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A Lyapunov approach to the stability of stochastic time delay systems
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Abstract. In this paper, we conduct a comprehensive stability analysis of time-delay systems influenced
by various types of stochastic perturbations, including standard Brownian motion, randomly varying
coefficients, and functions governed by stochastic processes. The primary objective is to assess mean-
fourth stability and stochastic stability. To this end, we employ specifically designed Lyapunov functionals
to derive sufficient conditions that ensure these stability criteria are met. We further extend the analysis
to systems characterized by randomly changing coefficients, contributing new theoretical insights to the
literature. The proposed results are substantiated with illustrative examples and a detailed exploration of
the corresponding stability regions.

1. Introduction

The stability theory of dynamical systems owes much to the pioneering work of A. M. Lyapunov, who
introduced both direct and indirect analytical methods [1]. Together with LaSalle’s invariance principle,
these methods offer powerful tools for assessing and ensuring the stability of nonlinear systems and
feedback controllers. Practical uses of Lyapunov theory include robust back-stepping control strategies for
vehicle steering [2] and adaptive control in satellite orientation systems [3]. Stability analysis for systems
with time delays has also been addressed using Lyapunov functions, which help establish exponential
stability criteria [4]. In stochastic systems and functional differential equations, carefully constructed
Lyapunov functions support the analysis of mean square and global stability [5]. Broader applications
involve fuzzy control systems and neural networks [7–10]. In [11], mean-square stability and probabilistic
convergence are studied using Lyapunov techniques tailored to stochastic and perturbed systems.

Using randomness in differential equations provides a powerful way to describe real-world phenomena
with inherent uncertainty [12]. Stochastic differential equations include terms driven by stochastic processes
such as white noise, which is formally the derivative of Brownian motion B(t). Since Brownian motion is not
classically differentiable, a specialized form of calculus, different from standard calculus, is used to handle
these cases [12–14]. Studies on exact solutions can be found in [14, 15], while the existence and uniqueness
of solutions are treated in [13, 14]. Various numerical methods have been proposed to deal with noise and
random coefficients in such systems [16–19]. The behavior of the resulting solutions depends significantly
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on whether the randomness comes from white noise, random parameters, or both [20].
In recent decades, interest in the analysis and design of systems affected by time delays has grown

substantially. Scholars have approached this subject from two distinct angles: one rooted in rigorous
functional analysis and the other focused on practical applications. The former has advanced the theoretical
foundations of functional differential equations, while the latter has addressed challenges in controlling and
stabilizing delayed systems. Time delays are inherent in numerous real-world systems—such as process
control, biological networks, and communication systems—resulting from sensor lag, data processing time,
or intrinsic system dynamics. These delays are particularly prominent in networked and distributed control
systems, where fixed, variable, or random delays in communication channels are inevitable. Such delays
can severely compromise system performance and may even trigger instability. Consequently, since the
1960s, substantial research has been dedicated to developing control strategies and algorithms capable of
mitigating the negative impacts of time delays, as evidenced in studies like [21–25].

A stochastic delay differential equation with a deterministic drift term and a stochastic diffusion term
can be written as:

dx(t) = f
(
x(t), x(t − τ)

)
dt + σ

(
x(t), x(t − τ)

)
dW(t), (1)

where:

• x(t): The state variable of the system at time t.

• x(t − τ): The delayed state, reflecting the value of the state variable at time t − τ.

• τ: The time delay, which can be constant or time-varying.

• f
(
x(t), x(t − τ)

)
: The deterministic drift function that governs the primary dynamics.

• σ
(
x(t), x(t−τ)

)
: The stochastic diffusion function, which describes how randomness affects the system

over time.

• W(t): A Wiener process or Brownian motion, representing a source of randomness.

This paper investigates the stochastic stability of the trivial solution to equation (1), driven by Brownian
motion, through the use of Lyapunov functions. It also explores both the mean fourth stability and
the asymptotic mean fourth stability of equation (1), considering cases where f and σ are measurable
deterministic functions that satisfy the Lipschitz condition, as well as when random functions act as
stochastic processes. Furthermore, we examine stochastic time-delay systems involving random variable
coefficients. Section 3 is dedicated to the analysis of asymptotic mean fourth stability for equation (1),
under the assumption that f and σ are measurable deterministic functions, stochastic processes, or random
coefficient variables. Our results are complemented by several illustrative examples.
Consider the stochastic delay differential equation (1) with initial condition X(t0) = X0, where X(t) is the
solution process. The drift f and diffusion σ are deterministic, measurable functions defined on [t0,∞)×R,
and W(t) denotes a one-dimensional Brownian motion. Continuity in t and compliance with the Lipschitz
condition are assumed for both f and σ [15]. Assuming that the positive constants k1 and k2 exist such that
t ∈ [t0,∞) and X1,X2 ∈ R+ ×R, we have:

| f (t − τ,X1) − f (t − τ,X2)| ≤ k1|X1 − X2|,

|σ(t − τ,X1) − σ(t − τ,X2)| ≤ k2|X1 − X2|.
(2)

2. Preliminaries

In this section, we outline essential definitions, results, and key concepts that form the basis of the
paper. These foundational aspects will provide the necessary background for comprehending the main
discussions and analyses presented later.
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Definition 2.1. A stochastic process {X(t), t ∈ T}, defined on a probability space (Ω,F ,P), is said to be a fourth-order
stochastic process if its fourth moment exists and is finite for all t ∈ T, that is,

E[X(t)4] < ∞.

The process is considered to belong to the fourth-order normed space if it satisfies

∥X∥44 = E
[∫ T

0
|X(t)|4 dt

]
< ∞.

Furthermore, the process is called square-integrable in the fourth moment sense if∫
∞

0
E[X(t)4] dt < ∞.

Here, E[·] denotes the expectation operator. These conditions ensure that the process has sufficient regularity for
analysis in higher-moment functional spaces.

Definition 2.2. [14, 26] The trivial solution of the time-delay differential equation is said to possess the following
types of stability:

• Stochastic stability means that for every ϵ ∈ (0, 1) and l > 0, one can find a δ = δ(ϵ, l) > 0 so that whenever
|X0| < δ, the inequality P[|X(t,X0)| < l] ≥ 1 − ϵ holds.

• Mean-fourth stability requires that for any ϵ > 0, there is a δ > 0 such that E[|X(t,X0)|4] < ϵ whenever
|X0| < δ.

• Asymptotic mean-fourth stability implies that the solution is mean fourth stable and, in addition,

lim
t→∞
E[|X(t,X0)|4] = 0.

• Exponential mean-fourth stability means that the solution is mean-fourth stable, and there exist constants
κ > 0, λ > 0 such that

E[|X(t,X0)|4] < κe−λt.

Definition 2.3. [27] For real numbers n,m > 1 such that 1
n +

1
m = 1, Hölder’s inequality gives:

E[|XY|] ≤ (E[|X|n])1/n (E[|Y|m])1/m .

Setting n = 1
4 , m = 4

3 , we obtain:

E[|XY|] ≤
(
E[|X|1/4]

)4 (
E[|Y|4/3]

)3/4
. (3)

The integral form for the functions f , 1 over [a, b] becomes:∣∣∣∣∣∣
∫ b

a
f (x)1(x) dx

∣∣∣∣∣∣ ≤
(∫ b

a
| f (x)|4 dx

)1/4 (∫ b

a
|1(x)|4/3 dx

)3/4

.

Lemma 2.4. [27] Assume that X(t) is a mean fourth stochastic process. We want to show that this implies it is also
a mean-square process.

Proof: By the Cauchy–Schwarz inequality, we know:(
E[X(t)2]

)2
≤ E[X(t)4] · E[1] = E[X(t)4],
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since E[1] = 1. Taking the square root of both sides gives:

E[X(t)2] ≤
√
E[X(t)4].

Because we are given that E[X(t)4] < ∞, it follows that E[X(t)2] < ∞, so X(t) is indeed a mean-square process.
Let us assume that X(t) has rapidly decaying tails, characterized by sub-exponential or sub-Gaussian distributions,
and that it possesses a finite higher moment p > 4(e.1, .E[X(t)6] < ∞) so that the converse of lemma (2.4) holds.

Definition 2.5. [28] We sayV(t,X) is positive definite if there exists a positive definite function ν(X) such that

V(t,X) ≥ ν(X).

It is negative definite if

V(t,X) ≤ −ν(X).

Lemma 2.6. [29] In Itô calculus, the chain rule describes the differential of a function of a stochastic process. Let

U(t,X) : [t0,∞) ×R→ R

be a function with continuous partial derivatives:

∂U
∂t
,
∂U
∂X
,
∂2U
∂X2 .

Let L be the generator of the stochastic process. Then the SDE is:

dX = LU(t,X) dt + σ(t,X)
∂U
∂X

dW(t),

and the Itô formula yields:

dU(t,X) =
[
∂U
∂t
+ f (t,X)

∂U
∂X
+

1
2
σ2(t,X)

∂2U
∂X2

]
dt + σ(t,X)

∂U
∂X

dW(t).

Definition 2.7. [30] Let {X(t), t ∈ T} be a stochastic process adapted to a filtration {Ft}. Then:

• X(t) is a martingale if E[X(t) | Fs] = X(s) for s < t.

• It is a supermartingale if E[X(t) | Fs] ≤ X(s).

• It is a submartingale if E[X(t) | Fs] ≥ X(s).

Definition 2.8. [6] The Itô integral∫ t1

t0

X(τ) dWτ

is defined in a complete probability space (Ω,F ,FWt ,P), where W(t) is Brownian motion and FWt is its natural
filtration. If X(t) is an FWt -adapted process (e.g., including delayed terms like X(t − τ)), then:

• Zero-mean: E
[∫ t1

t0
X(τ) dWτ

]
= 0

• Isometry: E
[(∫ t1

t0
X(τ) dWτ

)2]
= E

[∫ t1

t0
X(τ)2 dτ

]
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Assume (Ω,F ,P) is the underlying space and Ft ⊆ F is a filtration with Fs ⊆ Ft for s ≤ t. A process
{X(t),X(t − τ)} ⊂ R+ is adapted if it is Ft-measurable and satisfies

E[|X(t)|4] < ∞ ∀t.

Definition 2.9. [6] Consider a continuous, non-negative function u(t) on [0,T] that satisfies

u(t) ≤ u(0) +
∫ t

0
ϕ(s)u(s) ds,

for all t ∈ [0,T], where ϕ(s) is a non-negative, integrable function. Then Gronwall’s inequality gives the bound

u(t) ≤ u(0) exp
(∫ t

0
ϕ(s) ds

)
,

for all t ∈ [0,T].

3. Main results

This section is devoted to studying the mean-fourth stability of stochastic and random systems by
employing Lyapunov-based methods. We define a Lyapunov function V(t,X), which is assumed to be
continuous and twice differentiable, as

V : Qh × [t0,∞)→ R+,

where the set Qh = {X ∈ R | ∥X(t)∥ < h, t ≥ t0, h > 0} defines a region of interest around the origin. Using
this function, we establish several results that characterize the conditions under which the zero solution of
the system remains stable in both a probabilistic sense and in terms of its fourth statistical moment.

Theorem 3.1. The zero solution of equation (1) is said to be mean-fourth stable and asymptotically mean-fourth
stable if there exist positive constants k1, k2, and k3 such that the following conditions are satisfied:

• The expectation of the Lyapunov function satisfies E[V(t,X)] ≥ k1E[X4(t)],

• The initial condition satisfies E[V(t0,X0)] ≤ k2X4
0,

• The difference in the Lyapunov function’s expectation evolves asE[V(t,X)−V(t0,X0)] ≤ −k3

∫ t

t0
E[|X4(s)|] ds.

Proof. Applying the Ito Lemma (2.6) to the Lyapunov functionV(t,X) = X4(t) implies that

d[X4(t)] =
[∂X4(t)
∂t

+
∂X4(t)
∂X

f (x(t),X(t − τ)) +
1
2
σ2(X(t),X(t − τ))

∂2X4(t)
∂X2

]
dt

+ σ(X(t),X(t − τ))
∂X2(t)
∂X

dW(t)

= L[X(t)]4dt + σ(X(t),X(t − τ))
∂X(t)4

∂X
dW(t),

where L denotes the differential operator that governs the dynamics of the system

L = ∂t + f∂x +
1
2
σ2∂xx.

Subsequently, it can be integrated starting from t0 to t to obtain,

X4(t) − X4
o =

∫ t

to

L[X4(s)]ds +
∫ t

to

σ(X(s),X(s − τ))
∂X4(s)
∂X

dW(s).
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Utilizing the zero-mean property of the stochastic integral, we obtain:
E

[∫ t

to
σ(X(s),X(s − τ) ∂X

4(s)
∂X dB(s)

]
= 0. Therefore,

E[X4(t) − X2
o ] =

∫ t

to

EL[X4(s)]ds. (4)

From definition (2.5), we can assume

V(t,X) ≥ K1X4(t), V(t0,X0) ≤ K2X4
0

This condition guarantees thatV is bounded, ensuring that it stays within a certain limit at t = to and

LV(t,X) ≤ −K3X4(t).

Therefore, from (4)

E[X4(t) − X4
0] ≤ −k3

∫ t

t0

E[X4(s)] ds

Now, condition (3) implies

EV(t,X) + k3

∫ t

t0

E[X4(s)] ds ≤ EV(t0,X0).

then ∫ t

t0

E[X4(s)] ds ≤
1
k3
EV(t0,X0), (5)

condition (2) with inequality (5) imply∫ t

t0

E[X4(s)] ds ≤
k2

k3
X4

0 < ∞.

Thus, X(t) is a process that is integrable with respect to its mean fourth moment and is stable in terms of its
fourth moment.

E[X4(t)] ≤
1
k1
EV(t,X) ≤

1
k1
EV(t0,X0) ≤

k2

k1
X4

0.

Following (4), and from equation (1), we get

d[X4(t)] = L[X4(t)] dt +
∂X4(t)
∂X

σ(X(t),X(t − τ)) dW(t). (6)

where

L[X4(t)] = 4X3(t) f (X(t),X(t − τ)) + σ2(X(t),X(t − τ)). (7)

By substituting (7) into (6) and taking expectation we get

dE[X4(t)] =
[
4E[X3(t) f (X(t),X(t − τ))] + E[σ2(X(t),X(t − τ))]

]
dt + 4E[X3(t)σ(X(t),X(t − τ))]dW(t).

By condition (2), and for positive constants C1, C2, we have

4E[X3(t) f (X(t),X(t − τ))] ≤ E
[
X4(t) + f 2(X(t),X(t − τ))

]
≤ K1E[X4(t)] = K1∥X(t)∥44 ≤ C1.
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and

E[σ2(X(t),X(t − τ))] ≤ K2E[X4(t)] = K2∥X(t)∥44 ≤ C2.

Hence, for C > 0, dE[X4(t)] ≤ C, i.e,

E
[
||X(t2)||4 − ||X(t1)||4

]
≤ C(t2 − t1).

If 0 ≤ t1 ≤ t2 andE[X4(t)] satisfies the Lipschitz condition with limx→∞E[X4(t)], the zero solution of equation
(1) is mean-fourth asymptotically stable.

Theorem 3.2. The zero solution of equation (1) is said to be exponentially mean-fourth stable if there exist positive
constants K1 and K2 such that the following conditions are satisfied:

• The expectation of the Lyapunov function satisfies E[L(t,X)] ≥ K1eλtE[X4(t)],

• The initial value of the Lyapunov function is bounded as E[L(t0,X0)] ≤ K2X4
0,

• The Lyapunov function’s expectation is non-positive, i.e., E[L(t,X)] ≤ 0.

Proof. LetV be a sufficiently smooth function of (t,X(t − τ),X(t)). Then, in light of equation (1), we obtain
the following Itô differential:

dV(t,X(t − τ),X(t)) =
∂V
∂t

(X(t − τ),X(t)) + f (X(t − τ),X(t))
∂V
∂X

(X(t − τ),X(t))

+
1
2
σ2(X(t − τ),X(t))

∂2
V

∂X2 (X(t − τ),X(t))

+ σ(X(t − τ),X(t))
∂V
∂X

(X(t − τ),X(t)) dW(t).

where,

Vt(X(t − τ),X(t)) + f (X(t − τ),X(t))VX(X(t − τ),X(t))

+
1
2!
σ2(X(t − τ),X(t))VXX(X(t − τ),X(t)) = LV(X(t − τ),X(t)).

Consider the Lyapunov functionalV(t,X(t−τ),X(t)), and letL be the associated differential operator. From
Itô’s lemma, we can write:

dV = LV(X(t − τ),X(t)) dt + σ(X(t − τ),X(t))VX(X(t − τ),X(t)) dW(t).

Integration over [t0, t], followed by taking expectations and using the zero-mean property of the stochastic
integral (see (2.8)), gives:

E[V(t,X(t − τ),X(t))] = E[V(t0,X0)] +
∫ t

t0

E[LV(X(s − τ),X(s))] ds.

Under assumption (3), LV ≤ 0, and thus:

E[V(t,X(t − τ),X(t))] ≤ E[V(t0,X0)].

Invoking inequalities from (1) and (2), we derive:

k1E[X4(t)] ≤ e−λtE[V(t0,X0)] ≤ k2e−λtX4
0,

which establishes exponential stability in the fourth moment:

E[|X(t)|4] ≤Me−λt, for some constant M > 0.
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In the following theorem, we assume that the functions f and σ are random, each defined as a stochastic
process. Consequently, the solution process is denoted by X(t) := X(t, ω), where ω ∈ Ω represents the
inherent randomness. The process X(t) is defined on a complete probability space (Ω,F ,P).

Theorem 3.3. The trivial solution of equation (1) is said to be asymptotically mean-fourth stable if the process
X(t) := X(t− τ, ω), together with the coefficient functions f (ω, t− τ) and σ(ω, t− τ), are all stochastic processes that
possess finite fourth moments; that is, they are fourth-integrable over the probability space (Ω,F ,P).

Proof. Applying Itô’s lemma (cf. equation (2.6)) to the function X4(t), and using the stochastic differential
equation (1), we have:

d[X4(t)] =
∂X4(t)
∂t

dt +
∂X4(t)
∂X

dX(t) +
1
2
∂2X4(t)
∂X2 (dX(t))2.

Substituting the expression for dX(t) from equation (1), we obtain:

dX4(t) =
d
dt

X4(t) dt +
d

dX
X4(t)

[
f (ω, t − τ) dt + σ(ω, t − τ) dW(t)

]
+

1
2

d2

dX2 X4(t) · σ2(ω, t − τ) (dW(t))2.

Using the identities:

d
dt

X4(t) = 0,
d

dX
X4(t) = 4X3(t),

d2

dX2 X4(t) = 12X2(t),

we simplify:

d[X4(t)] = 4X3(t) f (ω, t − τ) dt + 4X3(t)σ(ω, t − τ) dW(t) + 6X2(t)σ2(ω, t − τ) dt.

As B(t) ∼ N(0, t) and from the quadratic variation of the Brownian motion, the property holds.

E
[
dW2(t)

]
= dt, E

[
dt2

]
= 0, E [dW(t) dt] = 0. (8)

we obtain:

dE[X4(t)] = E
[
4X3(t) f (ω, t − τ) + 6X2(t)σ2(ω, t − τ)

]
dt.

Now, applying Hölder’s inequality (cf. equation (2.3)), there exist positive constants C1,C2 such that:

E
∣∣∣ f (ω, t − τ)X3(t)

∣∣∣ ≤ ∥∥∥ f (ω, t − τ)
∥∥∥

m

∥∥∥X3(t)
∥∥∥

n ≤ C1,

and

E |σ(ω, t − τ)|4 ≤ C2.

Thus, the expectation of X4(t) is Lipschitz continuous in time:

E
∣∣∣X4(t2) − X4(t1)

∣∣∣ ≤M(t2 − t1), for all 0 ≤ t1 ≤ t2,

where M > 0 is a constant.
Moreover, under the assumption that limt→∞E

[
X4(t)

]
= 0, we conclude that the zero solution is **asymp-

totically mean-fourth stable**:

lim
t→∞
E

[
|X(t)|4

]
= 0.
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Theorem 3.4. The zero solution of equation (1) is stable in probability if there exist positive constants K1, K2, and
K3 such that the following conditions hold:

• E[V(t,X)] ≥ K1E[X4(t)],

• E[V(t0,X0)] ≤ K2X2
0,

• E[V(t,X) −V(t0,X0)] ≤ 0.

In this case, the zero solution is stable in probability.

Proof. In the stochastic system given by equation (1), mean-fourth stability implies stability in probability.
From this, it follows that for initial conditions |X0| < δ (where δ > 0), the solution will be stable in
probability.
Moreover, from condition (3), we know that LV(X(t),X(t)) is a super-martingale. Applying this super-
martingale property together with conditions (1) and (2) yields the following inequality:

P
(
sup

t
|X(t,X0)| > ϵ1 | Ft0

)
≤ P

(
sup

t
[V(t,X(t))]

1
4 K1 > ϵ1 | Ft0

)
.

This simplifies to:

P
(
sup

t
V(t,X(t)) > K1ϵ

4
1 | Ft0

)
.

By using the properties ofV(t,X(t)), we obtain an upper bound for the probability:

≤
V(t0,X0)

K1ϵ41
≤

K2X4
0

K1ϵ41
≤

K2δ4

K1ϵ41
< ϵ.

Therefore, the zero solution is stable in probability for this stochastic time-delay system. Consider the
case where the coefficients in the stochastic time-delay system are random variables{

dX(t, ω) = a(ω) f (X(t),X(t − τ)) dt + b(ω)σ(X(t),X(t − τ))dW(t),X(t0) = X0.
}

(9)

• a(ω), b(ω) that are random variables satisfying specific conditions.

• W(t) is a one-dimensional Brownian motion.

• f (X(t),X(t − τ)), σ(X(t),X(t − τ)) are stochastic processes.

• τ is time delay.

Theorem 3.5. The zero solution of equation (9) is asymptotically mean-square stable if the following conditions hold:

1. E[a2(ω)] < ∞ and E[b2(ω)] < ∞,
2. f (X(t),X(t − τ)) and σ(X(t),X(t − τ)) satisfy the Lipschitz condition,
3. λ > 0.

Proof. We begin by applying the Ito formula (2.6) to the function X4(t), we obtain

d
(
X4(t)

)
= L

(
X4(t)

)
dt + 4X3(t) b(ω) σ (X(t),X(t − τ)) dW(t),

where L is the infinitesimal generator given by

L

(
X4(t)

)
= 4X3(t) a(ω) f (X(t),X(t − τ)) + 6X2(t) b2(ω) σ2 (X(t),X(t − τ)) .
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Taking the expectation of both sides, we get

E
[
d
(
X4(t)

)]
= E

[
L

(
X4(t)

)]
dt.

This simplifies to

E
[
L

(
X4(t)

)]
= 4E

[
X3(t) a(ω) f (X(t),X(t − τ))

]
+ 6E

[
X2(t) b2(ω) σ2 (X(t),X(t − τ))

]
.

By applying the Lipschitz condition on f and σ, we obtain the following bounds:∣∣∣ f (X(t),X(t − τ))
∣∣∣ ≤ K (1 + |X(t)| + |X(t − τ)|) ,

|σ (X(t),X(t − τ))| ≤ L (1 + |X(t)| + |X(t − τ)|) .

Hence, we can bound the expectation as

E
[
L

(
X4(t)

)]
≤ 4KE

[
a2(ω)

]
E

[
X4(t)

]
+ 6LE

[
b2(ω)

]
E

[
X4(t)

]
.

Applying Grownwall’s lemma (2.9), we arrive at the following inequality:

E
[
X4(t)

]
≤ e4KE[a2(ω)]+6LE[b2(ω)]E

[
X4(0)

]
.

This shows that the system exhibits mean-fourth stability, implying that

lim sup
t→∞

E
[
|X(t)|4

]
= 0

if the condition

4KE
[
a2(ω)

]
+ 6LE

[
b2(ω)

]
< −λ

holds for some λ > 0. Therefore, the following conditions must be satisfied:

E
[
a2(ω)

]
< ∞, E

[
b2(ω)

]
< ∞,

and the functions f (X(t),X(t − τ)) and σ(X(t),X(t − τ)) must satisfy the Lipschitz condition, with λ > 0.

4. Numerical examples

Here, we provide a number of examples to illustrate the practical relevance of the stability criteria
developed in this study. These case studies are intended to verify the theoretical results and show their
performance under a range of stochastic conditions. Additionally, numerical simulations are carried out to
graphically depict system behavior and further substantiate the theoretical analysis.

Example 4.1. Consider the modified nonlinear stochastic scalar differential equation:

dX(t) = −aX3(t) dt + b cos(X(t)) dB(t), a > 0.

For analyzing mean-fourth stability, we introduce the Lyapunov function:

V(t − τ,X(t)) = X4(t).

Using Itô’s lemma for the function V(t − τ,X(t)) = X4(t), we get:

dV(t,X(t)) = LV(t − τ,X(t)) dt + Vx(t − τ,X(t)) b cos(X(t)) dB(t),
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where LV(t − τ,X(t)) is given by:

LV(t − τ,X(t)) = Vt(t − τ,X(t)) + Vx(t − τ,X(t)) (−aX3(t)) +
1
2

Vxx(t − τ,X(t)) b2 cos2(X(t)).

We have the following partial derivatives:

Vx(t − τ,X(t)) = 4X3(t), Vxx(t − τ,X(t)) = 12X2(t).

Thus,

LV(t − τ,X(t)) = 4X3(t) (−aX3(t)) +
1
2
· 12X2(t) b2 cos2(X(t))

= −4aX6(t) + 6b2X2(t) cos2(X(t)).

Since cos2(X(t)) ≤ 1, we get:

LV(t − τ,X(t)) ≤ −4aX6(t) + 6b2X2(t).

For mean-fourth stability, the Lyapunov function E[X4(t)] must remain bounded. Thus, the condition for asymptotic
mean-fourth stability becomes:

6b2
− 4a < 0 ⇒ b2 <

2
3

a.

By introducing the Lyapunov function V(t − τ,X(t)) = X4(t), we derive the condition

b2 < 2a

for mean-fourth stability. If this condition holds, the zero equilibrium point of the system is stable in the mean-fourth
sense. To illustrate the conditions for stability, we plot the regions defined by the inequalities b2 < 2a and b2 < 2

3 a.

Figure 1: Mean Fourth Stability Condition
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The figure above displays the stability regions in the (a, b2) parameter space. The boundaries defined by the
inequalities b2 < 2

3 a and b2 < 2a are shown as two distinct curves, demonstrating how different values of a and b
impact the system’s stability. The intersection of the regions beneath both curves represents the parameter space where
mean-fourth asymptotic stability is guaranteed. Notably, increasing the damping coefficient a expands the range of
noise intensities b for which stability is maintained. This visual clearly supports the analytical results by illustrating
the stability conditions derived in the theoretical analysis.

Example 4.2. Consider a nonlinear stochastic time-delay system governed by the following stochastic differential
equation with random coefficients A(ω) and B(ω):

dX(t, ω) = −A(ω)X(t, ω)dt + B(ω) sin(X(t − τ, ω))dW(t),

where W(t) is the one-dimensional Brownian motion, and τ denotes the time delay.
We define the Lyapunov function as:

V(t,X(t, ω)) = X4(t, ω),

and apply Itô’s lemma to obtain the differential of V(t,X(t, ω)):

dV(t,X(t, ω)) = LV(t,X(t, ω))dt + Vx(t,X(t, ω))B(ω) sin(X(t − τ, ω))dW(t),

where L represents the generator of the system, and the expression for LV(t,X(t, ω)) is given by:

LV(t,X(t, ω)) = −4A(ω)X6(t, ω) + 6B2(ω)X2(t, ω) sin2(X(t − τ, ω)).

By taking expectations and applying the Cauchy-Schwarz inequality, we arrive at the following upper bound for the
expectation of LV(t,X(t, ω)):

E[LV(t,X(t, ω))] ≤ −4E[A(ω)X6(t, ω)] +
[
E[B4(ω)]

]1/2 [
E[X4(t, ω)]

]1/2
.

If X(t, ω) is independent of A(ω) and B(ω), we can simplify the expectation as:

E[LV(t,X(t, ω))] ≤
[
−4E[A(ω)] + E[B2(ω)]

]
E[X6(t, ω)].

However, when there is dependency between X(t, ω) and the random coefficients A(ω) and B(ω), the upper bound
becomes:

E[LV(t,X(t, ω))] ≤
[[

E[B4(ω)
]1/2
− 2

[
E[A2(ω)

]1/2
]

E[X2(t, ω)].

For the system to exhibit asymptotic mean-fourth stability, the following condition must hold:

∥B(ω)∥44 − 2∥A(ω)∥22 < 0,

where A(ω) follows a nonnegative bounded distribution with finite support. This inequality defines the stability
region for the system’s dynamics, which can be visualized by plotting the region corresponding to the inequality
∥B(ω)∥44 < 2∥A(ω)∥22.
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Figure 2: Mean Fourth Stability Condition

Figure 2 depicts the region in which the inequality ∥B(ω)∥44 < 2∥A(ω)∥22 holds, ensuring asymptotic mean-fourth
stability. The boundary curve clearly distinguishes between the stable and unstable domains based on the statistical
properties of the system’s coefficients. The requirement that the fourth moment of the noise term B(ω) be sufficiently
small relative to the squared second moment of A(ω) reflects the balancing effect between noise and damping. This
graphical representation confirms that, despite inherent randomness, stability is achievable when these moment
conditions are satisfied. Overall, the plot effectively supports the theoretical stability criterion derived from moment
analysis.

Example 4.3. Consider the following modified system of stochastic differential equations with time delays:

dX1(t) = aX2(t − τ)dt + X1(t)dB1(t),
dX2(t) = bX1(t − τ)dt + X2(t)dB2(t),

where B(t) = (B1(t),B2(t))T is a standard Wiener process, and τ > 0 is the time delay. This system can be represented
in matrix form as:

dX(t) =
(
aX2(t − τ)
bX1(t − τ)

)
dt +

(
X1(t) 0

0 X2(t)

)
dB(t).

To analyze mean-fourth stability, we define a Lyapunov function that incorporates fourth moments. A suitable choice
is:

L(t,X(t)) = E[X4
1(t)] + E[X4

2(t)].

Using Ito’s lemma for stochastic processes, we can compute the time derivative of the Lyapunov function:

dL(t,X(t)) = LL(t,X(t))dt + LX1 (t,X(t))X1(t)dB1(t) + LX2 (t,X(t))X2(t)dB2(t),
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where

LXi =
∂L
∂Xi
.

First, we compute the derivatives:

LX1 = 4E[X3
1(t)],

LX2 = 4E[X3
2(t)].

Now, we can compute the deterministic part LL(t,X(t)):

LL(t,X(t)) = LX1 (t,X(t)) (aE[X2(t − τ)]) + LX2 (t,X(t)) (bE[X1(t − τ)])

= 4E[X3
1(t)]aE[X2(t − τ)] + 4E[X3

2(t)]bE[X1(t − τ)].

Next, we consider the stochastic parts. The quadratic variations will contribute:

dB1(t)dB1(t) = dt,
dB2(t)dB2(t) = dt.

Thus, the Ito term becomes:

1
2

(
E[X4

1(t)]dt + E[X4
2(t)]dt

)
.

Putting everything together, we have:

dL(t,X(t)) =
(
4
(
aE[X3

1(t)]E[X2(t − τ)] + bE[X3
2(t)]E[X1(t − τ)]

)
+ 2E[X4

1(t)] + 2E[X4
2(t)]

)
dt + 4E[X3

1(t)]X1(t)dB1(t) + 4E[X3
2(t)]X2(t)dB2(t).

Taking expectations, we arrive at:

E[dL(t,X(t))] ≤ 4
(
aE[X3

1(t)]E[X2(t − τ)] + bE[X3
2(t)]E[X1(t − τ)]

)
+ 2E[X4

1(t)] + 2E[X4
2(t)].

To ensure stability, we require conditions on a and b. Specifically, we want:

4(a + b) < −2.

Thus, we derive the condition for asymptotic mean-fourth stability:

a + b < −
1
2
.

Let’s take specific values for parameters to illustrate stability. Set

a = −1 and b = −0.6.

Then we have:

a + b = −1 − 0.6 = −1.6 < −
1
2
,

which satisfies the stability condition. This example illustrates a modified two-dimensional stochastic time-delay
system and the conditions for its asymptotic mean-fourth stability. To illustrate the stability condition, we plot the
region defined by the inequality a + b < − 1

2 .
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Figure 3: Mean Fourth Stability Condition

Figure 3 illustrates the stability region defined by the inequality a+b < − 1
2 . This region identifies the combinations

of a and b that ensure asymptotic mean-fourth stability of the system. The requirement for both parameters to be
negative reflects their collective damping influence, which is crucial for mitigating stochastic effects. The figure
demonstrates that even modest levels of delay and coupling can lead to instability if the condition is not met.
Therefore, careful adjustment of both parameters is essential when dealing with delay-coupled stochastic systems.

5. Conclusion

This study explores the stability of systems influenced by randomness and time delays using Lyapunov
theory. It identifies conditions that keep the system’s behavior stable over time, particularly in terms of
mean-fourth moments. Examples illustrate how changes in parameters and the nature of random variables
affect stability, highlighting the role of probability distributions. Overall, the findings offer both theoretical
insights and practical guidance for managing systems with stochastic elements and delays.
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[17] J. C. Cortés, P. Sevilla-Peris, L. Jódar, Analytic-numerical approximating processes of diffusion equation with data uncertainty, Comput.

Math., vol. 49, (2005), 1255–1266.
[18] M. Yassen, M. A. Sohaly, I. M. Elbaz, et al., Random Crank–Nicolson scheme for random heat equation in mean square sense, Am. J.

Comput. Math., vol. 6, no. 2 (2016), 66–73.
[19] M. E. Fares, M. A. Sohaly, M. T. Yassen, I. M. Elbaz, Mean square calculus for Cauchy problems, stochastic heat and stochastic advection

models, Int. J. Modern Math. Sci., vol. 15, no. 2, (2017), 177–186.
[20] J. Calatayud, J.-C. Cortés, M. Jornet, Random differential equations with discrete delay, Stoch. Anal. Appl., 2019.
[21] D. Chyung, Discrete systems with delays in control, IEEE Trans. Autom. Control, vol. 14, no. 2, (1969), 196–197.
[22] R. S. Pindyck, The discrete-time tracking problem with a time delay in the control, IEEE Trans. Autom. Control, vol. 17, no. 3, (1972),

397–398.
[23] P. Wang, Optimal control of discrete time systems with time lag control, IEEE Trans. Autom. Control, vol. 20, no. 3, (1975), 425–426.
[24] J. Richard, Time delay systems: an overview of some recent advances and open problems, Automatica, vol. 39, no. 10, (2003), 1667–1694.
[25] M. B. H. Zhang, M. Skliar, Ito–Volterra optimal state estimation with continuous, multirate, randomly sampled, and delayed measurements,

IEEE Trans. Autom. Control, vol. 52, no. 3 (2007), 401–416.
[26] G. Adomian, Applied Stochastic Processes, Academic Press, 2014.
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