
Filomat 39:19 (2025), 6793–6802
https://doi.org/10.2298/FIL2519793D

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this article, we are investigated on the concepts of pseudo-orbits, asymptotic pseudo- or-
bits, statistical pseudo-orbits, and different shadowing properties in a dynamical system for a continuous
function f on a compact set, and also we are obtained some important results.

1. Introduction

Grossman and Katz [1, 4, 8] introduced the concept of non-Newtonian numbers, a new algebraic struc-
ture, as a substitute for the classical calculus or Newtonian calculus. Following them, Çakmak and Basar
[3] who defined the set R(N) of non-Newtonian real numbers, non-Newtonian metric space (R(N), dN), non-
Newtonian normed space (R(N), ∥.∥N), and a number of well-known inequalities.

A generator is a bijective function α whose range is a subset of R and whose domain is R. Consider
R(N) = {α(x) : x ∈ R}. The set R(N+) represents the α− positive real numbers, and R(N−) represents the
α-negative real numbers. For every n ∈ Z, we write α(n)= ṅ.
An α arithmetic is the arithmetic whose domain isR(N) whose operations are defined as follows: considering
x, y ∈ R and for any generator α,

α − addition x+̇y = α{α−1(x) + α−1(y)}

α − subtraction x−̇y = α{α−1(x) − α−1(y)}

α −multiplication x×̇y = α{α−1(x) × α−1(y)

α − division x/̇y = α{α−1(x)/α−1(y)}, α−1(x) , 0

α − order x≤̇y = {α−1(x) ≤ α−1(y)},

The set R(N),with the above operations, forms a non-Newtonian complete order field.

2020 Mathematics Subject Classification. Primary 34C35; Secondary 37C50, 37D05, 40A05, 54H20, 58F12.
Keywords. Pseudo-orbit, pseudo-orbit shadowing, statistical shadowing orbits, density, non-Newtonian numbers
Received: 07 November 2024; Revised: 04 March 2025; Accepted: 18 March 2025
Communicated by Miodrag Spalević
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Let D be an infinite compact subset of R(N), and dN : D×̇D → D be a function on D is satisfied the
following axioms: for all t, s, z ∈ D,
(M1) dN(t, s)≥̇0̇,
(M2) dN(t, s) = 0̇, iff t = s,
(M3) dN(t, s) = dN(s, t),
(M3) dN(t, s)≤̇dN(s, z)+̇dN(z, t).
Then (D, dN) is a compact non-Newtonian metric space.

Independently, Fast [5] and Steinhaus [11] introduced the notion of statistical convergence ofN.
Further, this notion was more developed by Salat [10], Fridy [6, 7], Tripathy [12, 13], and others.

Let M be a subset ofN. The density of M is defined by

η(M) = limn→∞
|Mn |

n ,

where Mn = {k ≤ n : k ∈M}, and |Mn| is the cardinality of Mn.

Example 1.1. (i) The set of even natural numbers has density zero. (ii) The set of pth power of natural numbers has
density zero, where p ≥ 2.

A sequence {xk} of non-Newtonian numbers is called statistically convergent to some point β in R(N), if
for every ε>̇0̇, we have

η({k ∈N : d(xk, β)>̇ε̇}) = 0.

2. Definitions and Notations

Let (D, dN) be a compact non-Newtonian metric space. If f : D→ D is a continuous function, then (D, f )
is referred to as a dynamical system and the function f : D → D has a fixed point in D. Let (D, f ) be a
dynamical system for the map f : D→ D on the compact set D and for each t ∈ D, the forward orbit of the
point t is given by

O+f (t) = {t, f (t), f 2(t), ..., f k(t), ..} ⊂ D,

and the backward orbit of t is given by

O−f (t) = {{t−i}i≥0} ⊂ D,where f (t−i) = t−i+1, for i ≥ 0.

Definition 2.1. [2] Let (D, f ) be a dynamical system (in Newtonian sense). A sequence of points {t0, t1, t2, ....} ⊂ D
is called an ε−pseudo-orbit if for ε > 0 ,

d( f (ti), ti+1) < ε, for every i ≥ 0,

where d is a Newtonian metric, and P( f , ε) be the set of all ε−pseudo-orbits of f .

Definition 2.2. An ε−pseudo-orbit {t0, t1, t2, ....} ⊂ D is said to be converges statistically to p if for ε>̇0̇ ,

η({i ∈N0 : dN(ti, p)>̇ε}) = 0,

whereN0 =N ∪ {0}.

Example 2.3. Consider the sequence (ti) is follows:

ti =

1̇ if k = i2, i ∈N
0̇ if otherwise

.
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Then for every ε>̇0̇, we have

η({i ∈N : dN(ti, 0̇)>̇ε}) = lim
n→∞

|i ≤ n : dN(ti, 0̇)>̇ε|
n

≤ lim
n→∞

|i ≤ n : ti , 0̇|
n

≤ lim
n→∞

n1/2

n
= 0.

Therefore, the sequence (ti) is statistically converges to 0̇ but not usually converges to 0̇.

Definition 2.4. [2] A sequence of points {t0, t1, t2, ....} ⊂ D is called an asymptotic pseudo-orbit if

limi→∞d( f (ti), ti+1) = 0.

Definition 2.5. An asymptotic pseudo-orbit {t0, t1, t2, ....} ⊂ D is said to be statistical converges to p if

st − lim dN(ti, p) = 0̇,

where 0̇ is non-Newtonian zero.

Let L f be the set of all limits of all the ε−pseudo-orbit in D, and ω f be the set of all limits of all the
forward orbits in D for the map f . Also, we denote S as the set of all statistical limits of all pseudo-orbits in
D, and S f as the set of all statistical limits of all the forward orbits in D.

Throughout the paper, we denote ”shadowing property ” by ”s-property”

Definition 2.6. [9] Let (D, f ) be a dynamical system. The function f is said to have the s-property, if for any ε > 0,
there exists a δ > 0 such that, for each δ−pseudo-orbit {ti}i≥0, there exists x ∈ D such that

d( f i(x), ti) < ε, for all i ≥ 0,

where f 0 is an identity map, and d is a Newtonian (usual) metric.

Definition 2.7. Let (D, f ) be a dynamical system. The function f is said to have the statistical s-property, if for any
ε>̇0̇, there exists a δ>̇0̇ such that, for each δ−pseudo-orbit {ti}i≥0, there exists x ∈ D such that

η({i ∈N : dN( f i(x), ti)<̇ε}) = 0,

where f 0 is an identity map.

Definition 2.8. [9] Let P( f , δ) be the set of all δ−pseudo-orbits of f and let (D, f ) be a dynamical system. Then, we
say that the function f has the continuous s-property if there exists a δ > 0 and a continuous map r : P( f , δ)→ D for
every ε > 0, such that

d( f i(r(p), ti) < ε, for all i ≥ 0,

for p = {ti}i≥0 ∈ P( f , δ), where d is a Newtonian metric.

Definition 2.9. Let (D, f ) be a dynamical system. If a δ>̇0̇ exists for each ε>̇0, then the function f is said to have
pseudo-orbit corresponding property, if there exists x, y ∈ D, a continuous map r : P( f , δ) → D such that for each
pair of δ−pseudo-orbits p = {ti}i≥0 and q = {si}i≥0

dN( f i(r(p)), f i(r(q))<̇ε, for all i ≥ 0,

where r(p) = x, r(q) = y, and f 0 is an identity map.
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Definition 2.10. Let (D, f ) be a dynamical system. If a δ>̇0̇ exists for each ε>̇0̇, then the function f is called
statistical pseudo-orbit corresponding property, if there exists x, y ∈ D, a continuous map r : P( f , δ)→ D such that
for each pair of δ−pseudo-orbits p = {ti}i≥0 and q = {si}i≥0

η({i ∈N0 : dN( f i(r(p)), f i(r(q))>̇ε}) = 0,

where r(p) = x, r(q) = y, and f 0 is an identity map.

Definition 2.11. Let (D, f ), and (D, 1) be two dynamical systems for a continuous map f : D→ D, and 1 : D→ D.
The product of two orbits O+f (t), and O+1 (s) defined by

O+f (t)×̇O+1 (s) = {( f i(t), 1 j(s)) : f i(t) ∈ O+f (t), and 1 j(s) ∈ O+1 (s)}

Also, the orbit at (t, s) of the product of two functions f and 1 defined by

O+f ×̇1(t, s) = {( f i(t), 1i(s)) : f i(t) ∈ O+f (t), and 1i(s) ∈ O+1 (s)}.

3. Main Results

Theorem 3.1. Let {ti}i≥0 and {si}i≥0 be two δ−pseudo-orbits in P( f , δ) with satisfies the following conditions:

(i) dN((ti, si)>̇d( f (ti), f (si)), for all i ≥ 0,

(ii) dN((ti, si)→ 0̇, as i→∞.

Then

(a)I f {ti}i≥0 is δ − pseudo-orbit, then so is {si}i≥0,

(b)I f {ti}i≥0 is asymptotic pseudo-orbit, then so is {si}i≥0,

(c)I f {ti}i≥0 is statistical δ − pseudo-orbit, then so is {si}i≥0.

Proof: We prove only the statement (c). The cases (a) and (b) can be established following standard
techniques.
We assume that {ti}i≥0 is statistical pseudo-orbit i.e., for every ε>̇0̇ such that

η(A) = 0,where A = {i ∈N0 : dN( f (ti), ti+1)>̇ε},

whereN0 =N ∪ {0}.
Let B= {i ∈N0 : dN( f (si), si+1)>̇ε}, and C= {i ∈N0 : 2dN(ti, si)+̇ dN( f (ti), ti+1)>̇ε}.

From the inequality

dN(( f (si), si+1)≤̇dN( f (si), f (ti)+̇dN( f (ti), ti+1)+̇dN(ti+1, si+1)
<̇dN(si, ti)+̇dN( f (ti), ti+1)+̇dN(ti, si)
<̇2dN(si, ti)+̇dN( f (ti), ti+1).

We have

η({i ∈N0 : dN(( f (si), si+1)>̇ε}) ≤ η({i ∈N0 : 2Nd(si), ti)+̇dN( f (ti), ti+1)>̇ε})

It is cleared that B ⊆ C. We claim η(C) = 0.
Further, let Bε1 = {i ∈N0 : dN(ti, si)>̇ε}, and Bε−2ε1 = {i ∈N0 : dN( f (ti), ti+1)>̇ε − 2ε1}, where 0̇<̇ε1<̇ε.
Then we obtain C = ∪0̇<̇ε1<̇ε(Bε1 ∩ Bε−2ε1 ). For each ε1 ∈ (0̇, ε), we have

η(Bε−2ε1 ) = 0,
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which implies η(∪0̇<̇ε1<̇ε(Bε1 ∩ Bε−2ε1 )) = 0 i.e., η(C) = 0.
Therefore, η(B) = 0, as B is a subset of C.

Theorem 3.2. If f : D→ D is a continuous map and let (D, f ) be the dynamical system. If the limit of the forward
orbit exists, then it is a fixed point in D under the associated map f .

Proof: We have to prove that if x is the limit of some forward orbit, then it is a fixed point i.e., f (x) = x.
Suppose x is a limit of a forward orbit, there is point t ∈ D and a forward orbit O+f (t) = {t, f (t), f 2(t), ..., f k(t), ...}
such that

f k(t)→ x, as k→∞. (1)

Since f is a continuous map , then

f ( f k(t))→ f (x), as k→∞,

i.e., f k+1(t)→ f (x), as k→∞. (2)

Again from the Eq(1), we have

f k+1(t)→ x, as k→∞. (3)

Therefore, from Eq(2) and Eq(3), we have

f (x) = x

Hence, x is a fixed point under the associated map f .
This following corollary immediately follows from the above theorem.

Theorem 3.3. Let f be a continuous map on the compact metric space D.
If (i) f has s-property,
(ii) every forward orbit is convergent,
then every ε−pseudo-orbit is also convergent.

Proof: Suppose for every t ∈ D, the forward orbit at t is convergent,then for every ε>̇0̇, there exists a
natural number n0 satisfying

dN( f m(t), f n(t))<̇ ε3 , for all n,m ≥ n0.

Since f has shadowing property, for every pair of ε−pseudo-orbits {si}i≥0, there exists z ∈ D such that

dN( f i(z), si)<̇ ε3 , for all i ≥ 0.

Now, for all n,m ≥ n0, we have

dN(sm, sn)≤̇ dN(tm, f m(z))+̇dN( f m(z), f n(z))+̇dN( f n(z), tn)

From the above two equations, we have

dN(sm, sn)≤̇ε, for all n,m ≥ n0.

Therefore, {si}i≥0 is Cauchy sequence, hence convergent.

Remark 3.4. In veiw of the above Theorem, we have ”every fixed point is also statistical fixed point in D.

Theorem 3.5. Let f : D → D be a continuous map, and let (D, f ) be the dynamical system. If s ∈ O+f (x) and

t ∈ O+f (s), then t ∈ O+f (x).
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Proof: Assume s ∈ O+f (x) i.e., s is a limit of O+f (x), then for every ε>̇0̇, there exist a N ∈N, and a sequence
{ f nk (x)} such that

dN( f nk (x), s)<̇
ε
2
, for all nk ≥ N. (4)

Further, t ∈ O+f (s), for every ε>̇0̇, there is a N1 ∈N, and a subsequence { f nm (s)} such that

dN( f nm (s), t)<̇
ε
2
, for all nm ≥ N1. (5)

Since f is continuous, then from Eq(4), we have

dN( f nk+nm (x), f nm (s))<̇
ε
2
, for all nk ≥ N. (6)

Now, using the Eq(5) and Eq(6), we obtain

dN( f nk+nm (x), t)≤̇dN( f nk+nm (x), f nm (s))+̇dN( f nm (s), t)

<̇
ε
2
+̇
ε
2

= ε,

for all nk,nm ≥ K = max{N,N1}. Hence, t ∈ O+f (x).

Theorem 3.6. Let (D, f ) be a dynamical system for a continuous map f : D → D. Then under the associated map
f , the statements hold:
(i) the set S f is closed ,
(ii) the set S is closed ,
(iii) the set S is an invariant,
(iv) The set S f is an invariant.

Proof: Let (D, f ) be a dynamical system. We have to prove that (i) S f = S f , and (ii) S = S, (iii) S is invariant
set,(iv)S f is invariant set.
(i)Let y be any element in S f , then there exists a forward orbit O+f (t) = {t, f (t), f 2(t), ..., f k(t), ..} such that

η({i ∈N0 : dN( f k(t), y)>̇ε}) = 0

We have, by the Theorem 2., y is a fixed point under the associated map f
that is, f (y) = y. Then y is statistical fixed point in D.
Now, consider the orbit O+f (y) = {y, f (y), f 2(y), ..., f k(y), ...} ⊂ D such that

η({i ∈N0 : dN( f k(y), y)>̇ε}) = 0

Therefore, y is a limit of some forward orbit in D i.e., y ∈ S f .
Hence, S f is a closed set.
(ii) We claim S is closed. Suppose L is an element of the closure of S, then there is a sequence {L1,L2,L3, ...,Li, ..}
of limits of the different ε− pseudo-orbits such that

η({i ∈N : dN(Li, l)>̇ε}) = 0

Then, for ε>̇0̇, there is a subset K = {k1 < k2 < ... < kn < ...} ⊂Nwith η(K) = 0 such that

η({i ∈N : dN(Lki ,L)>̇ε}) = 0. (7)

Further, for each Lk ∈ S, there exists a ε− pseudo-orbit {ti}i≥0 and a Mk ⊂Nwith η(Mk) = 0 such that

η({i ∈Mk : dN(ti,Lk)>̇ε}) = 0. (8)

From the inequality,for all i ∈M = K ∩Mk,
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dN(ti,L)≤̇dN(ti,Lk)+̇dN(Lk,L)

and from Eq(7) and Eq(8), we have

η({i ∈M : dN(ti,L)>̇ε}) ≤ η({i ∈M : dN(tk,Lk)>̇ε}) + η({i ∈M : dN(Li,L)>̇ε})

which implies

η({i ∈M : dN(ti,L)>̇ε}) = 0.

That is, we can find a ε− pseudo-orbits {ti}i≥0 such that {ti}i≥0 statistically converges to L. Hence, L ∈ S.
(iii) We prove that m ∈ S =⇒ f (m) ∈ S. Suppose m ∈ S, for every ε>̇0̇, there is a ε− pseudo-orbit {si}i≥0 and
a subset K = {k1 < k2 < ... < kn < ...} ⊂Nwith η(K) = 0 such that

η({i ∈ K : dN(si,m)>̇ε}) = 0. (9)

η({i ∈N0 : d( f (si), si+1)>̇ε}) = 0. (10)

From Eq(9), and Eq(10), we have

η({i ∈ K : dN( f (si),m)>̇ε}) = 0.

Since f is a continuous function, then from Eq(9), we get

η({i ∈ K : dN( f (si), f (m))>̇ε}) = 0

Thus, for given ε>̇0̇, by using above two equations we obtain

η({i ∈ K : dN( f (m), sk+1)>̇ε}) = 0.

That is, f (m) is a statistical limit of an ε− pseudo-orbit {si}i≥0. Therefore, f (m) ∈ S.
(iv) For any y ∈ S f , by Remark 1, y is statistical fixed point in D.
Hence, f (y) ∈ S f .
The following result follows from the above theorem.

Corollary 3.7. Let (D, f ) be a dynamical system. Let ω f and L f be the sets of all limits of all forward orbits and ε−
pseudo-orbits in D respectively, for the map f . Then
(i) ω f is a closed and invariant set,
(ii) L f is a closed and invariant set.

Theorem 3.8. Let (D, f ), and (D, 1) be two dynamical systems for continuous maps f : D → D, and 1 : D → D,
respectively. Then

O+f ×̇1(t, s) = O+f (t)×̇O+1 (s)

iff (t, 1(s)) ∈ O+f ×̇1(t, s).

Proof: The necessity part is immediately held from the equality condition. For the sufficient part, we
assume (t, 1(s)) ∈ O+f ×̇1(t, s).
We shall show that

O+f ×̇1(t, s) = O+f (t)×̇O+1 (s).

Suppose ( f i(t), 1i(s)) ∈ O+f×1(t, s), which implies f i(t) ∈ O+f (t), and 1i(s) ∈ O+1 (s), for all i ≥ 0. Then for all
i, j ≥ 0, we obtain

( f i(t), 1 j(s)) ∈ O+f (t)×̇O+1 (s).
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This implies

O+f ×̇1(t, s) ⊆ O+f (t)×̇O+1 (s).

Therefore, we have

O+f ×̇1(t, s) ⊆ O+f (t)×̇O+1 (s).

For the reverse inclusion, we consider for j > i > 0,

( f i(t), 1 j(s)) ∈ O+f (t)×̇O+1 (s).

Then f i(t) ∈ O+f (t), and 1 j(s) ∈ O+1 (s).

So, there is a natural number p such that j = i + p, and also, by our assumption (t, 1(s)) ∈ O+f ×̇1(t, s), and

( f i(t), 1 j(s)) = ( f i(t), 1i+p(s))

= ( f i(t), 1i(s))(t, 1p(s)).

So, by our assumption, we have

( f i(t), 1 j(s)) ∈ O+f ×̇1(t, s),

Therefore, we get

O+f (t)×̇O+1 (s) ⊆ O+f ×̇1(t, s)

which implies

O+f (t)×̇O+1 (s) ⊆ O+f ×̇1(t, s).

Hence,

O+f (t)×̇O+1 (s) = O+f ×̇1(t, s).

Theorem 3.9. Let (D, f ) be a dynamical system. If there is a δ>̇0̇ for each ε>̇0̇, and there exists x, y ∈ D with
dN(ti, si)<̇δ, for all i ≥ 0, for each pair of δ−pseudo-orbits {ti}i≥0 and {si}i≥0 such that f has s-property on D, then

dN( f i(x), f i(y))<̇ε, for all i ≥ 0,

where f 0 is an identity map.

Proof: For given ε>̇0̇, there exists a δ>̇0̇ and for every pair of δ−pseudo-orbits {ti}i≥0 and {si}i≥0. Now
taking ε = δ,we have

dN( f (ti), ti+1)<̇
ε
5
, for all i ≥ 0. (11)

dN( f (si), si+1)<̇
ε
5
, for all i ≥ 0. (12)

Since f has s-property, for every pair of δ−pseudo-orbits {ti}i≥0 and {si}i≥0 , there exists x, y ∈ D such that

dN( f i(x), ti)<̇
ε
5
, for all i ≥ 0, (13)

dN( f i(y), si)<̇
ε
5
, for all i ≥ 0, (14)
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Further, f is uniformly continuous on D, for given ε>̇0̇, there is a δ>̇0̇ such that

dN(ti, si)<̇δ =⇒ dN( f (ti), f (si))<̇
ε
5
, (15)

for all i ≥ 0.
Now, from the Equations (11), (12), (13), (14), and (15), we obtain

dN( f i(x), f i(y))≤̇dN( f i(x), ti)+̇dN(ti, f (ti−1))+̇dN( f (ti−1), f (si−1))

+̇d( f (si−1), si)+̇d(si, f i(y))

<̇
ε
5
+̇
ε
5
+̇
ε
5
+̇
ε
5
+̇
ε
5

= ε, for all i ≥ 0.

The proof is complete.
The following corollary can be established from the previous result.

Corollary 3.10. Let (D, f ) be a dynamical system. If there is a δ>̇0̇ for each ε>̇0̇, and there exists x, y ∈ D with
dN(ti, si)<̇δ, for all i ≥ 0 for each pair of δ−pseudo-orbits {ti}i≥0 and {si}i≥0 such that f has continuous s-property on D
then f has pseudo-orbit corresponding property i.e.,

dN( f i(r(p)), f i(r(q)))<̇ε, for all i ≥ 0,

where r(p) = x, r(q) = y, and f 0 is an identity map.

Theorem 3.11. Let (D, f ) be a dynamical system. If there is a δ>̇0̇ for each ε>̇0̇, and there exists x, y ∈ D with
η({i ∈N0 : dN(ti, si)>̇δ}) = 0, for each pair of δ−pseudo-orbits {ti}i≥0 and {si}i≥0 such that f has statistical s-property
on D, then

η({i ∈N0 : d( f i(x), f i(y))>̇ε}) = 0,

where f 0 is an identity map.

Proof: For given ε>̇0̇, there exists a δ>̇0̇ and for every pair of δ−pseudo-orbits {ti}i≥0 and {si}i≥0. Now, taking
δ = ε,we have

η({i ∈N0 : dN( f (ti), ti+1)>̇ε}) = 0. (16)

η({i ∈N0 : dN( f (si), si+1)>̇ε}) = 0. (17)

Now, f has statistical s-property, then for every pair of δ−pseudo-orbits {ti}i≥0 and {si}i≥0 , there exists
x, y ∈ D such that

η({i ∈N0 : dN( f i(x), ti)>̇ε}) = 0. (18)

η({i ∈N0 : dN( f i(y), si)>̇ε}) = 0. (19)

Further, f is uniformly continuous on D, for given ε>̇0̇, there exists a δ(= ε)>̇0̇, and for every pair of
δ−pseudo-orbits {ti}i≥0 and {si}i≥0 such that

η({i ∈N0 : dN(ti, si)>̇δ}) = 0 =⇒ η({i ∈N0 : dN( f (ti), f (si))>̇ε} = 0. (20)

Now, from the Equations (16), (17), (18), (19), and (20), we obtain

dN( f i(x), f i(y))≤̇dN( f i(x), ti)+̇dN(ti, f (ti−1))+̇dN( f (ti−1), f (si−1))

+̇dN( f (si−1), si)+̇dN(si), f i(y))
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=⇒ η({i ∈N : dN( f i(x), f i(y))>̇ε}) ≤ η({i ∈N : dN( f i(x), ti)>̇ε})
+ η({i ∈N : dN(ti, f (ti−1))>̇ε})
+ η({i ∈N : dN( f (ti−1), f (si−1))>̇ε})
+ η({i ∈N : dN( f (si−1), si)>̇ε})

+ η({i ∈N : dN(si, f i(y))>̇ε})

From the above equations, we get the required result
i.e.,

η({i ∈N : dN( f i(x), f i(y))>̇ε}) = 0.

The following corollary can be established from the previous result.

Corollary 3.12. Let (D, f ) be a dynamical system. If there is a δ>̇0̇ for each ε>̇0̇, and there exists x, y ∈ D with η({i ∈
N0 : dN(ti, si)>̇δ}) = 0, for each pair of δ−pseudo-orbits {ti}i≥0 and {si}i≥0 such that f has statistical continuous s-property
on D, then f has statistical pseudo-orbit corresponding property i.e.,

η({i ∈N : dN( f i(r(p)), f i(r(q)))>̇ε}) = 0,

where r(p) = x, r(q) = y, and f 0 is an identity map.

4. Conclusion

In this paper, we have studied various types of shadowing that is, different types of approximation
methods to approximate pseudo-orbit by forward orbit under a continuous map. This study shall help the
readers to find out some other approximation methods that approximate pseudo orbits in less errors.
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