ 3, then it follows that |L(vvi)| ≥ 11, |L(vv j)| ≥ 11 and |L(vvk)| ≥ 2,
where k ∈ {1, 2, 3}−{i, j}. Thus, vvi, vv j and vvk can be colored in order, leading to a contradiction. Otherwise,
|L(vv1)| ≥ 7, |L(vv2)| ≥ 7 and |L(vv3)| ≥ 1, vv1, vv2 and vv3 can be colored, resulting in a contradiction.

Lemma 2.6. Every 5-vertex is adjacent to at most four 3-neighbors. If d(v1) = d(v2) = d(v3) = d(v4) = 3, then
d(v5) = 5.

Proof. Let N(v) = {v1, v2, v3, v4, v5}. Suppose d(vi) = 3 for i = {1, 2, 3, 4, 5}. Based on the minimality of G, we
can obtain a coloring ϕ of G − v. Note that |L(vvi)| ≥ 5, where 1 ≤ i ≤ 5. Therefore, we can extend ϕ by
coloring vv1, vv2, vv3, vv4 and vv5 in order, which is a contradiction.

If d(v1) = d(v2) = d(v3) = d(v4) = 3, assume that d(v5) ≤ 4. Based on the minimality of G, it follows that
χ
′

i(G − v) ≤ 21. Notice that |L(vv1)| ≥ 4, |L(vv2)| ≥ 4, |L(vv3)| ≥ 4, |L(vv4)| ≥ 4 and |L(vv5)| ≥ 1, vv1, vv2, vv3, vv4
and vv5 can be colored, leading to a contradiction. Thus, we conclude that d(v5) = 5.

Lemma 2.7. Every (3, 5, 5)-vertex has at most one (3, 3, 3+, 3+, 5)-vertex. If v is incident with exactly one (3, 3, 3+, 3+, 5)-
vertex, than the others 5-vertex is a (3, 4+, 5, 5, 5)-vertex.

Proof. Suppose, to the contrary, that v is adjacent to two (3, 3, 3+, 3+, 5)-vertices v2 and v3. Based on the
minimality of G, it follows that χ

′

i(G − v) ≤ 21. Notice that |L(vv1)| ≥ 5, |L(vv2)| ≥ 1, and |L(vv3)| ≥ 1.
Consequently, vv1, vv2 and vv3 can be assigned colors without conflict, leading to a contradiction.

If v is incident to exactly one (3, 3, 3+, 3+, 5)-vertex v2, assume that
∑

v∈N(v3) d(v) ≤ 21. Based on the
minimality of G, it follows that χ

′

i(G − v) ≤ 21. Notice that |L(vv1)| ≥ 5, |L(vv2)| ≥ 1, and |L(vv3)| ≥ 1.
Consequently, vv1, vv2 and vv3 can be colored without conflict, leading to a contradiction. Therefore, we
conclude that

∑
v∈N(v3) d(v) ≥ 22. This implies that v3 is a (3, 4+, 5, 5, 5)-vertex.

Lemma 2.8. Every (4, 4, 5)-vertex has a (3, 4+, 5, 5, 5)-neighbor.

Proof. Let N(v) = {v1, v2, v3}, where d(v1) = 4, d(v2) = 4 and d(v3) = 5. Suppose
∑

v∈N(v3) d(v) ≤ 21. Based on
the minimality of G, it follows that χ

′

i(G − v) ≤ 21. Notice that |L(vv1)| ≥ 2, |L(vv2)| ≥ 2 and |L(vv3)| ≥ 1.
Consequently, vv1, vv2 and vv3 can be colored without conflict, leading to a contradiction. Therefore, we
conclude that

∑
v∈N(v3) d(v) ≥ 22. This implies that v3 is a (3, 4+, 5, 5, 5)-vertex.

Lemma 2.9. Every (5, 5, 5)-vertex v is adjacent to at most two (3, 3, 3, 3, 5)-vertices. If v is incident with exactly two
(3, 3, 3, 3, 5)-vertices, then another 5-vertex is a (3, 3+, 4+, 5, 5)-neighbor or a (3, 4+, 4+, 4+, 5)-neighbor.

Proof. Suppose, to the contrary, that v is adjacent to three (3, 3, 3, 3, 5)-vertices v1, v2 and v3 in G. Based on
the minimality of G, it follows that χ

′

i(G − v) ≤ 21. Notice that |L(vv1)| ≥ 3, |L(vv2)| ≥ 3, and |L(vv3)| ≥ 3,
vv1, vv2 and vv3 can be colored, contradiction.

If v is incident to exactly two (3, 3, 3, 3, 5)-vertices v1 and v2, assume that
∑

v∈N(v3) d(v) ≤ 19. Based on the
minimality of G, it follows that χ

′

i(G − v) ≤ 21. Notice that |L(vv1)| ≥ 3, |L(vv2)| ≥ 3, and |L(vv3)| ≥ 1, vv1, vv2
and vv3 can be colored, leading to a contradiction. Therefore,

∑
v∈N(v3) d(v) ≥ 20. This implies that v3 is a

(3, 3+, 4+, 5, 5)-neighbor or a (3, 4+, 4+, 4+, 5)-neighbor.
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2.2.1. Proof of Theorem 1.4(1)
If l = 1501

384 , k = 21, we can demonstrate the following structural properties of G.

Lemma 2.10. Every 4-vertex is adjacent to at most three 3-neighbors. If d(v1) = d(v2) = d(v3) = 3, then d(v4) = 5.

Proof. Let N(v) = {v1, v2, v3, v4}. Assume that d(vi) = 3 for each i = {1, 2, 3, 4}. Based on the minimality of G,
it follows that χ

′

i(G − v) ≤ 21. If there exists viv j ∈ E(G), where 1 ≤ i, j ≤ 4, then |L(vvi)| ≥ 11, |L(vv j)| ≥ 11
and |L(vvk)| ≥ 8, where k ∈ {1, 2, 3, 4} − {i, j}. Therefore, vvi, vv j and vvk can be colored sequentially without
conflict, this leads to a contradiction. Otherwise, for 1 ≤ i ≤ 4, |L(vvi)| ≥ 7, which means that we can color
vv1, vv2, vv3 and vv4 in turn, a contradiction.

If d(v1) = d(v2) = d(v3) = 3, assume that d(v4) ≤ 4. Based on the minimality of G, it follows that
χ
′

i(G − v) ≤ 21. For 1 ≤ i ≤ 3, |L(vvi)| ≥ 6, |L(vv4)| ≥ 3, so can be colored, resulting in a contradiction.
Therefore, d(v4) = 5.

Lemma 2.11. Every (3, 4, 5)-vertex has a (3, 5, 5, 5, 5)-neighbor.

Proof. Let N(v) = {v1, v2, v3}, where d(v1) = 3, d(v2) = 4 and d(v3) = 5. We assume that
∑

v∈N(v3) d(v) ≤ 22.
Based on the minimality of G, it follows that χ

′

i(G − v) ≤ 21. Notice that |L(vv1)| ≥ 6, |L(vv2)| ≥ 3 and
|L(vv3)| ≥ 1, vv1, vv2 and vv3 can be colored without conflict, this leads to a contradiction. Therefore, we
conclude that

∑
v∈N(v3) d(v) ≥ 23. This implies that v3 is a (3, 5, 5, 5, 5)-vertex.

Lemma 2.12. Every (4, 5, 5)-vertex is adjacent to at most one (3, 3, 3, 3+, 5)-vertex. If v is incident with exactly one
(3, 3, 3, 3+, 5)-vertex, then another 5-vertex is a (3, 3+, 5, 5, 5)-neighbor or a (3, 4+, 4+, 5, 5)-neighbor.

Proof. Suppose, to the contrary, that v is adjacent to two (3, 3, 3, 3+, 5)-vertices v2 and v3. Based on the
minimality of G, we can obtain a coloring ϕ of G − v. Notice that |L(vv1)| ≥ 1, |L(vv2)| ≥ 2, and |L(vv3)| ≥ 2.
Therefore, ϕ can be extended by coloring vv1, vv2 and vv3 in order, which is a contradiction.

If v is incident with exactly one (3, 3, 3, 3+, 5)-vertex v2, we assume that
∑

v∈N(v3) d(v) ≤ 20. Based on
the minimality of G, it follows that χ

′

i(G − v) ≤ 21. It is important to note that |L(vv1)| ≥ 1, |L(vv2)| ≥ 2,
and |L(vv3)| ≥ 1, vv1, vv2 and vv3 can be colored, this leads to a contradiction. Therefore, we conclude that∑

v∈N(v3) d(v) ≥ 21. This implies that v3 is a (3, 3+, 5, 5, 5)-neighbor or a (3, 4+, 4+, 5, 5)-neighbor.

Lemma 2.13. Every (3, 3, 3, 5)-vertex has a (4, 4+, 5, 5, 5)-neighbor.

Proof. Let N(v) = {v1, v2, v3, v4}, where d(v1) = 3, d(v2) = 3, d(v3) = 3, d(v4) = 5. Suppose
∑

v∈N(v4) d(v) ≤ 22.
Based on the minimality of G, it follows that χ

′

i(G − v) ≤ 21. Notice that |L(vv1)| ≥ 5, |L(vv2)| ≥ 5, |L(vv3)| ≥ 5
and |L(vv4)| ≥ 1, vv1, vv2, vv3 and vv4 can be colored, this leads to a contradiction. Therefore, we conclude
that
∑

v∈N(v4) d(v) ≥ 23. This implies that v4 is a (4, 4+, 5, 5, 5)-vertex.

Lemma 2.14. Every (3, 3, 4, 5)-vertex has a (3+, 4, 5, 5, 5)-neighbor or a (4, 4+, 4+, 5, 5)-neighbor.

Proof. Let N(v) = {v1, v2, v3, v4}, where d(v1) = 3, d(v2) = 3, d(v3) = 4, d(v4) = 5. Suppose
∑

v∈N(v4) d(v) ≤ 21.
Based on the minimality of G, it follows that χ

′

i(G − v) ≤ 21. Notice that |L(vv1)| ≥ 4, |L(vv2)| ≥ 4, |L(vv3)| ≥ 1
and |L(vv4)| ≥ 1, vv1, vv2, vv3 and vv4 can be colored, this leads to a contradiction. Therefore, we conclude
that
∑

v∈N(v4) d(v) ≥ 22. This implies that v4 is a (3+, 4, 5, 5, 5)-vertex or a (4, 4+, 4+, 5, 5)-vertex.

Lemma 2.15. Every (3, 3, 5, 5)-vertex v is adjacent to at most one (3, 3, 3+, 4, 4+)-vertex. If v is incident with exactly
one (3, 3, 3+, 4, 4+)-vertex, then another 5-vertex is a (3+, 4, 4+, 5, 5)-vertex or a (4, 4+, 4+, 4+, 5)-vertex.

Proof. Suppose, to the contrary, that v is adjacent to two (3, 3, 3+, 4, 4+)-vertices v3 and v4. Based on the
minimality of G, it follows that χ

′

i(G − v) ≤ 21. Notice that |L(vv1)| ≥ 3, |L(vv2)| ≥ 3, |L(vv3)| ≥ 1, and
|L(vv4)| ≥ 1, vv1, vv2, vv3 and vv4 can be colored, this leads to a contradiction.

If v is incident with exactly one (3, 3, 3+, 4, 4+)-vertex v3, we assume that
∑

v∈N(v4) d(v) ≤ 20. Based on
the minimality of G, it follows that χ

′

i(G − v) ≤ 21. Notice that |L(vv1)| ≥ 3, |L(vv2)| ≥ 3, |L(vv3)| ≥ 1, and
|L(vv4)| ≥ 1, vv1, vv2, vv3 and vv4 can be colored, this leads to a contradiction. Therefore, we conclude that∑

v∈N(v4) d(v) ≥ 21. This implies that v4 is a (3+, 4, 4+, 5, 5)-vertex or a (4, 4+, 4+, 4+, 5)-vertex.
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For every vertex v ∈ V(G), we establish a weight function w defined as w(v) = d(v) − 1501
384 . Let R1-R6 be

three discharging rules. Our goal is to show that w′(v) ≥ 0 for every v ∈ V(G) after the completion of the
discharging process.

Discharging Rules

R1 Every (3, 4+, 4+, 4+, 4+)-vertex sends 349
384 to each of its incident 3-vertex.

R2 Every (3, 3, 4+, 4+, 4+)-vertex sends 419
768 to each of its incident 3-vertices.

R3 Every (3, 3, 3, 4+, 4+)-vertex sends 419
1152 to each of its incident 3-vertices.

R4 Every (3, 3, 3, 3, 4+)-vertex sends 419
1536 to each of its incident 3-vertices.

R5 Every 5-vertex redistributes its remaining charge after applying R1-R4 equitably to each of its incident
4-vertices.

R6 Every 4-vertex redistributes its remaining charge after applying the previous rules equitably to each of
its incident 3-vertices.

Applying R1 and R5, we can immediately conclude the following result.

Claim 1. Each (3, 4+, 4+, 4+, 4+)-vertex sends 35
768 to each of its incident 4-vertices.

Proof. If v is a (3, 4+, 4+, 4+, 4+)-vertex, then by Theorem 1.4(1), each 5-vertex v has a remaining charge of
5 − 1501

384 =
419
384 . According to R1, v sends 349

384 to its incident 3-vertex. And by R5, every 4-vertex receives
charge at least 1

4 × ( 419
384 −

349
384 ) = 35

768 from its incident 5-vertex.

Now, we consider the 4-vertex.

Claim 2. Every (3, 4, 4+, 5)-vertex or (3, 3, 5, 5)-vertex sends 35
384 to its incident 3-vertex.

Proof. If v is a (3, 4, 4+, 5)-vertex, then by Theorem 1.4(1), each 4-vertex v has a remaining charge of 4− 1501
384 =

35
384 . According to R6, v sends all remaining charge 35

384 to its incident 3-vertex. Therefore, the incident
3-vertex receives a charge of 35

384 .
If v is a (3, 3, 5, 5)-vertex, then by Lemmas 2.15, v has at least one (3+, 4, 4+, 5, 5)-neighbor. According to R1

and R5, each 5-neighbor sends charge 349
384 to its incident 3-vertex, and sends charge 1

2×(5− 1501
384 −

349
384 ) = 35

384 to its
incident 4-vertex. Due to the remaining charge of v being 35

384 . By R6, v distributes at least 1
2 × ( 35

384 +
35

384 ) = 35
384

to each of its incident 3-vertices.

Claim 3. Every (3, 3, 4, 5)-vertex sends 105
768 to each of its incident 3-vertices.

Proof. By Lemma 2.14, every (3, 3, 4+, 5)-vertex v has a (3+, 4, 5, 5, 5)-neighbor. According to R1 and R5, each
5-neighbor sends charge 349

384 to its incident 3-vertex, and sends charge 5 − 1501
384 −

349
384 =

35
192 to its incident

4-vertex. Due to the remaining charge of v being 35
384 . By R6, v distributes at least 1

2 × ( 35
192 +

35
384 ) = 105

768 to
each of its incident 3-vertices.

Claim 4. Every (3, 3, 3, 5)-vertex sends 163
768 to each of its incident 3-vertices.

Proof. By Lemma 2.13, every (3, 3, 3, 5)-vertex v has a (4, 4+, 5, 5, 5)-neighbor. By R5, 5-neighbor of v sends
charge at least 1

2 × (5 − 1501
384 ) = 419

768 to each of its incident 4-vertices. Due to the remaining charge of vertex v
being 35

384 . According to R6, v distributes at least 1
3 × ( 419

768 +
35
384 ) = 163

768 to each of its incident 3-vertices.

We will now demonstrate that w′(v) ≥ 0 for all v ∈ V(G).
Case 1. d(v) = 3.
In this case, w(v) = 3 − 1501

384 = −
349
384 . According to Lemma 2.5, v has at most one 3-neighbor and at least

one 5-neighbor.
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If there exists only one 5-vertex in N(v), then by Lemmas 2.8 and 2.11, v is incident to a (3, 4+, 5, 5, 5)-
neighbor. According to R1, the only 5-neighbor of v sends charge 349

384 to v. Consequently, we have
w′(v) = w(v) + 349

384 = 0.
If exactly two 5-vertices exist in N(v), we assume that v is a (3, 5, 5)-vertex. By Lemma 2.7, v is incident

with at most one (3, 3, 3, 3, 5)-neighbor, the other 5-neighbor must be a (3, 4+, 5, 5, 5)-vertex. According to
R1 and R4, 5-neighbors of v sends charge at least 349

384 +
419

1536 =
605
512 . Hence, w′(v) = w(v) + 605

512 > 0. Suppose
that v is a (4, 5, 5)-vertex, then by Lemma 2.12, v is incident with at most one (3, 3, 3, 3, 5)-neighbor. We will
discuss two subcases: (a) When v is not adjacent to any (3, 3, 3, 3, 5)-neighbors, it follows from Lemma 2.12,
R1-R3 and Claims 2-4, v receives charge at least 35

384 +
419
768 +

419
1152 =

2305
2304 . Hence, w′(v) = w(v) + 2305

2304 > 0. (b)
When v has exactly one (3, 3, 3, 3, 5)-neighbor. If v is adjacent to a (3, 3, 3, 5)-vertex, then according to R1,
R2, R4 and Claim 4, v receives charge at least 163

768 +
419

1536 +
419
768 =

1583
1536 from its neighbors. Consequently, we

have w′(v) = w(v) + 1583
1536 > 0. If v is incident with a (3, 3, 4, 5)-vertex, applying R1, R2, R4 and Claim 3, v

receives charge at least 105
768 +

419
1536 +

419
768 =

489
512 of its neighbors. Thus, we find that w′(v) = w(v) + 489

512 > 0. If v
is incident with a (3, 3, 5, 5)-vertex or a (3, 4, 4+, 5)-vertex, then by R1, R2, R4 and Claim 2, v receives charge
at least 35

384 +
419
1536 +

419
768 =

1397
1536 of its neighbors. Therefore, we conclude that w′(v) = w(v) + 1397

1536 > 0.
If there are three 5-vertices in N(v), then by Lemma 2.9, v is incident with at most two (3, 3, 3, 3, 5)-vertices.

5-neighbors of v sends charge at least 419
1152 + 2 × 419

1536 =
2095
2304 to its incident 3-vertex by R1-R4. Therefore,

w′(v) = w(v) + 2095
2304 > 0.

Case 2. d(v) = 4.
In this case, w(v) = 4 − 1501

384 =
35

384 . According to R5 and R6, w′(v) = w(v) = 0.
Case 3. d(v) = 5.
In this case, we have w(v) = 5 − 1501

384 =
419
384 . Based on Lemma 2.6, it can be concluded that v has no more

than four 3-neighbors. If v has four 3-neighbors, then according to Lemma 2.6, v is a (3, 3, 3, 3, 5)-vertex. By
R4, v sends charge 4 × 419

1536 =
419
384 to each of its incident 3-neighbors. Hence, w′(v) = w(v) − 419

384 = 0. If v
has three 3-neighbors, then v sends charge at least 3 × 419

1152 =
419
384 to each of its incident 3-neighbors by R3.

Hence, w′(v) = w(v) − 419
384 = 0. If v has exactly two 3-neighbors, then v sends charge at least 2 × 419

768 =
419
384 to

each of its incident 3-neighbors by R2. Therefore, w′(v) = w(v) − 419
384 = 0. If v has at most one 3-neighbor,

then by R1, v sends charge 349
384 to its incident 3-neighbor. Hence, w′(v) = w(v) − 349

384 > 0.

Given that mad(G) < 1501
384 , it follows that

∑
v∈V(G) w′(v) < 0. However, from Case 1, Case 2 and Case 3, we

have
0 ≤

∑
v∈V(G)

w′(v) =
∑

v∈V(G)

w(v) < 0,

which result in a contradiction. □

2.2.2. Proof of Theorem 1.4(2)
If l = 4, k = 22, we can demonstrate the following structural properties of G.

Lemma 2.16. If the vertex of degree 3 is incident with exactly one 3-neighbor, then its other two neighbors must be
5-vertices.

Proof. Let N(v) = {v1, v2, v3}, where d(v1) = 3, d(v2) ≤ 4 and d(v3) = 5. Based on the minimality of G, we can
obtain a coloring ϕ of G − v. Notice that |L(vv1)| ≥ 7, |L(vv2)| ≥ 4, |L(vv3)| ≥ 1. Thus, ϕ can be extended by
coloring vv1, vv2, vv3 in order, resulting in a contradiction. Therefore, it can be concluded that d(v2) = 5.

Lemma 2.17. Every (4, 5, 5)-vertex is adjacent to at most one (3, 3, 3, 3, 5)-vertex. If v is incident with exactly one
(3, 3, 3, 3, 5)-vertex, then another 5-vertex is a (3, 4+, 5, 5, 5)-neighbor.

Proof. We shall assume by contradiction that v is adjacent to two (3, 3, 3, 3, 5)-vertices v2 and v3. Based on
the minimality of G, we can obtain a coloring ϕ of G − v. It should be noted that |L(vv1)| ≥ 2, |L(vv2)| ≥ 5,
and |L(vv3)| ≥ 5. Thus, ϕ can be extended by coloring vv1, vv2 and vv3 in order, which is a contradiction.
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If v is incident with exactly one (3, 3, 3, 3, 5)-vertex v2, assume that
∑

v∈N(v3) d(v) ≤ 21. Based on the
minimality of G, it follows that χ

′

i(G − v) ≤ 22. It should be noted that |L(vv1)| ≥ 2, |L(vv2)| ≥ 5, and
|L(vv3)| ≥ 1, vv1, vv2 and vv3 can be colored, which leads to a contradiction. Therefore, we conclude that∑

v∈N(v3) d(v) ≥ 22. This implies that v3 is a (3, 4+, 5, 5, 5)-vertex.

Let v ∈ V(G) be a vertex of degree 5, adjacent to at least t ≥ 1 vertices of degree 3 in G. According to
Lemma 2.6, when v has four 3-neighbors in G, the fifth neighbor must be a 5-vertex. Hence, it follows that
t ≤ 4.

For every vertex v ∈ V(G), we establish a weight function w defined as w(v) = d(v) − 4. Let R1 denote
the discharging rule. Our goal is to show that w′(v) ≥ 0 for every v ∈ V(G) after the completion of the
discharging process.

R1 Each 5-vertex distribute 1/t charges to each 3-neighbor.

It should be noted that 1/t ≥ 1/4. Let w′(v) be defined as the new charge of v ∈ G after applying the
above discharging rules. It is clear that for each v ∈ V(G) with d(v) = 4 or d(v) = 5, it holds that w′(v) ≥ 0.

Let v ∈ V(G) satisfying d(v) = 3. Let N(v) = {v1, v2, v3} where 3 ≤ d(v1) ≤ d(v2) ≤ d(v3). We can consider
the following situation by Lemmas 2.5 and 2.16.

If v is a (3, 5, 5)-vertex, then according to Lemma 2.7, at least one of v2 and v3 is a (3, 4+, 5, 5, 5)-neighbor.
Accordingly, by R1, we obtain w′(v) ≥ −1 + 1

4 + 1 > 0.
If v is a (4, 4, 5)-vertex, then by Lemma 2.8, it follows that v3 is a (3, 4+, 5, 5, 5)-neighbor. Consequently,

by R1, w′(v) ≥ −1 + 1 = 0.
If v is a (4, 5, 5)-vertex, then by Lemma 2.17, at least one of v2 and v3 is a (3, 4+, 5, 5, 5)-neighbor. Hence-

forth, by R1, w′(v) ≥ −1 + 1
4 + 1 > 0.

If v is a (5, 5, 5)-vertex, then by Lemma 2.9, v has at most two (3, 3, 3, 3, 5)-neighbors, the third neighbor
is a (3, 3+, 4+, 5, 5)-vertex. Thus, by R1, w′(v) ≥ −1 + 2 × 1

4 +
1
2 = 0.

Given that mad(G) < 4, it follows that
∑

v∈V(G) w′(v) < 0. However, based on the preceding analysis, we
have

0 ≤
∑

v∈V(G)

w′(v) =
∑

v∈V(G)

w(v) < 0,

which result in a contradiction. □
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