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Abstract. The present article deals with approximation of a new discretely defined operator based on
hypergeometric functions. We study and establish some direct results exponential functions in terms of
weighted moduli of continuity.

1. Introduction

Hypergeometric functions, which constitute a significant part of special functions, appear in physics,
engineering, probability and especially mathematics. Also, they can be found in the structure of some
operators.

The new operators have attracted major attention from researchers in constructive approximation theory.
Several operators are established via producing functions, several exponential type operators are established
via differential equations. Here, we will consider the moment producing function of an composition
operator.

In our motivation paper, Abel-Gupta [1] proposed for x ≥ 0 a discrete operator as follows:

(
Cm,n f

)
(x) =

∞∑
k=0

ck,m,n (x) f
(

k
n

)
, (1)

where

ck,m,n (x) =
mnk [nx +m + n]−m

(m + n)k−m+1 2F1

(
−k,m; 1;

−mx
m + n + nx

)
and 2F1 represents the hypergeometric function.

In the special case m = n, we get the approximation operator given by

(
Cn,n f

)
(x) =

∞∑
k=0

ck,n,n (x) f
(

k
n

)
, (2)
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where

ck,n,n (x) =
1

2k−n+1 (2 + x)n 2F1

(
−k,n; 1;

−x
2 + x

)
.

This new operator is generated by composition of the Baskakov-Szász and the Szász-Mirakyan operators
in that order.

The moment producing function of these operators is expressed by

(
Cn,n expA

)
(x) =

(
2 − eA/n

)−1
(
1 + x

1 − eA/n

2 − eA/n

)−n

, (3)

provided that A < log
(

2+x
1+x

)n
and expA (t) = eAt. In the recent years; Aral et al. [6], Deniz et al. [9],

Gupta and Aral [11], Gupta and Tachev [15], Ozsarac and Acar [17] studied approximation of certain
operators preserving exponential functions. Moreover, Gupta and Gupta [12], Gupta et al. [13] and
Gupta and Srivastava [14] investigated moment generating functions and convergence properties of some
composition operators. Aral presented different weighted moduli of continuity in [4] and [5] (also see [10]).

The present paper is extension of such results and here we study some estimates of convergence for
Cn,n. Firstly, we calculate the moments, and then acquire a quantitative estimate. Later, we give the central
moments and express a quantitative form of Voronovskaya type formula. Moreover, we state weighted
uniform approximation by the composition operator Cn,n utilizing a weighted Korovkin-type theorem.
Finally, utilizing suitable moduli of continuity defined on exponential weighted space, we have the rate of
convergence of Cn,n.

The important result obtained here is that its easy to have more and more compositions of Szász-
Mirakyan operators to Cn,n. Also, moment producing functions can be evaluated but even if we increase
compositions further and further the error increases. So, its our claim here that the composition operator
Cn,n gives better approximation than the further compositions.

2. Main Results

The class of continuous and real functions f denoted by C∗ [0,∞), have finite limit, for x tending to ∞.
In [7] and [16], some interesting results have been studied for a sequence of operators Ln:

Theorem 2.1. [16] For Ln : C∗ [0,∞)→ C∗ [0,∞), if we denote the norms
∥∥∥∥Ln

(
exps

)
− exps

∥∥∥∥
[0,∞)

, s = 0,−1,−2 as

αn, βn and γn respectively, which approach to zero as n→∞, then∥∥∥Ln f − f
∥∥∥

[0,∞) ≤ αn

∥∥∥ f
∥∥∥

[0,∞) + (2 + αn)ω∗
(

f ,
(
αn + γn + 2βn

)1/2
)
,

where ω∗
(

f , δ
)

:= sup
|e−t−e−u |≤δ

t,u>0

∣∣∣ f (u) − f (t)
∣∣∣ .

Lemma 2.2. We obtain the following moments:

1.
(
Cn,n exp0

) (
y
)
= 1,

2.
(
Cn,n exp

−1

) (
y
)
=

(
2 − e−1/n

)−1 (
1 + y 1−e−1/n

2−e−1/n

)−n
,

3.
(
Cn,n exp

−2

) (
y
)
=

(
2 − e−2/n

)−1 (
1 + y 1−e−2/n

2−e−2/n

)−n
.

Proof. The equalities follow from (3).
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Theorem 2.3. For f ∈ C∗ [0,∞), there holds∥∥∥Cn,n f − f
∥∥∥

[0,∞) ≤ 2ω∗
(

f ,
(
γn + 2βn

)1/2
)
,

where

βn =
∥∥∥Cn,n exp

−1 − exp
−1

∥∥∥
[0,∞) → 0, n→∞

and

γn =
∥∥∥Cn,n exp

−2 − exp
−2

∥∥∥
[0,∞) → 0, n→∞.

Proof. By Lemma 2.2, the operators Cn,n preserve constants, so αn = 0. We have to compute βn and γn. By
the software Maple, we have

(
Cn,n exp

−1

)
(x) = exp

−1 (x) +
e−x

(
x2 + 3x − 2

)
2n

+
e−x

(
3x4 + 10x3

− 21x2
− 88x + 36

)
24n2 + O

(
n−3

)
.

Since

sup
x≥0

e−x = 1, sup
x≥0

e−xx = e−1,

sup
x≥0

x2e−x = 4e−2, sup
x≥0

x3e−x = 27e−3, sup
x≥0

x4e−x = 256e−4,

we obtain

βn = sup
x≥0

∣∣∣∣(Cn,n exp
−1

)
(x) − exp

−1 (x)
∣∣∣∣

≤
1
n

( 2
e2 +

3
2e
+ 1

)
+

1
n2

(32
e4 +

45
4e3 +

7
2e2 +

11
3e
+

3
2

)
+ O

(
n−3

)
≤ O

(
n−1

)
.

Similarly,

(
Cn,n exp

−2

)
(x) = exp

−2 (x) +
2e−2x

(
x2 + 3x − 1

)
n

+
2e−2x

(
3x4 + 14x3 + 3x2

− 44x + 9
)

3n2 + O
(
n−3

)
.

Since

sup
x≥0

e−2x = 1, sup
x≥0

e−2xx = 0.5e−1,

sup
x≥0

x2e−2x = e−2, sup
x≥0

x3e−2x =
27
8

e−3, sup
x≥0

x4e−2x = 16e−4,

we get

γn = sup
x≥0

∣∣∣∣(Cn,n exp
−2

)
(x) − exp

−2 (x)
∣∣∣∣

≤
1
n

( 2
e2 +

3
e
+ 2

)
+

1
n2

(32
e4 +

63
2e3 +

2
e2 +

44
3e
+ 6

)
+ O

(
n−3

)
≤ O

(
n−1

)
.

Using Theorem 2.1, the proof follows.
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Lemma 2.4. Recalling that ψx (t) = t − x, the first few central moments of Cn,n are given by(
Cn,nψ

0
x

)
(x) = 1,

(
Cn,nψ

1
x

)
(x) =

1
n
,

(
Cn,nψ

2
x

)
(x) =

3
n2 +

x (x + 3)
n

,

(
Cn,nψ

3
x

)
(x) =

13
n3 +

2x
(
x2 + 6x + 11

)
n2

and (
Cn,nψ

4
x

)
(x) =

75
n4 +

6x4 + 44x3 + 133x2 + 181x
n3 +

3x2 (x + 3)2

n2 .

Also, it follows

lim
n→∞

n
(
Cn,nψ

1
x

)
(x) = 1

and

lim
n→∞

n
(
Cn,nψ

2
x

)
(x) = x2 + 3x.

Theorem 2.5. Let f and its second derivative belong to the class C∗ [0,∞), then for any x ≥ 0, there follows∣∣∣∣n [(
Cn,n f

)
(x) − f (x)

]
− f ′ (x) − (0.5)

(
x2 + 3x

)
f ′′ (x)

∣∣∣∣
≤

3
∣∣∣ f ′′ (x)

∣∣∣
2n

+ 2
[3
n
+

(
3x + x2

)
+ an (x)

]
ω∗

(
f ′′,n−1/2

)
,

where

an (x) = n2
[(

Cn,n

(
exp

−1 (x) − exp
−1 (t)

)4
)

(x)
(
Cn,nψ

4
x

)
(x)

]1/2
.

Proof. Applying Taylor’s formula to Cn,n, we have∣∣∣∣∣(Cn,n f
)

(x) − f (x) −
(
Cn,nψ

1
x

)
(x) f ′ (x) −

1
2

(
Cn,nψ

2
x

)
(x) f ′′ (x)

∣∣∣∣∣ ≤ ∣∣∣∣(Cn,nht,x (t − x)2
)

(x)
∣∣∣∣ ,

where ht,x =
f ′′(η)− f ′′(x)

2 and x < η < t. Using Lemma 2.4, we immediately have∣∣∣∣∣∣n [(
Cn,n f

)
(x) − f (x)

]
− f ′ (x) −

x2 + 3x
2

f ′′ (x)

∣∣∣∣∣∣
≤

∣∣∣∣n (
Cn,nψ

1
x

)
(x) − 1

∣∣∣∣ ∣∣∣ f ′ (x)
∣∣∣ + 1

2

∣∣∣∣n (
Cn,nψ

2
x

)
(x) −

(
x2 + 3x

)∣∣∣∣ ∣∣∣ f ′′ (x)
∣∣∣ + ∣∣∣∣n (

Cn,nht,x (t − x)2
)

(x)
∣∣∣∣

≤
3

2n

∣∣∣ f ′′ (x)
∣∣∣ + ∣∣∣∣n (

Cn,nht,x (t − x)2
)

(x)
∣∣∣∣ .

Next by the property used in [3, (3.1)], we can write

ht,x ≤ 2

1 +

(
exp

−1 (x) − exp
−1 (t)

)2

δ2

ω∗ ( f ′′, δ
)
, δ > 0.
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Using above and Cauchy–Schwarz inequality and selecting δ = n−1/2, we have

n
(
Cn,n

∣∣∣ht,x

∣∣∣ (t − x)2
)

(x) ≤ 2nω∗
(

f ′′, δ
) (

Cn,nψ
2
x

)
(x)

+
2n
δ2 ω

∗
(

f ′′, δ
) [(

Cn,n

(
exp

−1 (x) − exp
−1 (t)

)4
)

(x)
]1/2 [(

Cn,nψ
4
x

)
(x)

]1/2

= 2
[3
n
+ x (x + 3) + an (x)

]
ω∗

(
f ′′,n−1/2

)
,

where

an (x) = n2
[(

Cn,n

(
exp

−1 (x) − exp
−1 (t)

)4
)

(x)
(
Cn,nψ

4
x

)
(x)

]1/2
.

This concludes the proof of theorem.

Remark 2.6. By simple computation following limits hold:

1. lim
n→∞

n2
(
Cn,nψ4

x

)
(x) = 3x2 (x + 3)2 ,

2. lim
n→∞

n2
(
Cn,n

(
exp

−1 (x) − exp
−1 (t)

)4
)

(x) = 3x2 (x + 3)2 e−4x.

Corollary 2.7. Suppose f and its second derivative belong to C∗ [0,∞), then immediately one obtains

lim
n→∞

n
[(

Cn,n f
)

(x) − f (x)
]
= f ′ (x) + (0.5) x (x + 3) f ′′ (x) .

3. Weighted Approximation

Let us take Bexpk
:=

{
f :

∣∣∣ f (x)
∣∣∣ ≤M expk (x) , M > 0, x ∈ [0,∞)

}
and Cexpk

=
{

f : f ∈ Bexpk
, f continuous

}
.

Also,

∥ f ∥expk
= sup

x≥0

| f (x)|
expk(x)

,

(see [8]).

1. An operator An, which is positive and linear and defined on Cexp1
, maps Cexp1

into Bexp2
iff

An exp1 ∈ Bexp2
.

2. Also, we have

∥An∥Cexp1→Bexp2
= ∥An exp1 ∥exp2

.

Theorem 3.1. If An : Cexp1
(R)→ Bexp2

(R) for ν = 0, 1, 2 satisfies

lim
n→∞
∥An(expν1) − expν1 ∥exp2

= 0,

then

lim
n→∞

∥∥∥An( f ) − f
∥∥∥

exp2
= 0

for all f ∈ Cexp1
.
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As an extension of the studies [2], we consider BexpA
, A > 0, the class of functions satisfying

∣∣∣ f (x)
∣∣∣ ≤

M expA (x), where M > 0. Further, Cexp A is subclass of BexpA
having continuous functions with the norm

∥∥∥ f
∥∥∥

expA
= sup

x≥0

∣∣∣ f (x)
∣∣∣

expA (x)
.

Let Ck
expA

(R+) be the subspace of all functions f ∈ CexpA
(R+) such that limx→∞

| f (x)|
expA(x) = k, where the

constant k > 0 and suppose C(r)
expA

(R+) be the class of each functions f ∈ CexpA
(R+) such that f (m)

∈ CexpA
(R+)

for m = 1, 2, . . . , r.

Theorem 3.2. Suppose 0 < A < B
2 . If f ∈ CexpA

(R+), then we have

lim
n→∞

∥∥∥Cn,n f − f
∥∥∥

expB
= 0.

Proof. First, let’s show that Cn,n is a positive linear operator from space CexpA
into BexpB

. The formula (3)
indicates that Cn,n is a positive and linear operator. Since

∥∥∥Cn,n expA

∥∥∥
expB

= sup
x≥0

Cn,n expA (x)
expB (x)

= sup
x≥0

(
2 − eA/n

)−1 (
1 + x 1−eA/n

2−eA/n

)−n

expB (x)

≤

(
2 − eA/n

)−1
,

the operator Cn,n maps the space CexpA
into BexpB

. Now, as a application of Theorem 3.1, if we show

lim
n→∞

∥∥∥∥Cn,n

(
expλA

)
− expλA

∥∥∥∥
expB

= 0, λ = 0, 1 and 2,

then the proof is immediate. The result when λ = 0, follows from Lemma 2.2. Next, when λ = 1 from 3, we
get

∥∥∥∥Cn,n

(
expA

)
− expA

∥∥∥∥
expB

= sup
x≥0

∣∣∣Cn,n expA (x) − expA (x)
∣∣∣

expB (x)

= sup
x≥0

eAx
−

(
2 − eA/n

)−1 (
1 + x 1−eA/n

2−eA/n

)−n

eBx

= sup
x≥0

e(A−B)x
(
1 − e−Ax

(
2 − eA/n

)−1
(
1 + x

1 − eA/n

2 − eA/n

)−n)
≤ sup

x≥0

(
1 − e−Ax

(
2 − eA/n

)−1
(
1 + x

1 − eA/n

2 − eA/n

)−n)
.

The expression takes the supremum value at x = 0 for n large enough. Thus, we have

lim
n→∞

∥∥∥∥Cn,n

(
expA

)
− expA

∥∥∥∥
expB

= lim
n→∞

(
1 −

(
2 − eA/n

)−1
)
= 0.
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Similarly, for λ = 2, we get

∥∥∥∥Cn,n

(
exp2

A

)
− exp2

A

∥∥∥∥
ρB
= sup

x≥0

∣∣∣Cn,n exp2
A (x) − exp2

A (x)
∣∣∣

expB (x)

= sup
x≥0

e−Bx

∣∣∣∣∣∣(2 − e2A/n
)−1

(
1 + x

1 − e2A/n

2 − e2A/n

)−n

− e2Ax

∣∣∣∣∣∣
= sup

x≥0

e2Ax
−

(
2 − e2A/n

)−1 (
1 + x 1−e2A/n

2−e2A/n

)−n

eBx

= sup
x≥0

e(2A−B)x
(
1 − e−2Ax

(
2 − e2A/n

)−1
(
1 + x

1 − e2A/n

2 − e2A/n

)−n)
≤ sup

x≥0

(
1 − e−2Ax

(
2 − e2A/n

)−1
(
1 + x

1 − e2A/n

2 − e2A/n

)−n)
.

In a similar way, we observe that

lim
n→∞

∥∥∥∥Cn,n

(
exp2

A

)
− exp2

A

∥∥∥∥
expB

= 0.

Therefore, the desired result follows.

4. Order of Convergence

This section deals with the estimates on convergence with regard to weighted moduli of continuity for
the functions f ∈ Ck

expA
(R+). We take into account here the weighted moduli of continuity defined by

ω̃
(

f ; δ
)
= sup
|t−x|≤δ

x≥0

∣∣∣ f (t) − f (x)
∣∣∣

expA (t) + expA (x)
, δ ≥ 0 (4)

for f ∈ Ck
expA

(R+) (see [2]). This moduli of continuity satisfy:

1. For f ∈ Ck
expA

(R+), we have lim
δ→0

ω̃
(

f ; δ
)
= 0.

2. For any ξ > 0 and f ∈ Ck
expA

(R+), we have

ω̃
(

f ; ξδ
)
≤ 2 (1 + ξ) ω̃

(
f ; δ

)
. (5)

Theorem 4.1. Let 0 < A < B, then for f ∈ Ck
expA

(R+) one has

∥∥∥Cn,n f − f
∥∥∥

expB
≤ 2

(
2 +

(
2 − eA/n

)−1
+

√
(2 − e2A/n)−1

)
ω̃

(
f ;
√

vn

)
, (6)

where νn =
3
n2 +

e−2

(B−A)2n
+ 3e−1

2(B−A)n .

Proof. By using (5) for λ > 0 in which we choose λ = |t−x|
δ , δ > 0, Cauchy-Schwarz inequality, (3) and
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application of Lemmas 2.2 and 2.4, for each x ≥ 0 leads us to∣∣∣Cn,n f (x) − f (x)
∣∣∣

≤ 2ω̃
(

f ; δ
) {(

Cn,n expA

)
(x) + eAx +

eAx

δ

((
Cn,nψ

2
x

)
(x)

)1/2
+

1
δ

((
Cn,n exp2A

)
(x)

)1/2 ((
Cn,nψ

2
x

)
(x)

)1/2
}

= 2ω̃
(

f ; δ
) (Cn,n expA

)
(x) + eAx +

((
Cn,nψ2

x

)
(x)

)1/2

δ

(
eAx +

((
Cn,n exp2A

)
(x)

)1/2
)

= 2ω̃
(

f ; δ
)

eBx


(
Cn,n expA

)
(x)

expB (x)
+ expA−B (x) +

((
Cn,nψ2

x

)
(x)

)1/2

δ expB−A (x)

1 +


(
Cn,n exp2A

)
(x)

exp2A (x)


1/2

 .
We can write

sup
x≥0

(
Cn,nψ2

x

)
(x)

exp2(B−A) (x)
= sup

x≥0

3
n2 +

x(x+3)
n

e2(B−A)x

≤
3
n2 +

e−2

(B − A)2 n
+

3e−1

2 (B − A) n
:= vn,

sup
x≥0


(
Cn,n exp2A

)
(x)

exp2A (x)


1/2

= sup
x≥0


(
2 − e2A/n

)−1 (
1 + x 1−e2A/n

2−e2A/n

)−n

exp2A (x)


1/2

≤

√
(2 − e2A/n)−1

and

sup
x≥0

(
Cn,n expA

)
(x)

expB (x)
= sup

x≥0

(
2 − eA/n

)−1 (
1 + x 1−eA/n

2−eA/n

)−n

expB (x)

≤

(
2 − eA/n

)−1
,

selecting δ = v1/2
n , the desired result follows.

5. Further Studies

We may further extend the studies by considering another new operator Dn := Cn,n ◦ Sn, where Sn is
Szász-Mirakyan operator.(

Dn f
)

(x) =
2n−1

(2 + x)n

∞∑
v=0

1
v!

f
(v

n

) ∞∑
k=0

kv

(2e)k 2F1

(
n,−k; 1;

−x
2 + x

)
.

Also, we have(
Dn expA

)
(x) =

(
2 − e(eA/n

−1)
)−1

1 + x
1 − e(eA/n

−1)

2 − e(eA/n−1)

−n

.

Under the conditions in Theorem 2.5, we have∣∣∣∣∣∣n [(
Dn f

)
(x) − f (x)

]
− f ′ (x) −

x2 + 4x
2

f ′′ (x)

∣∣∣∣∣∣
≤

2
∣∣∣ f ′′ (x)

∣∣∣
n

+ 2
[4
n
+ x (x + 4) + bn (x)

]
ω∗

(
f ′′,n−1/2

)
,
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where

bn (x) = n2
[(

Dn

(
exp

−1 (x) − exp
−1 (t)

)4
)

(x)
(
Dnψ

4
x

)
(x)

]1/2
.

Remark 5.1. We observe that its easy to have more and more compositions of Szász-Mirakyan operators to Cn,n.
Also, moment producing functions can be evaluated but even if we increase compositions further and further the
error increases. So, its our claim here that the composition operator Cn,n gives better approximation than the further
compositions.
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