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Abstract. The goal of this article is to present the Szász-integral type sequences of operators using the
gamma function and Hermite polynomials. We also compute certain estimates at key moments and test
functions. Additionally, we go over the uniform convergence theorem, which is derived from the first-
order modulus of smoothness, and the order of approximation via the Korovkin theorem. We then examine
pointwise approximation results in the context of Lipschitz-type space and Peetre’s K-functional, second-
order modulus of smoothness. Furthermore, their convergence outcomes are examined in a weighted
space.

1. Introduction and preliminaries

The approximation with the sequences of Bernstein-operators [5] is restricted to bounded functions on
[0, 1]. To approximate on [0,∞), Szász [31] gave a modification of the sequences of Bernstein-operators,
which play an important role in the development of operator theory, as below:

Sn( f ; y) = e−ny
∞∑

l=0

(ny)l

l!
f
( l

n

)
, n ∈N, (1)

where the real-valued function f ∈ C[0,∞). The linear positive operators introduced in (1) are restricted
to functions that belong to the space of continuous functions only. To approximate in longer class of

2020 Mathematics Subject Classification. Primary 41A36; Secondary 441A25, 33C45.
Keywords. Modulus of smoothness; Szász operator; Hermite Polynomial; Order of approximation; Rate of convergence; Weighted

space.
Received: 09 March 2024; Revised: 12 July 2025; Accepted: 14 July 2025
Communicated by Miodrag Spalević
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functions, i.e., the space of functions that are measurable in the Lebesgue sense, several integral versions
of these sequences of operators are introduced, e.g., Jakimovski-Leviatan-Beta type integral operators [1],
Phillips operators via q-Dunkl generalization [2], Szász-Kantorovich [31], Szász-Durremeyer operators [9],
Szász operators to bivariate functions [20], Szász-Jakimovski-Leviatan operators [21], parametric extension
of Szász-Mirakjan-Kantorovich operators [22], Jakimovski-Leviatan-Beta operators [23], Stancu-Bernstein-
Kantorovich operators [15], q-Bernstein shifted operators [18], q-Bernstein-Stancu operators [19], Baskakov-
Kantorovich operators [14], Szász–Mirakjan operators to bivariate [24], Szász-type operators [33], Szász-
type operators using Charlier polynomials [34] and Szász-Mirakjan-Durrmeyer operators [26]. Recent
relevant studies on statistical convergence and Korovkin theorems to attract a wider audience we see
[6, 12, 16, 17, 27–29, 32]

In 2016, Grażyna [10] presented a class of sequence of operators Gαn(.; .) presented by the relation

Gαn( f ; y) = e−(ny+αy2)
∞∑

l=0

yl

l!
Hl(n, α) f

( l
n

)
, n ∈N, α ≥ 0, y ∈ R+0 , (2)

where Hl(.; .) is the two variable Hermite polynomial (see [11]) given by

Hl(n, α) = l!
[ l

2 ]∑
m=0

nl−2mαm

(l − 2m)!m!
. (3)

The Hermite polynomials and their properties were investigated in many papers, for example in ([4], [7]).
Integrals of these polynomials are ubiquitous in problems involving classical and quantum optics as well as
quantum physics (see [7]). The operators (2) are linear and positive. Basic facts on positive linear operators,
their generalizations, and applications can be found in [8].

Remark 1.1. The sequences of operators presented in (2) are restricted for continuous functions only.

Motivated by the above foundation of the present research work, we introduce a sequence of positive linear
operators to give approximations in a bigger class of functions, i.e., the space of Lebesgue measurable
functions, which is named as Szász-gamma operators given the Hermite Polynomial as:

Hαm(1; y) =

∞∑
s=0

Pαm,s(y)

∞∫
0

Qs(t)1(t)dt, f or y ∈ R+0 , (4)

where

Pαm,s(y) = e−(my+αy2) ys

s!
Hs(m, α) and Qs(t) =

ms+β+1

Γ(s + β + 1)

[
ts+βe−mt

]
,

with Γ (Gamma) function which is given by as:

Γu =
∞∫
0

mu−1e−mdz, Γu = (u − 1)Γ(u − 1) = (u − 1)!.

Lemma 1.2. [10] Let Gαm(.; .) be the sequence of operators presented by (2). Then, we have

Gαm(1; y) = 1,

Gαm(e1; y) = y +
2αy2

m
,

Gαm(e2; y) = y2 +
4αy3 + y

m
+

4α2y4 + 4αy2

m2 ,

∗Gαm(ep; y) = yp +O(m−1).
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Lemma 1.3. Let Hαm(.; .) be the sequence of operators given by (4) and ei(t) = ti, i ∈ {0, 1, 2}. Then, one get

Hαm(1; y) = 1,

Hαm(e1; y) = y +
1
m

(2αy2 + β + 1),

Hαm(e2; y) = y2 +
1
m

(4αy3 + 2βy + 4y) +
1

m2 (4α2y4 + 2α(2β + 5)y2 + β2 + 3β + 2),

for each y ∈ R+0 .

Proof. From the Eq. (4), we have

Hαm( f ; y) =
∞∑

s=0

Pαm,s(y)

∞∫
0

Qs(t) f (t)dt.

Now, for i = 0,

Hαm(e0; y) =

∞∑
s=0

Pαm,s(y)
ms+β+1

Γ(s + β + 1)

∞∫
0

ts+βe−mt(1)dt

=

∞∑
s=0

Pαm,s(y)
ms+β+1

Γ(s + β + 1)
Γ(s + β + 1)

ms+β+1

= 1.

For i = 1,

Hαm(e1; y) =

∞∑
s=0

Pαm,s(y)
ms+β+1

Γ(s + β + 1)

∞∫
0

ts+βe−mt(t)dt

=

∞∑
s=0

Pαm,s(y)
ms+β+1

Γ(s + β + 1)

∞∫
0

ts+β+1e−mtdt

=

∞∑
s=0

Pαm,s(y)
ms+β+1

Γ(s + β + 1)
Γ(s + β + 2)

ms+β+2

=

∞∑
s=0

Pαm,s(y)
1
m

(s + β + 1)

= Gαm(e1; y) +
β + 1

m

= y +
1
m

(2αy2 + β + 1).

For i = 2,

Hαm(e2; y) =

∞∑
s=0

Pαm,s(y)
ms+β+1

Γ(s + β + 1)

∞∫
0

ts+βe−mt(t2)dt

=

∞∑
s=0

Pαm,s(y)
ms+β+1

Γ(s + β + 1)

∞∫
0

ts+β+2e−mtdt
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=

∞∑
s=0

Pαm,s(y)
ms+β+1

Γ(s + β + 1)
Γ(s + β + 3)

ms+β+3

=

∞∑
s=0

Pαm,s(y)
1

m2 (s + β + 2)(s + β + 1)

=

∞∑
s=0

Pαm,s(y)
[ s2

m2 +
s

m2 (2β + 3) +
1

m2 (β2 + 3β + 2)
]

= Gαm(e2; y) +
2β + 3

m
Gαm(e1; y) +

β2 + 3β + 2
m2 Gαm(e0; y)

= y2 +
1
m

(4αy3 + 2βy + 4y) +
1

m2 (4α2y4 + 2α(2β + 5)y2 + β2 + 3β + 2).

Lemma 1.4. Let Hαm(.; .) be the operators given by (4) and central moments ηi(t; y) = (t− y)i, i ∈ {0, 1, 2}. Then, one
get

Hαm(η0; y) = 1,

Hαm(η1; y) =
1
m

(2αy2 + β + 1),

Hαm(η2; y) =
1
m

[
4αy3

− 2αy2 + 2(β + 2)y − β − 1
]
+

1
m2

[
4α2y4 + 2α(2β + 5)y2 + β2 + 3β + 2

]
,

for each y ∈ R+0 .

Proof. Using the definition of Hαm(.; .), we get for i = 0, it is obvious that

Hαm(η0; y) = 1.

Now, we consider for i = 1, that is Hαm(η1; y) as follows:

Hαm(η1; y) =

∞∑
s=0

Pαm,s(y)
ms+β+1

Γ(s + β + 1)

∞∫
0

ts+βe−mt(y − t)dt

= y
∞∑

s=0

Pαm,s(y)
ms+β+1

Γ(s + β + 1)

∞∫
0

ts+βe−mtdt −
∞∑

s=0

Pαm,s(y)
ms+β+1

Γ(s + β + 1)

∞∫
0

ts+β+1e−mtdt

= yHαm(e0; y) −Hαm(e1; y)

=
1
m

(2αy2 + β + 1).

Further, for i = 2, that is Hαm(η2; y) as follows:

Hαm(η2; y) =

∞∑
s=0

Pαm,s(y)
ms+β+1

Γ(s + β + 1)

∞∫
0

ts+βe−mt(y − t)2dt

= y2Hαm(e0; y) − 2yHαm(e1; y) +Hαm(e2; y)

= y2(1) − 2y
[
y +

1
m

(2αy2 + β + 1)
]
+

[
y2 +

1
m

(4αy3 + 2βy + 4y)

+
1

m2 (4α2y4 + 2α(2β + 5)y2 + β2 + 3β + 2)
]

=
1
m

[
4αy3

− 2αy2 + 2(β + 2)y − β − 1
]
+

1
m2

[
4α2y4 + 2α(2β + 5)y2 + β2 + 3β + 2

]
.
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In subsequent sections, we deal with the rate of convergence and order of approximation for our operators.
Fuhrer, direct results are discussed locally and globally in different spaces. In the last section, we proposed
a bivariant version of these sequences of linear positive operators. Moreover, uniform convergence rate
and approximation order are investigated.

2. Rate of convergence and order of approximation

There are numerous uses for Korovkin’s theorem in mathematical science and other academic disciplines
[3]. In order to apply Korovkin’s theorem, we note that this section has to supply the approximation prop-
erties to new operators Hαm by (4). Next, we may additionally provide the weighted space approximation
for these operators here. The mathematical notation Cβ(R+) is designated for the class of these functions
that are bounded on the semi-axis and continuous. The supremum norm and R+ are defined on Cβ(R+),
and we write ∥ f ∥Cβ(R+)= supy∈R+ | f (y) |. In addition, we considerH = { f : y ∈ R+, f (y)

1+y2 is converges when
y→∞}.

Theorem 2.1. For any f ∈ C[0,∞) ∩H and y ∈ [0,∞)

lim
µ→∞

Hαµ( f ; y) = f (y)

is uniformly converges.

Proof. Using Korovkin’s theorem, we confirm that limµ→∞Hαµ(tµ; y) = yµ is uniformly on [0,∞) for µ =
0, 1, 2. If µ → ∞, then 1

µ → 0. By taking into account the Lemma 1.3, it is very easy to conclude that
limµ→∞Hαµ(1; y) = 1, limµ→∞Hαµ(t; y) = y, and limµ→∞Hαµ(t2; y) = y2. This observation completes the
proof.

Theorem 2.2. Let Hαm(.; .) be operators introduced in Eq. (4). Then, for all 1 ∈ CB[0,∞), Hαm(1; y) ⇒ 1 on each
closed and bounded subset of [0,∞) where⇒ represents uniform convergent.

Proof. In view of the Korovkin-type theorem, which regards the uniform convergence of the sequence of
operators (linear and positive), it is adequate to see that

lim
m→∞

Hαm(ti; y) = yi, i ∈ {0, 1, 2},

uniformly on each closed and bounded subset of [0,∞). In the light of Lemma 1.3, this result can easily be
proved.

Definition 2.3. Let 1 be a continuous function given on positive semi-axes. Then the modulus of smoothness is
defined as:

ω(h; δ) = sup
|u1−u2 |≤δ

|h(u1) − h(u2)|, u1,u2 ∈ [0,∞).

In view of result given by Shisha et al. [30], we can prove the approximation order via of Ditzian-Totik
modulus of continuity.

Theorem 2.4. For 1 ∈ CB[0,∞) and the operators Hαm(.; .) introduced in Eq. (4), one has

|Hαm(1; y) − 1(y)| ≤ 2ω(1; δ),

where δ =
√

Hαm((t − y)2; y).
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Proof. We can easily prove above result in the light of modulus of continuity and result given by Shisha et
al. [30].

In this section, we think back to some functional spaces and functional relations as CB[0,∞) represents a
space of bound and continuous real-valued functions. Now, Peetre’s K-functional is given by

K2(1, δ) = inf
h∈C2

B[0,∞)

{
∥1 − h∥CB[0,∞) + δ∥h′′∥C2

B[0,∞)

}
,

where C2
B[0,∞) = {h ∈ CB[0,∞) : h′, h′′ ∈ CB[0,∞)} provided with the norm ∥1∥ = sup

0≤y<∞
|1(y)| and Ditzian-

Totik modulus of smoothness of second order is given by

ω2(1;
√

δ) = sup
0<k≤

√
δ

sup
y∈[0,∞)

| f (y + 2k) − 2 f (y + k) + f (y)|.

We recall a relation from DeVore and Lorentz ([8] page no. 177, Theorem 2.4) as:

K2(1; δ) ≤ Cω2(1;
√

δ), (5)

where C is a constant absolute. Now in view to prove the further result, we take the auxiliary operator as:

Ĥαm(1; y) = Hαm(1; y) + 1(y) − 1
(
y +

2αy2 + β + 1
m

)
(6)

where 1 ∈ CB[0,∞), y ≥ 0 and n > 2. From Eq. (6), one can yield

Ĥαm(1; y) = 1, Ĥαm(η1; x) = 0 and |Ĥαm(1; y)| ≤ 3∥1∥. (7)

Lemma 2.5. For n > 2 and y ≥ 0, one yield

|Ĥαm(h; y) − h(y)| ≤ θ(y)∥h′′∥,

where h ∈ C2
B[0,∞) and θ(y) = Ĥαm(η2; y) + (Ĥαm(η1; y))2.

Proof. For h ∈ C2
B[0,∞) and in view of relation Taylor’s expansion, we get

h(t) = h(y) + (t − y)h′(y) +

t∫
y

(t − v)h′′(v)dv. (8)

Now, applying the auxiliary operators Ĥαm(.; .) given in Eq.(6) on both the sides in above Eq. (8), we get

Ĥαm(h; y) − h(y) = h′(y)Ĥαm(η1; y) + Ĥαm
( t∫

y

(t − v)h′′(v)dv; y
)
.

Using the Eqs. (7) and (8), we get

Ĥαm(h; y) − h(y) = Ĥαm
( t∫

y

(t − v)h′′(v)dv; y
)

= Hαm
( t∫

y

(t − v)h′′(v)dv; y
)
−

(y+ 2αy2+β+1
m∫

y

(
(y +

2αy2 + β + 1
m

− v
)

h′′(v)dv,
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|Ĥαm(h; y) − h(y)| ≤

∣∣∣∣∣∣Hαm( t∫
y

(t − v)h′′(v)dv; y
)∣∣∣∣∣∣ +

∣∣∣∣∣∣
(y+ 2αy2+β+1

m∫
y

(
(y +

2αy2 + β + 1
m

− v
)
h′′(v)dv

∣∣∣∣∣∣. (9)

Since,∣∣∣∣∣∣
t∫

y

(t − v)h′′(v)dv

∣∣∣∣∣∣ ≤ (t − y)2
∥ h′′ ∥, (10)

then

∣∣∣∣∣∣
(y+ 2αy2+β+1

m∫
y

(
(y +

2αy2 + β + 1
m

− v
)
h′′(v)dv

∣∣∣∣∣∣ ≤ (
(y +

2αy2 + β + 1
m

− y
)2

∥ h′′ ∥ . (11)

In view of (9), (10) and (11), we find

|Ĥαm(h; y) − h(y)| ≤
{

Ĥαm(η2; y) +
(
(y +

2αy2 + β + 1
m

− y
)2}
∥h′′∥

= θ(y)∥h′′∥.

Which proves the required result.

Theorem 2.6. For 1 ∈ C2
B[0,∞), there corresponds a non-negative C̃ > 0 as:

| Hαm(1; y) − 1(y) |≤ C̃ω2

(
1;

√
θ(y)

)
+ ω(1; Hαm(η1; y)),

where θ(y) is presented in Lemma 2.5.

Proof. For h ∈ C2
B[0,∞) and 1 ∈ CB[0,∞) and in view of Ĥαm(.; .), one has

|Hαm(1; y) − 1(y)| ≤ |Ĥαm(1 − h; y)| + |(1 − h)(y)| + |Ĥαm(h; y) − h(y)| +

∣∣∣∣∣∣1((y +
2αy2 + β + 1

m

)
− 1(y)

∣∣∣∣∣∣.
In the light of Lemma 2.5 and inequalities in Eq. (7), one get

|Hαm(1; y)−1(y)|≤4∥1−h∥+|Ĥαm(h; y)−h(y)|+

∣∣∣∣∣∣1
(
(y +

2αy2 + β + 1
m

)
−1(y)

∣∣∣∣∣∣
≤ 4∥1 − h∥ + θ(y)∥h′′∥ + ω

(
1; Hαm((t − y); y)

)
.

Using Eq. (5), we yield the desired result.

Now, we discuss the next result in Lipschitz type space [25], which is given as:

Lipζ1,ζ2

M̃
(γ) :=

{
1 ∈ CB[0,∞) : |1(t)−1(y)|≤M̃

|t−y|γ

(t+ζ1y+ζ2y2)
γ
2

: y, t∈ (0,∞)
}
,

where M̃ > 0, 0 < γ ≤ 1 and ζ1, ζ2 > 0.
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Theorem 2.7. Let Hαm(.; .) be the operator given by (4). Then, for 1 ∈ Lipζ1,ζ2
M (γ), one has

|Hαm(1; y) − 1(y)| ≤ M̃
(
λ(y)

ζ1y + ζ2y2

) γ
2

, (12)

where 0 < γ ≤ 1, ζ1, ζ2 ∈ (0,∞) and λ(y) = Hαm(η2; y).

Proof. For γ = 1 and y ≥ 0, one yield

|Hαm(1; y) − 1(y)| ≤ Hαm(|1(t) − 1(y)|; y)

≤ M̃Hαm

(
|t − y|

(t + ζ1y + ζ2y2)
1
2

; y
)
.

Since
1

t + ζ1y + ζ2y2 <
1

ζ1y + ζ2y2 , for all y ∈ (0,∞), we yield

|Hαm(1; y) − 1(y)| ≤
M̃

(ζ1y + ζ2y2)
1
2

(Hαm(η2; y))
1
2

≤ M̃
(
λ(y)

ζ1y + ζ2y2

) 1
2

,

which implies that Theorem 2.7 works for γ = 1. Next, we consider for γ ∈ (0, 1) and in view of Hölder’s
inequality using p = 2

γ and q = 2
2−γ , one get

|Hαm(1; y) − 1(y)| ≤
(
Hαm(|1(t) − 1(y)|

2
γ ; y)

) γ
2

≤ M̃
(
Hαm

(
|t − y|2

(t + ζ1y + ζ2y2)
; y

)) γ
2

.

Since
1

t + ζ1y + ζ2y2 <
1

ζ1y + ζ2y2 , for all y ∈ (0,∞), one get

|Hαm(1; y) − 1(y)| ≤ M̃
(

Hαm(|t − y|2; y)
ζ1y + ζ2y2

) γ
2

≤ M̃
( λ(y)
ζ1y + ζ2y2

) γ
2
.

Hence, we yield the required result.

Next, we deal with the approximation locally given rth order modulus of smoothness and then the Lipschitz-
type maximal function which is introduced by Lenze [13] as:

ω̃r(1; y) = sup
t,y,t∈(0,∞)

|1(t) − 1(y)|
|t − y|r

, y ∈ [0,∞) and r ∈ (0, 1]. (13)

Theorem 2.8. Let 1 ∈ CB[0,∞) and r ∈ (0, 1]. Then, for all y ∈ [0,∞), we have

|Hαm(1; y) − 1(y)| ≤ ω̃r(1; y)
(
λ(y)

) r
2
.

Proof. It is noted that

|Hαm(1; y) − 1(y)| ≤ Hαm(|1(t) − 1(y)|; y).
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Using Eq. (13), one get

|Hαm(1; y) − 1(y)| ≤ ω̃s(1; y)Hαm(|t − y|r; y).

Then using Hölder’s inequality with p = 2
r and q = 2

2−r , we have

|Hαm(1; y) − 1(y)| ≤ ω̃r(1; y)
(
Hαm(|t − y|2; y)

) r
2 .

Hence, we completes the proof.

3. Approximation in weighted space

We employ the weighted space and recollect the weighted spaces in the domain of R+ by using the
following mathematical equivalence to provide further approximation theorems in light of Korovkin’s
theorem.

Uσ(R+) =
{

f such that | f (y) |≤M fσ(y)
}
,

Vσ(R+) =
{
f such that f ∈ C[0,∞) ∩Uσ(R+)

}
,

W
k
σ(R

+) =

{
f such that f ∈ Vσ(R+) and lim

y→∞

f (y)
σ(y)

= ν(a positive number)
}
,

with the weight function σ(y) = 1 + y2 and the positive real numbers M f depends on f and the norm is
calculated as ∥ f ∥σ= supy≥0

| f (y)|
σ(y) .

Theorem 3.1. For all f ∈ Wk
σ(R+) and y ∈ [0,∞) we get

lim
µ→∞

Hαµ( f ) − f ∥σ= 0

is uniformly converges.

Proof. Take f (t) = tµ and f ∈ Wk
σ(R+), use the Korovkin’s theorem to easily get that Hαµ(tµ; y) → yµ is

uniformly, if µ approaches to∞. Thus the Lemma 1.3, gives Hαµ(1; y) = 1, therefore

lim
µ→∞

∣∣∣∣∣∣Hαµ (1; y
)
− 1

∣∣∣∣∣∣
σ
= 0, (14)

In similar way,∣∣∣∣∣∣Hαµ (t; y
)
− y

∣∣∣∣∣∣
σ
= sup

y∈[0,∞)

∣∣∣Hαµ(t; y) − y
∣∣∣

1 + y2

= sup
y∈[0,∞)

∣∣∣∣ 1
µ (2αy2 + β + 1)

∣∣∣∣
1 + y2

=
2α
µ

sup
y∈[0,∞)

y2

1 + y2 +
β + 1
µ

sup
y∈[0,∞)

1
1 + y2 .

Then clearly 1
µ → 0 as µ→∞ implies that

lim
µ→∞

∣∣∣∣∣∣Hαµ (t; y
)
− y

∣∣∣∣∣∣
σ
= 0, (15)

∣∣∣∣∣∣∣∣Hαµ (t2; y
)
− y2

∣∣∣∣∣∣∣∣
σ
= sup

y∈[0,∞)

∣∣∣Hαµ(t2; y) − y2
∣∣∣

1 + y2
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=
1
µ

sup
y∈[0,∞)

∣∣∣4αy3 + 2βy + 4y
∣∣∣

1 + y2

+
1
µ2 sup

y∈[0,∞)

∣∣∣4α2y4 + 2α(2β + 5)y2
∣∣∣

1 + y2

+
1
µ2 sup

y∈[0,∞)

∣∣∣β2 + 3β + 2
∣∣∣

1 + y2

≤
1
µ

∣∣∣2β + 4
∣∣∣ + 1
µ2

∣∣∣4α(2β + 5)
∣∣∣

≤
1
µ

max
(
|α| ,

∣∣∣β∣∣∣) .
Thus, for 1

µ → 0 we have

lim
µ→∞

∣∣∣∣∣∣∣∣Hαµ (t2; y
)
− y2

∣∣∣∣∣∣∣∣
σ
= 0, (16)

which complete the required proof.

Theorem 3.2. For all φ ∈ Cτ[0,∞), τ ∈N and any ν ∈ [0,∞) the operators Hαµ have

lim
µ→∞

sup
y∈[0,∞)

|Hαµ(φ; y) − φ(y)|

(1 + y2)1+ν = 0,

where Cτ[0,∞) be the set of τ-th order continuous functions.

Proof. Taking into account the inequality |φ(y)| ≤ ||φ||σ(1 + y2) then for any positive number y0 it is easy to
get that

lim
µ→∞

sup
y∈[0,∞)

|Hαµ(1; y) − 1(y)|

(1 + y2)1+ν ≤ sup
y≤y0

|Hαµ(φ; y) − φ(y)|

(1 + y2)1+ν + sup
y≥y0

|Hαµ(φ; y) − φ(y)|

(1 + y2)1+ν

≤ ||Hαµ(φ) − φ(y)||σC[0, y0]

+ ||1||σ sup
y≥y0

|(1 + t2; y) − φ(y)|
(1 + y2)1+ν + sup

y≥y0

|φ(y)|
(1 + y2)1+ν

= C1 + C2 + C3(suppose).

Thus

C3 = sup
y≥y0

|φ(y)|
(1 + y2)1+ν ≤ sup

y≥y0

||φ||σ(1 + y2)
(1 + y2)1+ν ≤

||φ||σ

(1 + y2
0)ν
. (17)

From the Lemma 1.3, it have

lim
µ→∞

sup
y≥y0

Hαµ(1 + t2; y)

1 + y2 = 1.

Now, we suppose that for any given ϵ∗ > 0, there exists a new positive integer µ1 ∈N and µ ≥ µ1 satisfying

sup
y≥y0

Hαµ(1 + t2; y)

1 + y2 ≤
(1 + y2

0)ν

||φ||σ

ϵ∗

3
+ 1,
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and for µ ≥ µ1

C2 = ||1||σ sup
y≥y0

Hαµ(1 + t2; y)

(1 + y2)1+ν ≤
||φ||σ

(1 + y2
0)ν
+
ϵ∗

3
. (18)

Taking in account of (17) and (18), we see

C2 + C3 ≤
2||φ||σ

(1 + y2
0)ν
+
ϵ∗

3
.

Choose very large y0, such that ||φ||σ
(1+y2

0)ν ≤
ϵ∗

6 , then we get

C2 + C3 ≤
2ϵ∗

3
, for µ ≥ µ1. (19)

Similarly, for µ ≥ µ2 we have

C1 = ||Hαµ(φ) − φ(y)||C[0,y0] ≤
ϵ∗

3
. (20)

Lastly, we take µ3 = max(µ1, µ2) and combining (19) and (20), we get

sup
y∈[0,∞)

|Hαµ(φ; y) − φ(y)|

(1 + y2)1+ν < ϵ∗.

Which gives the desired proof.

4. Conclusion and observations

In this paper, we introduce a sequence of linear positive operators in integral form via Hermite Polyno-
mial to approximate the functions that belong to Lebesgue measurable space named as Szász-Gamma type
operators defined by (4). Further, we calculate some estimates that are used to prove the convergence rate
and approximation order. Moreover, the various approximation results, e.g., local approximation results.
In the last section, we present two two-dimensional versions of these sequences of positive linear operators.
Moreover, their order of approximation and rate of convergence are discussed.
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