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On pseudo-orbit, shadowing, statistical shadowing and orbits of
non-Newtonian numbers

Ashoke Dutta®’, Binod Chandra Tripathy?®, Harish D.?

®Department of Mathematics, Tripura University, Agartala, India, 799022

Abstract. In this article, we are investigated on the concepts of pseudo-orbits, asymptotic pseudo- or-
bits, statistical pseudo-orbits, and different shadowing properties in a dynamical system for a continuous
function f on a compact set, and also we are obtained some important results.

1. Introduction

Grossman and Katz [1, 4, 8] introduced the concept of non-Newtonian numbers, a new algebraic struc-
ture, as a substitute for the classical calculus or Newtonian calculus. Following them, Cakmak and Basar
[3] who defined the set R™) of non-Newtonian real numbers, non-Newtonian metric space (R ), dy), non-
Newtonian normed space (R™, |I.lln), and a number of well-known inequalities.

A generator is a bijective function @ whose range is a subset of R and whose domain is R. Consider
R™ = {a(x) : x € R}. The set RV represents the a— positive real numbers, and R™~) represents the

a-negative real numbers. For every n € Z, we write a(n)= .
An a arithmetic is the arithmetic whose domain is R™) whose operations are defined as follows: considering

x,y € R and for any generator «,
a — addition x+y = ala™(x) + a‘l(y)}
a — subtraction x—y = ala™t(x) - a‘l(y)}
a — multiplication xXy = afa™(x) x a‘l(y)
a — division x/y = ala™? (x)/afl(y)},afl(x) #0

a —order x<y = {a”'(x) < a7 (y)},

The set R™, with the above operations, forms a non-Newtonian complete order field.
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Let D be an infinite compact subset of RN, and dy : DXD — D be a function on D is satisfied the
following axioms: forall t,s,z € D,
(Ml) dN(f, s)éO,
(M2) dn(t,s) = 0,iff t = s,
(M3) dn(t,s) = dn(s, b),
(M3) dn(t, s)<dn(s, z)+dn(z, t).
Then (D, dy) is a compact non-Newtonian metric space.

Independently, Fast [5] and Steinhaus [11] introduced the notion of statistical convergence of IN.
Further, this notion was more developed by Salat [10], Fridy [6, 7], Tripathy [12, 13], and others.

Let M be a subset of IN. The density of M is defined by

(M) = im0 22!

n 7

where M,, = {k < n: k € M}, and |M,| is the cardinality of M,,.

Example 1.1. (i) The set of even natural numbers has density zero. (i) The set of p power of natural numbers has
density zero, where p > 2.

A sequence {x,} of non-Newtonian numbers is called statistically convergent to some point g in R®, if
for every ¢>0, we have

n(lk € N : d(xi, p)>€}) = 0.

2. Definitions and Notations

Let (D, dy) be a compact non-Newtonian metric space. If f : D — D is a continuous function, then (D, f)
is referred to as a dynamical system and the function f : D — D has a fixed point in D. Let (D, f) be a
dynamical system for the map f : D — D on the compact set D and for each t € D, the forward orbit of the
point ¢ is given by

OJ’:(t) ={t, f(), F2(), ..., f(t), ..} € D,
and the backward orbit of ¢ is given by

O}(t) = {{t_i}iz0} € D, where f(t_;) = t_i1,fori > 0.

Definition 2.1. [2] Let (D, f) be a dynamical system (in Newtonian sense). A sequence of points {to, t1,t2,....} C D
is called an e—pseudo-orbit if for e > 0,

d(f(ti), ti1) < €, for everyi > 0,
where d is a Newtonian metric, and IP(f, €) be the set of all e—pseudo-orbits of f.
Definition 2.2. An e—pseudo-orbit {ty,t1,ts,....} C D is said to be converges statistically to p if for &30,
n(ti € No : dn(ti, p)>e}) =0,
where Ny = IN U {0}.

Example 2.3. Consider the sequence (t;) is follows:

o 1 ifk=4,ieN
"0 ifotherwise
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Then for every &3>0, we have

li<n:dn(, 0)>é|

n(li € N dy(t;, 0)>e)) = lim

n
. ignt;#0
< lim ————
n—oo n
1/2
.n
< lim — =0.
n—oo n

Therefore, the sequence (t;) is statistically converges to 0 but not usually converges to 0.

Definition 2.4. [2] A sequence of points {t, t1,t2, ...} C D is called an asymptotic pseudo-orbit if
lim;eod(f(t;), tis1) = 0.
Definition 2.5. An asymptotic pseudo-orbit {to,t1,t,....} C D is said to be statistical converges to p if
st —lim dy(t;,p) =0,
where 0 is non-Newtonian zero.

Let Ly be the set of all limits of all the é—pseudo-orbit in D, and wy be the set of all limits of all the
forward orbits in D for the map f. Also, we denote S as the set of all statistical limits of all pseudo-orbits in
D, and Sy as the set of all statistical limits of all the forward orbits in D.

Throughout the paper, we denote “shadowing property ” by ”s-property”

Definition 2.6. [9] Let (D, f) be a dynamical system. The function f is said to have the s-property, if for any € > 0,
there exists a 0 > 0 such that, for each 0—pseudo-orbit {t;};>o, there exists x € D such that

d(fi(x),t;) < ¢, foralli>0,
where fO is an identity map, and d is a Newtonian (usual) metric.

Definition 2.7. Let (D, f) be a dynamical system. The function f is said to have the statistical s-property, if for any
&30, there exists a 630 such that, for each 6—pseudo-orbit {t;}i»o, there exists x € D such that

n(fi € N dy(f'(x), t)<e}) = 0,
where f° is an identity map.

Definition 2.8. [9] Let IP(f, 6) be the set of all o—pseudo-orbits of f and let (D, f) be a dynamical system. Then, we
say that the function f has the continuous s-property if there exists a 6 > 0 and a continuous map v : IP(f,6) — D for
every € > 0, such that

d(fi(r(p), t;) < ¢, foralli > 0,
for p = {tiliso € P(f, 6), where d is a Newtonian metric.

Definition 2.9. Let (D, f) be a dynamical system. If a 5>0 exists for each >0, then the function f is said to have
pseudo-orbit corresponding property, if there exists x,y € D, a continuous map r : IP(f,6) — D such that for each
pair of 6—pseudo-orbits p = {ti}i»0 and q = {si}i=0

An(Fi(r(p)), Fi(r(q))<e, forall i > 0,
where r(p) = x,1(q) = y, and f° is an identity map.
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Definition 2.10. Let (D, f) be a dynamical system. If a 5>0 exists for each >0, then the function f is called
statistical pseudo-orbit corresponding property, if there exists x, y € D, a continuous map r : IP(f,6) — D such that
for each pair of 5—pseudo-orbits p = {t;}i0 and q = {si}i>o

n({i € No : dn(f(r(p), f(r(@)>e}) = 0,
where r(p) = x,7(q) = y, and f° is an identity map.

Definition 2.11. Let (D, f), and (D, g) be two dynamical systems for a continuous map f : D — D,and g : D — D.
The product of two orbits O;;(t), and Oy (s) defined by

OF(H%05(s) = {(f'(), g'(9)) : f1(1) € OF(t), and g/(s) € O5(s)}
Also, the orbit at (t,s) of the product of two functions f and g defined by

Ot (£:9) = {(f1(5), 9's)) : Fi(t) € O5(t),and g'(s) € O} ()}

3. Main Results

Theorem 3.1. Let {t;}i50 and {s;}i»o be two d—pseudo-orbits in IP(f, 6) with satisfies the following conditions:
(@) dn((ti, si)>d(f(ti), f(si)), forall i 2 0,
(ii) dn((ti, s;)) — 0,as i — oo.

Then
(@)If {ti}iz0 is O — pseudo-orbit, then so is {s}i»o,

(D)Lf {ti}is0 is asymptotic pseudo-orbit, then so is {s;}iso,
(o) f {tilizo is statistical O — pseudo-orbit, then so is {s;}io.

Proof: We prove only the statement (c). The cases (a) and (b) can be established following standard
techniques.
We assume that {;};>9 is statistical pseudo-orbit i.e., for every &30 such that

N(A) = 0,where A = {i € Ny : dn(f(£), tir1)>e),

where INy = IN U {0}.
Let B={i € Np : dn(f(si),5i+1)>¢}, and C= {i € Np : 2dn(t;, 5:)+ dn(f(E), tiv1)>e).

From the inequality

AN((f(si), siv1)<AN(f(50), f(t)FAN(f(E), tisr)FdN(tiv, Siv1)
<dn(si, ti)+dn(f (1), tiv)+dn(ti, si)
<2dn(si, ti)FAn(f(ti), tisn).

We have
n({i € No : dn((f(si), si41)>€}) < n(fi € No = 2nd(sy), ti)+dn(f (i), tiv1)>e})

It is cleared that B € C. We claim 7(C) = 0.
Further, let B,, = {i € Ny : dn(t;, si)>¢}, and Be_pe, = {i € No : dn(f(t), tix1)>€ — 21}, where O0<e<e.
Then we obtain C = Uy, +(Be, N Beae,). For each 1 € (0, ¢), we have

T](Bé'—2€1 ) =0,
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which implies 1(Ujz, 2 (Be; N Be—2¢,)) = 0i.e., n(C) = 0.
Therefore, n(B) = 0, as B is a subset of C.

Theorem 3.2. If f : D — D is a continuous map and let (D, f) be the dynamical system. If the limit of the forward
orbit exists, then it is a fixed point in D under the associated map f.

Proof: We have to prove that if x is the limit of some forward orbit, then it is a fixed pointi.e., f(x) = x.
Suppose x is a limit of a forward orbit, there is pointt € D and a forward orbit O}f(t) ={t, f(t), f2(t), ..., ), ...}

such that
fk(t) — x, ask — oo. @)

Since f is a continuous map , then

FFE®) = f(x), ask — oo,

ie., fUt) — f(x), ask — oo. 2)
Again from the Eq(1), we have

Ut — x, ask — oo. 3)
Therefore, from Eq(2) and Eq(3), we have

f)=x

Hence, x is a fixed point under the associated map f.
This following corollary immediately follows from the above theorem.

Theorem 3.3. Let f be a continuous map on the compact metric space D.
If (i) f has s-property,

(ii) every forward orbit is convergent,

then every e—pseudo-orbit is also convergent.

Proof: Suppose for every t € D, the forward orbit at ¢ is convergent,then for every ¢30, there exists a
natural number 1 satisfying

dn(f™ (), f'(1)<5, forall n,m > no.
Since f has shadowing property, for every pair of e—pseudo-orbits {s;};>o, there exists z € D such that
dn(fi(z),s1)<%, foralli > 0.
Now, for all n,m > nyg, we have
AN(Sm, sn)< dn(tm, f(2))+dN(f" (2), f" (@) +dn(f"(2), En)
From the above two equations, we have
An(8m, sn)<e, for all n,m > ny.

Therefore, {s;};»0 is Cauchy sequence, hence convergent.

Remark 3.4. In veiw of the above Theorem, we have "every fixed point is also statistical fixed point in D.

Theorem 3.5. Let f : D — D be a continuous map, and let (D, f) be the dynamical system. If s € Oj;(x) and
te Oj;(s), thent € O}f(x).
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Proof: Assumes € O;; (x) i.e., s is a limit of Ojt (x), then for every e>0, there exista N € IN, and a sequence
{f™(x)} such that

dn(F (), s)<§,for all , > N. "

Further, t € Oj; (s), for every &30, thereisa N; € N, and a subsequence {f""(s)} such that

An(F™ (), t)<§,for all 1, > N. -

Since f is continuous, then from Eq(4), we have

dn(fretrn (X),f""’(s))<§,for all . > N. ©)
Now, using the Eq(5) and Eq(6), we obtain
dn(f™ " (x), <dn(F T (x), £ (s))+Fdn (" (), t)

<5:'_;_8
2 2
:g’

for all ny, n,, > K = max{N, N1}. Hence, t € O}f(x).

Theorem 3.6. Let (D, f) be a dynamical system for a continuous map f : D — D. Then under the associated map
f, the statements hold:

(i) the set Sy is closed ,

(ii) the set S is closed ,

(iii) the set S is an invariant,

(iv) The set Sy is an invariant.

Proof: Let (D, f) be a dynamical system. We have to prove that (i) Sy = S_f, and (i) S = S, (iii) S is invariant
set,(iv)Sy is invariant set.

(i)Let y be any element in §, then there exists a forward orbit O;;(t) = {t, f(t), f2(), ..., f¥(t), ..} such that
n(ti € No = dn(f (), y)>e)) = 0

We have, by the Theorem 2., y is a fixed point under the associated map f
thatis, f(y) = y. Then y is statistical fixed point in D.
Now, consider the orbit O}(y) ={y, f(y), f*(), ..., f¥(v), ...} € D such that

n({i € No : dn(f*(y), y)>e)) = 0

Therefore, y is a limit of some forward orbitin D i.e., y € S¢.

Hence, Sy is a closed set.

(ii) We claim Sis closed. Suppose Lis an element of the closure of S, then there is a sequence {L1, Ly, L3, ..., L;, ..}
of limits of the different e~ pseudo-orbits such that

n({i e N :dy(Li, I)>e}) =0
Then, for £30, there is a subset K = {k; < k; < ... <k, < ...} € N with n(K) = 0 such that
n({i € N : dy(Lg, L)>e}) = 0. (7)
Further, for each Ly € S, there exists a e~ pseudo-orbit {;};>0 and a M € IN with n(Mj) = 0 such that
n({i € Mg = dn(ti, Le)>e}) = 0. 8)
From the inequality,for alli € M = KN M,
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dn(ti, L)<dn(ti, L) +dn(Lx, L)
and from Eq(7) and Eq(8), we have
n({i € M : dn(ti, L)>e}) < n({i € M = dn(t, L)>e)) + n(fi € M = dn(Li, L)>e))
which implies
n({i € M : dn(ti, L)>e}) = 0.

That is, we can find a e— pseudo-orbits {t;};>0 such that {t;};>¢ statistically converges to L. Hence, L € S.
(iii) We prove that m € S = f(m) € S. Suppose m € S, for every e>0, there is a e— pseudo-orbit {s;};>0 and
asubset K = {k; <k, < ... <k, <..} € N with n(K) = 0 such that

n({i € K : dn(s;, m)>e}) = 0. 9)

n({i € No : d(f(si), si41)>¢}) = 0. (10)
From Eq(9), and Eq(10), we have
n(ti € K= dn(f(si), m)>e}) = 0.

Since f is a continuous function, then from Eq(9), we get

nti € K= dn(f(si), f(m))>e}) = 0

Thus, for given &3>0, by using above two equations we obtain

n({i € K : dn(f(m), sps1)>e)) = 0.

That is, f(m) is a statistical limit of an eé— pseudo-orbit {s;};>o. Therefore, f(m) € S.
(iv) For any y € S¢, by Remark 1, y is statistical fixed point in D.

Hence, f(y) € 5.

The following result follows from the above theorem.

Corollary 3.7. Let (D, f) be a dynamical system. Let ws and Ly be the sets of all limits of all forward orbits and e~
pseudo-orbits in D respectively, for the map f. Then

(i) wy is a closed and invariant set,

(i1) Ly is a closed and invariant set.

Theorem 3.8. Let (D, f), and (D, g) be two dynamical systems for continuous maps f : D — D, and g : D — D,
respectively. Then

O, (£,9) = OH(HX05 s)

iff (t,9(s)) € O;;Xg(t, s).

Proof: The necessity part is immediately held from the equality condition. For the sufficient part, we
assume (t, g(s)) € O}fxg(t,s).

We shall show that

07, (£5) = OF(HX0; ().

Suppose (f(t), §'(s)) € O7,,(t,s), which implies fit) € O3 (t), and g'(s) € O;(s), for all i > 0. Then for all
i, j > 0, we obtain

(fi(t), 9'(s)) € OF(HXOF(s)-
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This implies
O;;Xg(t,s) c O}r(t)XO;(s).

Therefore, we have

O;Xg(t, s) C O}“(t)XO;(s).
For the reverse inclusion, we consider for j > i > 0,
(fi(t), g/(s)) € O}f(t)XO;;(s).

Then fi(t) € O} (#), and g'(s) € O} (s).

So, there is a natural number p such that j = i + p, and also, by our assumption (¢, g(s)) € O}Xg(t, s), and

(f't), 9'6) = (f(£), 97 ()
= (F(), g6 g6)-

So, by our assumption, we have

(fi(t), g/ (s)) € O, (t,9),

f*q
Therefore, we get

(e O+ O+ (+ <)
Of (X0 (s) € Ofxg(t,s)

which implies

O}r(t)XO;(s) c O}g.(g(t, s).

Hence,

OL(H%0; () = 0%, (,5).

Theorem 3.9. Let (D, f) be a dynamical system. If there is a 5>0 for each €30, and there exists x,y € D with
dn(ti, si)<, for all i > 0, for each pair of 5—pseudo-orbits {t;}i>o and {s;}i>o such that f has s-property on D, then
dn(fi(x), fi(y))<e, forall i > 0,

where fO is an identity map.

Proof: For given e30, there exists a 6>0 and for every pair of 0—pseudo-orbits {t;};>0 and {s;}i>o. Now
taking ¢ = 6, we have

dn(f(t), ti+1)<§,for alli > 0. (11)
dn(f(s1), s,-+1)<§, for alli > 0. (12)
Since f has s-property, for every pair of 6—pseudo-orbits {t;};>0 and {s;}i>o , there exists x, y € D such that
dn(fi), t,-)<g, foralli >0, (13)

dn(fiy), si)<§, foralli> 0, (14)
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Further, f is uniformly continuous on D, for given ¢30, there is a 650 such that
. €
dn(ti, si))<6 = dn(f(t:), f(Si))<§/ (15)

foralli > 0.
Now, from the Equations (11), (12), (13), (14), and (15), we obtain

dn(F ), Fy)An(F (), ) Fn (i, f(E))Fdn(f(Eo), f(5im1)
+d(f(5i-1), 51)+d(si, f1(1)

=¢,foralli>0.

The proof is complete.
The following corollary can be established from the previous result.

Corollary 3.10. Let (D, f) be a dynamical system. If there is a 6>0 for each >0, and there exists x,y € D with
dn(ti, si)<0, for all i > 0 for each pair of 5—pseudo-orbits {t;}i>0 and {s;}i>o such that f has continuous s-property on D
then f has pseudo-orbit corresponding property i.e.,

dn(fi(r(p)), fi(r(@))<e, foralli >0,
where r(p) = x,1(q) = y, and f° is an identity map.

Theorem 3.11. Let (D, f) be a dynamical system. If there is a 550 for each £30, and there exists x,y € D with
n({i € Ny : dn(ti, 51)>0}) = 0, for each pair of 6—pseudo-orbits {t;}i>o and {s;}i>o such that f has statistical s-property
on D, then

n({i € No : d(f'(x), f(y)>e}) =0,
where f° is an identity map.

Proof: For given £30, there exists a 60 and for every pair of 6—pseudo-orbits {;};>0 and {s;}i>0. Now, taking
0 = &, we have

T]({l € Np : dN(f(ti), ti+1)5€}) =0. (16)
n({i € No : dn(f(si), siv1)>€}) = 0. (17)

Now, f has statistical s-property, then for every pair of 6—pseudo-orbits {t;};>0 and {s;}i>o , there exists
x,y € D such that

n({i € No : dn(f (%), ti)>¢}) = 0. (18)
n({i € No : dn(f'(y), si)>¢}) = 0. (19)

Further, f is uniformly continuous on D, for given &3>0, there exists a 6(= ¢)>0, and for every pair of
O0—pseudo-orbits {t;};>9 and {s;};>o such that

n(ti € No : dn(t, 5)36) =0 = n(fi € No : du(f(t), f(si))3¢) = 0. (20)
Now, from the Equations (16), (17), (18), (19), and (20), we obtain

An(Fix), Fi)ZAn(F (%), 1) Fdn(t, f(tor) N (F(tor), f(5im1))
HdN(f(sio1), 5i)Fdn(s), Fi(Y))



A. Dutta et al. / Filomat 39:19 (2025), 6793-6802 6802

= n(fi € N :dn(f' (), f/(y))>e)) < nti € N : dn(f'(x), t)>e})
+1({i € N :dn(t, f(ti1))>e})
+ (i € N 1 dn(f(ti-1), f(si-1))>€})
+n({i € N : dn(f(si-1), 51)>¢€})
+n({i € N dn(si, f'(y)>e))

From the above equations, we get the required result
ie.,

(i € N : dn(f' (%), fi(y)>e)) = 0.
The following corollary can be established from the previous result.

Corollary 3.12. Let (D, f) be a dynamical system. If there is a >0 for each £>0, and there exists x, y € D with n({i €
Ny : dn(ti, 5:)>06}) = 0, for each pair of 5—pseudo-orbits {t;};>0 and {s;}i>o such that f has statistical continuous s-property
on D, then f has statistical pseudo-orbit corresponding property i.e.,

n({i € N = dn(f'(r(p)), £ (r(@))>e}) = 0,

where r(p) = x,7(q) = y, and f° is an identity map.

4. Conclusion

In this paper, we have studied various types of shadowing that is, different types of approximation
methods to approximate pseudo-orbit by forward orbit under a continuous map. This study shall help the
readers to find out some other approximation methods that approximate pseudo orbits in less errors.
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