

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On pseudo-orbit, shadowing, statistical shadowing and orbits of non-Newtonian numbers

Ashoke Dutta^{a,*}, Binod Chandra Tripathy^a, Harish D.^a

^aDepartment of Mathematics, Tripura University, Agartala, India, 799022

Abstract. In this article, we are investigated on the concepts of pseudo-orbits, asymptotic pseudo- orbits, statistical pseudo-orbits, and different shadowing properties in a dynamical system for a continuous function *f* on a compact set, and also we are obtained some important results.

1. Introduction

Grossman and Katz [1, 4, 8] introduced the concept of non-Newtonian numbers, a new algebraic structure, as a substitute for the classical calculus or Newtonian calculus. Following them, Çakmak and Basar [3] who defined the set $\mathbb{R}^{(N)}$ of non-Newtonian real numbers, non-Newtonian metric space ($\mathbb{R}^{(N)}$, d_N), non-Newtonian normed space ($\mathbb{R}^{(N)}$, $\|.\|_N$), and a number of well-known inequalities.

A generator is a bijective function α whose range is a subset of \mathbb{R} and whose domain is \mathbb{R} . Consider $\mathbb{R}^{(N)} = \{\alpha(x) : x \in R\}$. The set $\mathbb{R}^{(N+)}$ represents the α - positive real numbers, and $\mathbb{R}^{(N-)}$ represents the α -negative real numbers. For every $n \in \mathbb{Z}$, we write $\alpha(n) = n$.

An α arithmetic is the arithmetic whose domain is $\mathbb{R}^{(N)}$ whose operations are defined as follows: considering $x, y \in \mathbb{R}$ and for any generator α ,

$$\alpha$$
 – addition $x + y = \alpha \{\alpha^{-1}(x) + \alpha^{-1}(y)\}$
 α – subtraction $x - y = \alpha \{\alpha^{-1}(x) - \alpha^{-1}(y)\}$
 α – multiplication $x \times y = \alpha \{\alpha^{-1}(x) \times \alpha^{-1}(y)\}$
 α – division $x/y = \alpha \{\alpha^{-1}(x)/\alpha^{-1}(y)\}, \alpha^{-1}(x) \neq 0$

$$\alpha - \text{division } x/y = \alpha \{\alpha^{-1}(x)/\alpha^{-1}(y)\}, \alpha^{-1}(x) \neq 0$$

 α – order $x \leq y = \{\alpha^{-1}(x) \leq \alpha^{-1}(y)\},$

The set $\mathbb{R}^{(N)}$, with the above operations, forms a non-Newtonian complete order field.

²⁰²⁰ Mathematics Subject Classification. Primary 34C35; Secondary 37C50, 37D05, 40A05, 54H20, 58F12.

Keywords. Pseudo-orbit, pseudo-orbit shadowing, statistical shadowing orbits, density, non-Newtonian numbers

Received: 07 November 2024; Revised: 04 March 2025; Accepted: 18 March 2025

Communicated by Miodrag Spalević

^{*} Corresponding author: Ashoke Dutta

Email addresses: duttaashoke16@gmail.com (Ashoke Dutta), Tripathybc@gmail.com (Binod Chandra Tripathy),

harishd@unitripura.ac.in (Harish D.)

Let *D* be an infinite compact subset of $\mathbb{R}^{(N)}$, and $d_N: D \dot{\times} D \to D$ be a function on *D* is satisfied the following axioms: for all $t, s, z \in D$,

(M1) $d_N(t,s) \stackrel{.}{\geq} \stackrel{.}{0}$,

(M2) $d_N(t,s) = 0$, iff t = s,

(M3) $d_N(t,s) = d_N(s,t)$,

(M3) $d_N(t,s) \leq d_N(s,z) + d_N(z,t)$.

Then (D, d_N) is a compact non-Newtonian metric space.

Independently, Fast [5] and Steinhaus [11] introduced the notion of statistical convergence of \mathbb{N} . Further, this notion was more developed by Salat [10], Fridy [6, 7], Tripathy [12, 13], and others.

Let M be a subset of \mathbb{N} . The density of M is defined by

$$\eta(M) = \lim_{n \to \infty} \frac{|M_n|}{n},$$

where $M_n = \{k \le n : k \in M\}$, and $|M_n|$ is the cardinality of M_n .

Example 1.1. (i) The set of even natural numbers has density zero. (ii) The set of p^{th} power of natural numbers has density zero, where $p \ge 2$.

A sequence $\{x_k\}$ of non-Newtonian numbers is called statistically convergent to some point β in $\mathbb{R}^{(N)}$, if for every $\varepsilon \dot{>} \dot{0}$, we have

$$\eta(\{k \in \mathbb{N} : d(x_k, \beta) \dot{>} \dot{\varepsilon}\}) = 0.$$

2. Definitions and Notations

Let (D, d_N) be a compact non-Newtonian metric space. If $f: D \to D$ is a continuous function, then (D, f) is referred to as a dynamical system and the function $f: D \to D$ has a fixed point in D. Let (D, f) be a dynamical system for the map $f: D \to D$ on the compact set D and for each $t \in D$, the forward orbit of the point t is given by

$$O_f^+(t) = \{t, f(t), f^2(t), ..., f^k(t), ..\} \subset D,$$

and the backward orbit of t is given by

$$O_f^-(t) = \{\{t_{-i}\}_{i \ge 0}\} \subset D$$
, where $f(t_{-i}) = t_{-i+1}$, for $i \ge 0$.

Definition 2.1. [2] Let (D, f) be a dynamical system (in Newtonian sense). A sequence of points $\{t_0, t_1, t_2,\} \subset D$ is called an ε -pseudo-orbit if for $\varepsilon > 0$,

$$d(f(t_i), t_{i+1}) < \varepsilon$$
, for every $i \ge 0$,

where d is a Newtonian metric, and $\mathbb{P}(f, \varepsilon)$ be the set of all ε -pseudo-orbits of f.

Definition 2.2. An ε -pseudo-orbit $\{t_0, t_1, t_2, ...\} \subset D$ is said to be converges statistically to p if for $\varepsilon > 0$,

$$\eta(\{i \in \mathbb{N}_0 : d_N(t_i, p) > \varepsilon\}) = 0,$$

where $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

Example 2.3. Consider the sequence (t_i) is follows:

$$t_i = \begin{cases} \dot{1} & \text{if } k = i^2, i \in \mathbb{N} \\ \dot{0} & \text{if otherwise} \end{cases}.$$

Then for every $\varepsilon \dot{>} \dot{0}$, we have

$$\eta(\{i \in \mathbb{N} : d_N(t_i, \dot{0}) > \varepsilon\}) = \lim_{n \to \infty} \frac{|i \le n : d_N(t_i, \dot{0}) > \varepsilon|}{n}$$
$$\le \lim_{n \to \infty} \frac{|i \le n : t_i \neq \dot{0}|}{n}$$
$$\le \lim_{n \to \infty} \frac{n^{1/2}}{n} = 0.$$

Therefore, the sequence (t_i) is statistically converges to $\dot{0}$ but not usually converges to $\dot{0}$.

Definition 2.4. [2] A sequence of points $\{t_0, t_1, t_2,\} \subset D$ is called an asymptotic pseudo-orbit if

$$\lim_{t\to\infty}d(f(t_i),t_{i+1})=0.$$

Definition 2.5. An asymptotic pseudo-orbit $\{t_0, t_1, t_2, ...\} \subset D$ is said to be statistical converges to p if

$$st - lim d_N(t_i, p) = \dot{0},$$

where 0 is non-Newtonian zero.

Let L_f be the set of all limits of all the ε -pseudo-orbit in D, and ω_f be the set of all limits of all the forward orbits in D for the map f. Also, we denote S as the set of all statistical limits of all pseudo-orbits in D, and S_f as the set of all statistical limits of all the forward orbits in D.

Throughout the paper, we denote "shadowing property" by "s-property"

Definition 2.6. [9] Let (D, f) be a dynamical system. The function f is said to have the s-property, if for any $\varepsilon > 0$, there exists a $\delta > 0$ such that, for each δ -pseudo-orbit $\{t_i\}_{i\geq 0}$, there exists $x \in D$ such that

$$d(f^i(x), t_i) < \varepsilon$$
, for all $i \ge 0$,

where f^0 is an identity map, and d is a Newtonian (usual) metric.

Definition 2.7. Let (D, f) be a dynamical system. The function f is said to have the statistical s-property, if for any $\varepsilon \dot{>} \dot{0}$, there exists a $\delta \dot{>} \dot{0}$ such that, for each δ -pseudo-orbit $\{t_i\}_{i>0}$, there exists $x \in D$ such that

$$\eta(\{i \in \mathbb{N} : d_N(f^i(x), t_i) < \varepsilon\}) = 0,$$

where f^0 is an identity map.

Definition 2.8. [9] Let $\mathbb{P}(f,\delta)$ be the set of all δ -pseudo-orbits of f and let (D,f) be a dynamical system. Then, we say that the function f has the continuous s-property if there exists a $\delta > 0$ and a continuous map $r : \mathbb{P}(f,\delta) \to D$ for every $\varepsilon > 0$, such that

$$d(f^i(r(p),t_i) < \varepsilon$$
, for all $i \ge 0$,

for $p = \{t_i\}_{i \geq 0} \in \mathbb{P}(f, \delta)$, where d is a Newtonian metric.

Definition 2.9. Let (D, f) be a dynamical system. If a $\delta \dot{>} \dot{0}$ exists for each $\varepsilon \dot{>} 0$, then the function f is said to have pseudo-orbit corresponding property, if there exists $x, y \in D$, a continuous map $r : \mathbb{P}(f, \delta) \to D$ such that for each pair of δ -pseudo-orbits $p = \{t_i\}_{i \geq 0}$ and $q = \{s_i\}_{i \geq 0}$

$$d_N(f^i(r(p)), f^i(r(q)) \dot{<} \varepsilon$$
, for all $i \geq 0$,

where r(p) = x, r(q) = y, and f^0 is an identity map.

Definition 2.10. Let (D, f) be a dynamical system. If a $\delta \dot{>} \dot{0}$ exists for each $\epsilon \dot{>} \dot{0}$, then the function f is called statistical pseudo-orbit corresponding property, if there exists $x, y \in D$, a continuous map $r : \mathbb{P}(f, \delta) \to D$ such that for each pair of δ -pseudo-orbits $p = \{t_i\}_{i\geq 0}$ and $q = \{s_i\}_{i\geq 0}$

$$\eta(\{i \in \mathbb{N}_0 : d_N(f^i(r(p)), f^i(r(q)) > \varepsilon\}) = 0,$$

where r(p) = x, r(q) = y, and f^0 is an identity map.

Definition 2.11. Let (D, f), and (D, g) be two dynamical systems for a continuous map $f: D \to D$, and $g: D \to D$. The product of two orbits $O_f^+(t)$, and $O_g^+(s)$ defined by

$$O_f^+(t) \dot{\times} O_g^+(s) = \{ (f^i(t), g^j(s)) : f^i(t) \in O_f^+(t), and \ g^j(s) \in O_g^+(s) \}$$

Also, the orbit at (t,s) of the product of two functions f and g defined by

$$O^+_{f \times g}(t,s) = \{(f^i(t),g^i(s)): f^i(t) \in O^+_f(t), and \ g^i(s) \in O^+_g(s)\}.$$

3. Main Results

Theorem 3.1. Let $\{t_i\}_{i\geq 0}$ and $\{s_i\}_{i\geq 0}$ be two δ -pseudo-orbits in $\mathbb{P}(f,\delta)$ with satisfies the following conditions:

- (i) $d_N((t_i, s_i) \dot{>} d(f(t_i), f(s_i))$, for all $i \geq 0$,
- (ii) $d_N((t_i, s_i) \rightarrow \dot{0}, as i \rightarrow \infty$.

Then

- (a)If $\{t_i\}_{i\geq 0}$ is δ pseudo-orbit, then so is $\{s_i\}_{i\geq 0}$,
- (b)If $\{t_i\}_{i\geq 0}$ is asymptotic pseudo-orbit, then so is $\{s_i\}_{i\geq 0}$,
- (c) If $\{t_i\}_{i\geq 0}$ is statistical δ pseudo-orbit, then so is $\{s_i\}_{i\geq 0}$.

Proof: We prove only the statement (*c*). The cases (a) and (b) can be established following standard techniques.

We assume that $\{t_i\}_{i\geq 0}$ is statistical pseudo-orbit i.e., for every $\varepsilon > 0$ such that

$$\eta(A) = 0$$
, where $A = \{i \in \mathbb{N}_0 : d_N(f(t_i), t_{i+1}) > \varepsilon\}$,

where $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

Let
$$B = \{i \in \mathbb{N}_0 : d_N(f(s_i), s_{i+1}) > \varepsilon\}$$
, and $C = \{i \in \mathbb{N}_0 : 2d_N(t_i, s_i) + d_N(f(t_i), t_{i+1}) > \varepsilon\}$.

From the inequality

$$d_{N}((f(s_{i}), s_{i+1}) \leq d_{N}(f(s_{i}), f(t_{i}) + d_{N}(f(t_{i}), t_{i+1}) + d_{N}(t_{i+1}, s_{i+1})$$

$$\leq d_{N}(s_{i}, t_{i}) + d_{N}(f(t_{i}), t_{i+1}) + d_{N}(t_{i}, s_{i})$$

$$\leq 2d_{N}(s_{i}, t_{i}) + d_{N}(f(t_{i}), t_{i+1}).$$

We have

$$\eta(\{i \in \mathbb{N}_0 : d_N((f(s_i), s_{i+1}) > \varepsilon\}) \le \eta(\{i \in \mathbb{N}_0 : 2_N d(s_i), t_i) + d_N(f(t_i), t_{i+1}) > \varepsilon\})$$

It is cleared that $B \subseteq C$. We claim $\eta(C) = 0$.

Further, let $B_{\varepsilon_1} = \{i \in \mathbb{N}_0 : d_N(t_i, s_i) > \varepsilon\}$, and $B_{\varepsilon - 2\varepsilon_1} = \{i \in \mathbb{N}_0 : d_N(f(t_i), t_{i+1}) > \varepsilon - 2\varepsilon_1\}$, where $0 < \varepsilon_1 < \varepsilon$. Then we obtain $C = \bigcup_{0 < \varepsilon_1 < \varepsilon} (B_{\varepsilon_1} \cap B_{\varepsilon - 2\varepsilon_1})$. For each $\varepsilon_1 \in (0, \varepsilon)$, we have

$$\eta(B_{\varepsilon-2\varepsilon_1})=0,$$

which implies $\eta(\bigcup_{0 < \varepsilon_1 < \varepsilon} (B_{\varepsilon_1} \cap B_{\varepsilon - 2\varepsilon_1})) = 0$ i.e., $\eta(C) = 0$. Therefore, $\eta(B) = 0$, as B is a subset of C.

Theorem 3.2. If $f: D \to D$ is a continuous map and let (D, f) be the dynamical system. If the limit of the forward orbit exists, then it is a fixed point in D under the associated map f.

Proof: We have to prove that if x is the limit of some forward orbit, then it is a fixed point i.e., f(x) = x. Suppose x is a limit of a forward orbit, there is point $t \in D$ and a forward orbit $O_f^+(t) = \{t, f(t), f^2(t), ..., f^k(t), ...\}$ such that

$$f^k(t) \to x$$
, as $k \to \infty$. (1)

Since f is a continuous map , then

$$f(f^k(t)) \to f(x)$$
, as $k \to \infty$,
i.e., $f^{k+1}(t) \to f(x)$, as $k \to \infty$. (2)

Again from the Eq(1), we have

$$f^{k+1}(t) \to x$$
, as $k \to \infty$. (3)

Therefore, from Eq(2) and Eq(3), we have

$$f(x) = x$$

Hence, x is a fixed point under the associated map f.

This following corollary immediately follows from the above theorem.

Theorem 3.3. *Let f be a continuous map on the compact metric space D.*

If (i) f has s-property,

(ii) every forward orbit is convergent,

then every ε -pseudo-orbit is also convergent.

Proof: Suppose for every $t \in D$, the forward orbit at t is convergent,then for every $\varepsilon > 0$, there exists a natural number n_0 satisfying

$$d_N(f^m(t), f^n(t)) \leq \frac{\varepsilon}{3}$$
, for all $n, m \geq n_0$.

Since f has shadowing property, for every pair of ε -pseudo-orbits $\{s_i\}_{i>0}$, there exists $z \in D$ such that

$$d_N(f^i(z), s_i) \dot{\leq} \frac{\varepsilon}{3}$$
, for all $i \geq 0$.

Now, for all $n, m \ge n_0$, we have

$$d_N(s_m, s_n) \leq d_N(t_m, f^m(z)) + d_N(f^m(z), f^n(z)) + d_N(f^n(z), t_n)$$

From the above two equations, we have

$$d_N(s_m, s_n) \leq \varepsilon$$
, for all $n, m \geq n_0$.

Therefore, $\{s_i\}_{i\geq 0}$ is Cauchy sequence, hence convergent.

Remark 3.4. In veiw of the above Theorem, we have "every fixed point is also statistical fixed point in D.

Theorem 3.5. Let $f: D \to D$ be a continuous map, and let (D, f) be the dynamical system. If $s \in \overline{O_f^+(x)}$ and $t \in \overline{O_f^+(s)}$, then $t \in \overline{O_f^+(x)}$.

Proof: Assume $s \in \overline{O_f^+(x)}$ i.e., s is a limit of $O_f^+(x)$, then for every $\varepsilon > 0$, there exist a $N \in \mathbb{N}$, and a sequence $\{f^{n_k}(x)\}$ such that

$$d_N(f^{n_k}(x), s) < \frac{\varepsilon}{2}$$
, for all $n_k \ge N$. (4)

Further, $t \in \overline{O_f^+(s)}$, for every $\varepsilon > 0$, there is a $N_1 \in \mathbb{N}$, and a subsequence $\{f^{n_m}(s)\}$ such that

$$d_N(f^{n_m}(s), t) \dot{<} \frac{\varepsilon}{2}$$
, for all $n_m \ge N_1$. (5)

Since f is continuous, then from Eq(4), we have

$$d_N(f^{n_k+n_m}(x), f^{n_m}(s)) < \frac{\varepsilon}{2}, \text{ for all } n_k \ge N.$$
(6)

Now, using the Eq(5) and Eq(6), we obtain

$$d_{N}(f^{n_{k}+n_{m}}(x),t) \leq d_{N}(f^{n_{k}+n_{m}}(x),f^{n_{m}}(s)) + d_{N}(f^{n_{m}}(s),t)$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon,$$

for all $n_k, n_m \ge K = max\{N, N_1\}$. Hence, $t \in \overline{O_f^+(x)}$.

Theorem 3.6. Let (D, f) be a dynamical system for a continuous map $f: D \to D$. Then under the associated map f, the statements hold:

- (i) the set S_f is closed,
- (ii) the set \dot{S} is closed,
- (iii) the set S is an invariant,
- (iv) The set S_f is an invariant.

Proof: Let (D, f) be a dynamical system. We have to prove that (i) $S_f = \overline{S_f}$, and (ii) $\overline{S} = S$, (iii) S is invariant set,(iv) S_f is invariant set.

(i) Let y be any element in $\overline{S_f}$, then there exists a forward orbit $O_f^+(t) = \{t, f(t), f^2(t), ..., f^k(t), ...\}$ such that

$$\eta(\{i \in \mathbb{N}_0 : d_N(f^k(t), y) > \varepsilon\}) = 0$$

We have, by the Theorem 2., y is a fixed point under the associated map f that is, f(y) = y. Then y is statistical fixed point in D.

Now, consider the orbit $O_f^+(y) = \{y, f(y), f^2(y), ..., f^k(y), ...\} \subset D$ such that

$$\eta(\{i \in \mathbb{N}_0 : d_N(f^k(y), y) > \varepsilon\}) = 0$$

Therefore, y is a limit of some forward orbit in D i.e., $y \in S_f$.

Hence, S_f is a closed set.

(ii) We claim *S* is closed. Suppose *L* is an element of the closure of *S*, then there is a sequence $\{L_1, L_2, L_3, ..., L_i, ...\}$ of limits of the different ε – pseudo-orbits such that

$$\eta(\{i \in \mathbb{N} : d_N(L_i, l) > \varepsilon\}) = 0$$

Then, for $\varepsilon > 0$, there is a subset $K = \{k_1 < k_2 < ... < k_n < ...\} \subset \mathbb{N}$ with $\eta(K) = 0$ such that

$$\eta(\{i \in \mathbb{N} : d_N(L_{k_i}, L) > \varepsilon\}) = 0. \tag{7}$$

Further, for each $L_k \in S$, there exists a ε - pseudo-orbit $\{t_i\}_{i\geq 0}$ and a $M_k \subset \mathbb{N}$ with $\eta(M_k) = 0$ such that

$$\eta(\{i \in \mathbb{M}_k : d_N(t_i, L_k) > \varepsilon\}) = 0. \tag{8}$$

From the inequality, for all $i \in M = K \cap M_k$,

$$d_N(t_i, L) \leq d_N(t_i, L_k) + d_N(L_k, L)$$

and from Eq(7) and Eq(8), we have

$$\eta(\{i \in M: d_N(t_i, L) > \varepsilon\}) \leq \eta(\{i \in M: d_N(t_k, L_k) > \varepsilon\}) + \eta(\{i \in M: d_N(L_i, L) > \varepsilon\})$$

which implies

$$\eta(\{i \in M : d_N(t_i, L) > \varepsilon\}) = 0.$$

That is, we can find a ε – pseudo-orbits $\{t_i\}_{i\geq 0}$ such that $\{t_i\}_{i\geq 0}$ statistically converges to L. Hence, $L \in S$. (iii) We prove that $m \in S \implies f(m) \in S$. Suppose $m \in S$, for every $\varepsilon > 0$, there is a ε – pseudo-orbit $\{s_i\}_{i\geq 0}$ and a subset $K = \{k_1 < k_2 < ... < k_n < ...\} \subset \mathbb{N}$ with $\eta(K) = 0$ such that

$$\eta(\{i \in K : d_N(s_i, m) > \varepsilon\}) = 0. \tag{9}$$

$$\eta(\{i \in \mathbb{N}_0 : d(f(s_i), s_{i+1}) > \varepsilon\}) = 0. \tag{10}$$

From Eq(9), and Eq(10), we have

$$\eta(\{i \in K : d_N(f(s_i), m) \dot{>} \varepsilon\}) = 0.$$

Since f is a continuous function, then from Eq(9), we get

$$\eta(\{i \in K : d_N(f(s_i), f(m)) > \varepsilon\}) = 0$$

Thus, for given $\varepsilon > 0$, by using above two equations we obtain

$$\eta(\{i \in K : d_N(f(m), s_{k+1}) > \varepsilon\}) = 0.$$

That is, f(m) is a statistical limit of an ε - pseudo-orbit $\{s_i\}_{i\geq 0}$. Therefore, $f(m)\in S$.

(iv) For any $y \in S_f$, by Remark 1, y is statistical fixed point in D.

Hence, $f(y) \in S_f$.

The following result follows from the above theorem.

Corollary 3.7. Let (D, f) be a dynamical system. Let ω_f and L_f be the sets of all limits of all forward orbits and ε -pseudo-orbits in D respectively, for the map f. Then

- (i) ω_f is a closed and invariant set,
- (ii) L_f is a closed and invariant set.

Theorem 3.8. Let (D, f), and (D, g) be two dynamical systems for continuous maps $f: D \to D$, and $g: D \to D$, respectively. Then

$$\overline{O_{f \times g}^+(t,s)} = \overline{O_f^+(t)} \dot{\times} \overline{O_g^+(s)}$$

$$iff(t,g(s))\in \overline{O^+_{f\times g}(t,s)}.$$

Proof: The necessity part is immediately held from the equality condition. For the sufficient part, we assume $(t, g(s)) \in \overline{O_{f \times a}^+(t, s)}$.

We shall show that

$$\overline{O_{f \dot{\times} g}^+(t,s)} = \overline{O_f^+(t)} \dot{\times} \overline{O_g^+(s)}.$$

Suppose $(f^i(t), g^i(s)) \in O^+_{f \times g}(t, s)$, which implies $f^i(t) \in O^+_f(t)$, and $g^i(s) \in O^+_g(s)$, for all $i \ge 0$. Then for all $i, j \ge 0$, we obtain

$$(f^i(t),g^j(s))\in O_f^+(t)\dot\times O_g^+(s).$$

This implies

$$O^+_{f \dot{\times} g}(t,s) \subseteq O^+_f(t) \dot{\times} O^+_g(s).$$

Therefore, we have

$$\overline{O_{f \times g}^+(t,s)} \subseteq \overline{O_f^+(t)} \dot{\times} \overline{O_g^+(s)}.$$

For the reverse inclusion, we consider for j > i > 0,

$$(f^i(t),g^j(s))\in O^+_f(t)\dot{\times}O^+_q(s).$$

Then $f^i(t) \in O_f^+(t)$, and $g^j(s) \in O_g^+(s)$.

So, there is a natural number p such that j = i + p, and also, by our assumption $(t, g(s)) \in \overline{O_{f \times g}^+(t, s)}$, and

$$(f^{i}(t), g^{j}(s)) = (f^{i}(t), g^{i+p}(s))$$
$$= (f^{i}(t), g^{i}(s))(t, g^{p}(s)).$$

So, by our assumption, we have

$$(f^i(t), g^j(s)) \in \overline{O^+_{f \times q}(t, s)},$$

Therefore, we get

$$O_f^+(t)\dot{\times}O_g^+(s)\subseteq \overline{O_{f\dot{\times}g}^+(t,s)}$$

which implies

$$\overline{O_f^+(t)}\dot{\times}\overline{O_g^+(s)}\subseteq\overline{O_{f\dot{\times}g}^+(t,s)}.$$

Hence,

$$\overline{O_f^+(t)} \dot{\times} \overline{O_g^+(s)} = \overline{O_{f \dot{\times} g}^+(t,s)}.$$

Theorem 3.9. Let (D, f) be a dynamical system. If there is a $\delta \dot{>} \dot{0}$ for each $\varepsilon \dot{>} \dot{0}$, and there exists $x, y \in D$ with $d_N(t_i, s_i) \dot{<} \delta$, for all $i \geq 0$, for each pair of δ -pseudo-orbits $\{t_i\}_{i \geq 0}$ and $\{s_i\}_{i \geq 0}$ such that f has s-property on D, then

$$d_N(f^i(x), f^i(y)) \dot{<} \varepsilon$$
, for all $i \geq 0$,

where f^0 is an identity map.

Proof: For given $\varepsilon > 0$, there exists a $\delta > 0$ and for every pair of δ -pseudo-orbits $\{t_i\}_{i \ge 0}$ and $\{s_i\}_{i \ge 0}$. Now taking $\varepsilon = \delta$, we have

$$d_N(f(t_i), t_{i+1}) < \frac{\varepsilon}{5}, \text{ for all } i \ge 0.$$
(11)

$$d_N(f(s_i), s_{i+1}) < \frac{\varepsilon}{5}, \text{ for all } i \ge 0.$$

$$\tag{12}$$

Since f has s-property, for every pair of δ -pseudo-orbits $\{t_i\}_{i\geq 0}$ and $\{s_i\}_{i\geq 0}$, there exists $x,y\in D$ such that

$$d_N(f^i(x), t_i) < \frac{\varepsilon}{5}$$
, for all $i \ge 0$, (13)

$$d_N(f^i(y), s_i) \dot{<} \frac{\varepsilon}{5}$$
, for all $i \ge 0$, (14)

Further, f is uniformly continuous on D, for given $\varepsilon > 0$, there is a $\delta > 0$ such that

$$d_N(t_i, s_i) \dot{<} \delta \implies d_N(f(t_i), f(s_i)) \dot{<} \frac{\varepsilon}{5}, \tag{15}$$

for all $i \ge 0$.

Now, from the Equations (11), (12), (13), (14), and (15), we obtain

$$d_{N}(f^{i}(x), f^{i}(y)) \stackrel{.}{\leq} d_{N}(f^{i}(x), t_{i}) + d_{N}(t_{i}, f(t_{i-1})) + d_{N}(f(t_{i-1}), f(s_{i-1}))$$

$$+ d(f(s_{i-1}), s_{i}) + d(s_{i}, f^{i}(y))$$

$$\stackrel{\varepsilon}{\leq} \frac{\varepsilon}{5} + \frac{\varepsilon}{5} + \frac{\varepsilon}{5} + \frac{\varepsilon}{5} + \frac{\varepsilon}{5}$$

$$= \varepsilon \text{ for all } i > 0$$

The proof is complete.

The following corollary can be established from the previous result.

Corollary 3.10. Let (D, f) be a dynamical system. If there is a $\delta \dot{>} \dot{0}$ for each $\varepsilon \dot{>} \dot{0}$, and there exists $x, y \in D$ with $d_N(t_i, s_i) \dot{<} \delta$, for all $i \geq 0$ for each pair of δ -pseudo-orbits $\{t_i\}_{i \geq 0}$ and $\{s_i\}_{i \geq 0}$ such that f has continuous s-property on D then f has pseudo-orbit corresponding property i.e.,

$$d_N(f^i(r(p)), f^i(r(q))) < \varepsilon$$
, for all $i \ge 0$,

where r(p) = x, r(q) = y, and f^0 is an identity map.

Theorem 3.11. Let (D, f) be a dynamical system. If there is a $\delta \dot{>} \dot{0}$ for each $\varepsilon \dot{>} \dot{0}$, and there exists $x, y \in D$ with $\eta(\{i \in \mathbb{N}_0 : d_N(t_i, s_i) \dot{>} \delta\}) = 0$, for each pair of δ -pseudo-orbits $\{t_i\}_{i \geq 0}$ and $\{s_i\}_{i \geq 0}$ such that f has statistical s-property on D, then

$$\eta(\{i \in \mathbb{N}_0 : d(f^i(x), f^i(y)) > \varepsilon\}) = 0,$$

where f^0 is an identity map.

Proof: For given $\varepsilon > 0$, there exists a $\delta > 0$ and for every pair of δ -pseudo-orbits $\{t_i\}_{i \ge 0}$ and $\{s_i\}_{i \ge 0}$. Now, taking $\delta = \varepsilon$, we have

$$\eta(\{i \in \mathbb{N}_0 : d_N(f(t_i), t_{i+1}) > \varepsilon\}) = 0. \tag{16}$$

$$\eta(\{i \in \mathbb{N}_0 : d_N(f(s_i), s_{i+1}) > \varepsilon\}) = 0. \tag{17}$$

Now, f has statistical s-property, then for every pair of δ -pseudo-orbits $\{t_i\}_{i\geq 0}$ and $\{s_i\}_{i\geq 0}$, there exists $x,y\in D$ such that

$$\eta(\lbrace i \in \mathbb{N}_0 : d_N(f^i(x), t_i) \dot{>} \varepsilon \rbrace) = 0. \tag{18}$$

$$\eta(\{i \in \mathbb{N}_0 : d_N(f^i(y), s_i) \dot{>} \varepsilon\}) = 0. \tag{19}$$

Further, f is uniformly continuous on D, for given $\varepsilon > 0$, there exists a $\delta (= \varepsilon) > 0$, and for every pair of δ -pseudo-orbits $\{t_i\}_{i>0}$ and $\{s_i\}_{i>0}$ such that

$$\eta(\lbrace i \in \mathbb{N}_0 : d_N(t_i, s_i) > \delta \rbrace) = 0 \implies \eta(\lbrace i \in \mathbb{N}_0 : d_N(f(t_i), f(s_i)) > \varepsilon \rbrace) = 0. \tag{20}$$

Now, from the Equations (16), (17), (18), (19), and (20), we obtain

$$d_N(f^i(x), f^i(y)) \leq d_N(f^i(x), t_i) + d_N(t_i, f(t_{i-1})) + d_N(f(t_{i-1}), f(s_{i-1})) + d_N(f(s_{i-1}), s_i) + d_N(s_i), f^i(y))$$

$$\Rightarrow \eta(\{i \in \mathbb{N} : d_N(f^i(x), f^i(y)) > \varepsilon\}) \leq \eta(\{i \in \mathbb{N} : d_N(f^i(x), t_i) > \varepsilon\})$$

$$+ \eta(\{i \in \mathbb{N} : d_N(t_i, f(t_{i-1})) > \varepsilon\})$$

$$+ \eta(\{i \in \mathbb{N} : d_N(f(t_{i-1}), f(s_{i-1})) > \varepsilon\})$$

$$+ \eta(\{i \in \mathbb{N} : d_N(f(s_{i-1}), s_i) > \varepsilon\})$$

$$+ \eta(\{i \in \mathbb{N} : d_N(s_i, f^i(y)) > \varepsilon\})$$

From the above equations, we get the required result i.e.,

$$\eta(\{i \in \mathbb{N} : d_N(f^i(x), f^i(y)) > \varepsilon\}) = 0.$$

The following corollary can be established from the previous result.

Corollary 3.12. Let (D, f) be a dynamical system. If there is a $\delta \dot{>} \dot{0}$ for each $\varepsilon \dot{>} \dot{0}$, and there exists $x, y \in D$ with $\eta(\{i \in \mathbb{N}_0 : d_N(t_i, s_i) \dot{>} \delta\}) = 0$, for each pair of δ -pseudo-orbits $\{t_i\}_{i \geq 0}$ and $\{s_i\}_{i \geq 0}$ such that f has statistical continuous s-property on D, then f has statistical pseudo-orbit corresponding property i.e.,

$$\eta(\{i \in \mathbb{N} : d_N(f^i(r(p)), f^i(r(q))) > \varepsilon\}) = 0,$$
 where $r(p) = x, r(q) = y$, and f^0 is an identity map.

4. Conclusion

In this paper, we have studied various types of shadowing that is, different types of approximation methods to approximate pseudo-orbit by forward orbit under a continuous map. This study shall help the readers to find out some other approximation methods that approximate pseudo orbits in less errors.

Funding: The first author's work is financially supported by the CSIR-JRF fellowship.

Author Contribution: The authors declared that all authors have equal contributions to the preparation of the paper.

Conflict of Interest: The authors declared that there is no conflict between the authors.

References

- [1] F. Basar and B. Hazarika Non-Newtonian sequence spaces with applications, 2025. https://doi.org/10.1201/9781003600640
- [2] B. Biswas, On statistical internal chain transitive sets in a discrete dynamical system, Palestine J.Math.12(1) (2023), 916-921.
- [3] A.F. Cakmak and F. Basar, Some new results on sequence spaces with respect to non-Newtonian Calculus I, J. Inequal. appl. 228 (2012), 1-17
- [4] A.F. Cakmak and F. Basar, Certain spaces of functions over the field of non-Newtonian complex Numbers, Abstr. Appl. Anal, 2014.
- [5] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
- [6] J.A. Fridy, On statistically convergence, Analysis 5 (1985), 301-313.
- [7] J.A. Fridy, Statistical limit points, Proc. Amer. Math. 118(4) (1993), 1187-1192.
- [8] M. Grossman and R. Katz, Non-Newtonian calculus, Lee Press, Pigeon Cove (Lowell Technological Institute), 1994.
- [9] K. Lee, Various shadowing properties and their equivanlence, Discrete Contin. Dyn. Syst. 13(2) (2005), 533-539.
- [10] T. Salat, On statistically sequence of real numbers, Math. Slovac. 30(2) (1980), 139-150.
- [11] H. Steinhaus, Sur la convergence ordinaire et al convergence asymptotique, Colloq. Math. 2 (2014), 73-74.
- [12] B.C. Tripathy, On statistically convergent and statistically bounded sequences, Bull. Malaysian. Math. Soc. 20 (1997), 31-33.
- [13] B.C. Tripathy, On statistically convergent and statistically Cauchy sequences, Indian J. Pure Appl. Math. 25 (1994), 381-386.