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The relative Haagerup property of semigroup crossed products
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Abstract. In this paper, we study the relative Haagerup property of semigroup crossed products. Let G be
a lattice ordered group that acts on a unital C∗-algebraA through an action α. We show that the inclusion
A ⊆ A ⋊α,r G+ has the relative Haagerup property if and only if G has the Haagerup property.

1. Introduction

The Haagerup property was first defined for groups by Haagerup in [13], as a weaker version of
amenability. Many important groups were shown to have the Haagerup property (see [6]). Since then, the
Haagerup property has been considered for von Neumann algebras and C∗-algebras (see [4, 5, 7, 11, 15, 20,
23, 24]). In particular, Dong extended the definition of the Haagerup property from the single C∗-algebra
case to the relative case of inclusions of C∗-algebras in [11]. Moreover, Dong and Ruan [12] also developed
a Hilbert module version of the Haagerup property for general C∗-algebrasA ⊆ B.

It is interesting to consider the permanence of the Haagerup property under the standard constructions
of C∗-algebras. The structure of group crossed products is one of the most important structures in the
theory of operator algebras. It is natural to try to extend the ideas of this area to a more general setting.
Semigroups have algebraic structures that are more basic than groups. Hence, various authors introduced
and studied the semigroup C∗-algebras and semigroup crossed products (see [14, 16, 17, 21, 22]).

In this paper, we study the relative Haagerup property of semigroup crossed products. Let G be a
lattice ordered group that acts on a unital C∗-algebra A through an action α. We show that the inclusion
A ⊆ A ⋊α,r G+ has the relative Haagerup property if and only if G has the Haagerup property. This result
is a generalization of [19, Theorem 5.7] which is about the Haagerup property of semigroup C∗-algebras.

From now on, we always consider separable unital C∗-algebras and countable discrete groups. However,
by replacing the sequences with nets, we can generalize the main results of this paper to unital C∗-algebras
and discrete groups in an analogous way.

2. The Haagerup property

Firstly, let us recall the definition of the Haagerup property for groups from [3, Definition 12.2.1]. A
discrete group G has the Haagerup property if there exists a sequence {φn} of positive definite functions on G
with φn(e) = 1, such that each φn vanishes at infinity and φn(1)→ 1 for all 1 ∈ G.
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Then we introduce the notion of the relative Haagerup property. Let 1 ∈ C ⊆ D be C∗-algebras, ρ be a
fixed tracial state on D. We denote by (L2(D, ρ),Λρ) the GNS-construction associated to ρ, and let ∥ · ∥2 be
the associated Hilbert norm. Suppose that there exists a ρ-preserving conditional expectation EC from D
onto C. Let Φ : D → D be an EC-preserving C-bimodule unital completely positive (u.c.p.) map. Then
there exists a contraction TΦ : L2(D, ρ)→ L2(D, ρ) determined by

Λρ(x) 7→ Λρ(Φ(x))

for all x ∈ D. Let eC = TEC , then it is just the associated projection from L2(D, ρ) onto L2(C, ρ) (see [11]). An
operator aeCb acts on L2(D, ρ) by

aeCb(Λρ(x)) = Λρ(aEC(bx))

for all a, b, x ∈ D. Let

FC(D) = {T ∈ C′ ∩ B(L2(D, ρ)) : T =
∑
i∈F

aieCbi,F f inite set and ai, bi ∈ D}

and KC(D) be the norm closure of FC(D) in B(L2(D, ρ)).

Definition 2.1. The inclusion C ⊆ D is said to have the relative Haagerup property if there exists a sequence {Φn}

of EC-preserving, C-bimodule, u.c.p. maps fromD to itself such that

1. ∥Λρ(Φn(x) − x)∥2 → 0 for every x ∈ D;
2. TΦn ∈ KC(D) for all n.

Note that the tracial state ρ in this paper may not be faithful. Hence the definition 2.1 is slightly different
from [11, Definition 3.1] in which the tracial state must be faithful.

3. Semigroup crossed product

In this paper, a lattice ordered group is a pair (G,≤) consisting of a discrete group G and a partial order ≤
on G such that if e is the unit of G and G+ = {s ∈ G|e ≤ s}, then

1. Every pair s, t of elements of G has a least common upper bound in G+.
2. The inequality 1 ≤ h implies s1t ≤ sht, for all 1, h, s, t ∈ G.

For details of lattice ordered groups, we refer the reader to [2] and [9]. It is known that if G is lattice ordered,
then G is a quasi-lattice ordered group (see [8]) and

G = G+(G+)−1 = (G+)−1G+.

From now on, A is a unital C∗-algebra and α is a homomorphism from G to the group Aut(A) of
automorphisms onA. Next we recall the structure of the reduced semigroup crossed product.

Let λ be the regular isometric representation of G+ on ℓ2(G+) and (π,H) be a faithful representation of
A . For a ∈ A, we define π(a) ∈ B(H ⊗ ℓ2(G+)) as follows:

π(a)(ξ ⊗ δs) = (π(α−1
s (a))(ξ)) ⊗ δs

for all ξ ∈ H and s ∈ G+. The homomorphisms π and IH ⊗ λ satisfy the covariance relation

π(αs(a))(IH ⊗ λs) = (IH ⊗ λs)π(a)

for all s ∈ G+ and a ∈ A, where IH is the identity operator on H . The reduced semigroup crossed product
A⋊α,r G+ is the C∗-subalgebra of B(H ⊗ ℓ2(G+)) generated by {π(a) : a ∈ A} and {IH ⊗λs : s ∈ G+}. In fact, the
reduced semigroup crossed product does not depend on the choice of the faithful representation (π,H).
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We identify A as a subset of A ⋊α,r G+ through its canonical embeddings. Let B0 = span{aλsλ∗t : a ∈
A, s, t ∈ G+}, then B0 is dense inA ⋊α,r G+. We can write every element x in B0 as a finite sum

x =
∑

s,t∈G+
as,tλsλ

∗

t ,

where as,t ∈ A. It follows from [19, Lemma 6.2] that the map

EA(
∑

s,t∈G+
as,tλsλ

∗

t) =
∑
s∈G+

as,s

extends to a conditional expectation fromA ⋊α,r G+ toA.

4. The relative Haagerup property of semigroup crossed products

In this section, τ is an α-invariant tracial state onA. Let τ′ = τ ◦ E. It follows from [19, Lemma 6.3] that
τ′ is a tracial state onA ⋊α,r G+. We start by giving some results that will be used later.

Lemma 4.1. [21, Proposition 2.2] Let W : G+ → B be an isometric homomorphism into a unital C∗-algebra B.
Then there is a unique extension W : G → B such that Wu−1v = W∗

uWv for all u ∈ G+ and v ∈ G. Moreover, if
11, . . . , 1m ∈ G, then the matrix (W1−1

i 1 j
)i j is positive in Mm(B).

Therefore, the regular isometric representation of G+ has a unique extension λ : G→A⋊α,r G+ such that

λ1 = λ
∗

uλv

for all 1 = u−1v ∈ G, where u, v ∈ G+. Then we give the main results of this paper by using a similar strategy
to [11].

Lemma 4.2. Let 1, h ∈ G. If 1 , h, then
Λτ′ (aλ1) ⊥ Λτ′ (bλh)

for all a, b ∈ A.

Proof. If 1 , h, then

⟨Λτ′ (aλ1),Λτ′ (bλh)⟩ = τ′(λ∗hb∗aλ1) = τ′(b∗aλ1λ∗h) = 0

for all a, b ∈ A. Hence, Λτ′ (aλ1) ⊥ Λτ′ (bλh).

Lemma 4.3. If 1 = u−1v = st−1, where u, v, s, t,∈ G+, then

Λτ′ (aλ1) = Λτ′ (aλsλ
∗

t)

for all a ∈ A.

Proof. If 1 = st−1, we have

τ′((aλ1 − aλsλ
∗

t)
∗(aλ1 − aλsλ

∗

t))
= τ′(λ∗1a

∗aλ1 − λ∗1a
∗aλsλ

∗

t − λtλ
∗

sa
∗aλ1 + λtλ

∗

sa
∗aλsλ

∗

t)

= τ′(a∗aλ1λ∗1 − a∗aλsλ
∗

tλ
∗

1 − a∗aλ1λtλ
∗

s + a∗aλsλ
∗

tλtλ
∗

s)

= τ(a∗a) − τ(a∗a) − τ(a∗a) + τ(a∗a) = 0.

for all a ∈ A. Hence, Λτ′ (aλ1) = Λτ′ (aλsλ∗t).
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Lemma 4.4. If x ∈ B0, then
Λτ′ (x) =

∑
1∈G

Λτ′ (λ1EA(λ∗1x)).

Proof. For any x =
∑

s,t∈G+
as,tλsλ∗t , we get

Λτ′ (x) =
∑

s,t∈G+
Λτ′ (as,tλsλ

∗

t) =
∑
1∈G

∑
1=st−1

Λτ′ (as,tλ1)

=
∑
1∈G

∑
1=st−1

Λτ′ (λ1α−1
1 (as,t)) =

∑
1∈G

Λτ′ (λ1EA(λ∗1x)).

This completes the proof.

Lemma 4.5. For each normalized positive definite function φ on G, there is an EA-preserving, u.c.p. map Φ from
A ⋊α,r G+ into itself such that

Φ(axb) = aΦ(x)b

for all a, b ∈ A and x ∈ A ⋊α,r G+.

Proof. We define Φ : B0 → B0 by

Φ(
∑

s,t∈G+
as,tλsλ

∗

t) =
∑

s,t∈G+
φ(st−1)as,tλsλ

∗

t .

Then it follows from [18] that Φ is a u.c.p. map and it is easy to see that

EA ◦Φ = EA.

For each x =
∑

s,t∈G+
as,tλsλ∗t ∈ B0, we have

Φ(ax) = Φ(
∑

s,t∈G+
aas,tλsλ

∗

t) =
∑

s,t∈G+
φ(st−1)aas,tλsλ

∗

t

= a
∑

s,t∈G+
φ(st−1)as,tλsλ

∗

t = aΦ(x)

for all a ∈ A. Similarly we can get

Φ(xb) = Φ(x)b

for all b ∈ A and x ∈ B0. Hence it follows from continuity that

Φ(axb) = aΦ(x)b

for all a, b ∈ A and x ∈ A ⋊α,r G+.

Theorem 4.6. The inclusion A ⊆ A ⋊α,r G+ has the relative Haagerup property if and only if G has the Haagerup
property.

Proof. Suppose that the inclusion A ⊆ A ⋊α,r G+ has the relative Haagerup property. Let {Φn} be as in
Definition 2.1. Define φn(1) : G→ C by

φn(1) = τ′(Φn(λ1)λ∗1).



Q. Meng / Filomat 39:19 (2025), 6493–6500 6497

If {11, . . . , 1m} is an arbitrary finite subset in G, we choose h ∈ G+ such that si = h1i ∈ G+ for all i = 1, 2 · · · n.
For all 11, . . . , 1m ∈ G and all c1, . . . , cm ∈ C, the positivity of τ yields

m∑
i, j=1

cic̄ jφn(1−1
j 1i) =

m∑
i, j=1

cic̄ jτ
′((Φn(λ1−1

j 1i
))λ∗
1−1

j 1i
)

=

m∑
i, j=1

cic̄ jτ
′((Φn(λs−1

j si
))λ∗s−1

j si
)

=

m∑
i, j=1

τ′(c̄ jλs jΦn(λ∗s j
λsi )ciλ

∗

si
) ≥ 0.

Hence, φn is positive definite on G. Moreover, as n→ +∞,

|φn(1) − 1| = |τ′(Φn(λ1)λ∗1) − 1| = |τ′(Φn(λ1)λ∗1) − τ
′(λ1λ∗1)|

= |τ′((Φn(λ1) − λ1)λ∗1)| ≤ ∥Λτ′ (Φn(λ1) − λ1)∥2 → 0

for all 1 ∈ G. Since TΦn ∈ KA(A ⋊α,r G+), there exist x1, ..., xm inA ⋊α,r G+ and y1, ..., ym ∈ B0 such that

∥TΦn −

m∑
i=1

xieAyi∥ ≤
ϵ
2
.

In particular, we have

∥Λτ′ (Φn(λ1)) −Λτ′ (
m∑

i=1

xiEA(yiλ1))∥2 ≤
ϵ
2
. (1)

It follows from Lemma 4.4 that if x ∈ B0, then∑
1∈G

∥Λτ′ (EA(λ∗1x))∥22 = ∥
∑
1∈G

Λτ′ (λ1EA(λ∗1x))∥22 = ∥Λτ′ (x)∥22 < +∞. (2)

Hence, for any δ > 0, there exists a finite set Fx,δ ⊆ G such that∑
1∈G\Fx,δ

∥Λτ′ (EA(λ∗1x))∥22 < δ
2.

Let M = max
1≤i≤m

{∥Λτ′ (xi)∥2}, δ = ε
2(M+1)m and Fϵ =

m⋃
i=1

Fy∗i ,δ. For any 1 ∈ G \ Fϵ, it follows from the inequalities 1

and 2 that

|φn(1)| = |τ′(Φn(λ1)λ∗1)|

≤ |τ′(Φn(λ1) −
m∑

i=1

xiEA(yiλ1))λ∗1| + |τ
′(

m∑
i=1

xiEA(yiλ1)λ∗1)|

≤ ∥Λτ′ (Φn(λ1) −
m∑

i=1

xiEA(yiλ1))∥2 +
m∑

i=1

|τ′(xiEA(yiλ1)λ∗1)|

≤
ϵ
2
+

m∑
i=1

∥Λτ′ (xi)∥2∥Λτ′ (EA(yiλ1))∥2

=
ϵ
2
+

m∑
i=1

∥Λτ′ (xi)∥2∥Λτ′ (EA(λ∗1y
∗

i ))∥2

≤
ϵ
2
+

m∑
i=1

M
ε

2(M + 1)m
< ϵ.
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This implies that G has the Haagerup property.

Suppose that G has the Haagerup property. Then there exists a sequence of normalized positive definite
functions {φn} that witnesses the Haagerup property. By Lemma 4.5, there exists a sequence {Φn} of
EA-preserving,A-bimodule, u.c.p. maps fromA ⋊α,r G+ to itself. For any aλsλ∗t ∈ B0, we have

∥Λτ′ (Φn(aλsλ
∗

t) − aλsλ
∗

t)∥
2
2 = ∥Λτ′ ((φn(st−1) − 1)aλsλ

∗

t)∥
2
2

= (φn(st−1) − 1)2τ′(λtλ
∗

sa
∗aλsλ

∗

t)

= (φn(st−1) − 1)2τ(a∗a)→ 0.

It follows from linearity and continuity that

∥Λτ′ (Φn(x) − x)∥2 → 0

for all x ∈ A ⋊α,r G+. For simplicity of notation, we fix n and denote φ = φn, Φ = Φn. Let S1 ⊆ S2 ⊆ · · · ⊆ G
be an increasing sequence of finite sets whose union is G, and let

Tm =
∑
1∈Sm

φ(1)λ1eAλ∗1

for all m ∈N. For any aλsλ∗t ∈ B0, we get

λ1eAλ∗1b(Λτ′ (aλsλ
∗

t)) = Λτ′ (λ1EA(λ∗1baλsλ
∗

t))

= Λτ′ (λ1EA(α−1
1 (ba)λ∗1λsλ

∗

t))

=

Λτ′ (baλ1), 1 = st−1;
0, 1 , st−1,

and

bλ1eAλ∗1(Λτ′ (aλsλ
∗

t)) = Λτ′ (bλ1EA(λ∗1aλsλ
∗

t))

= Λτ′ (bλ1EA(α−1
1 (a)λ∗1λsλ

∗

t))

=

Λτ′ (baλ1), 1 = st−1;
0, 1 , st−1,

for all b ∈ A. Hence Tm ∈ A
′. Let x ∈ B0. It follows from Lemma 4.4 that for any ϵ > 0, there exists kε such

that for all k ≥ kε,

∥Λτ′ (x −
∑
1∈Sk

λ1EA(λ∗1x))∥22 = ∥Λτ′ (
∑
1∈G\Sk

λ1EA(λ∗1x))∥22

=
∑
1∈G\Sk

∥Λτ′ (EA(λ∗1x))∥22 ≤ ϵ
2
∥Λτ′ (x)∥22.

Since φ vanishes at the infinity, there exists a subsequence {Skm } such that |φ(1)| ≤ 1
m for all 1 ∈ G \ Skm .
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Pick an m ∈N, and choose that kε > km. For any x ∈ B0, we have

∥TΦ − Tkm (Λτ′ (x))∥2 = ∥Λτ′ (
∑
1∈G

φ(1)λ1EA(λ∗1x) −
∑
1∈Skm

φ(1)λ1EA(λ∗1x))∥2

≤ ∥Λτ′ (
∑
1∈G\Skϵ

φ(1)λ1EA(λ∗1x)∥2

+ ∥Λτ′ (
∑

1∈Skϵ \Skm

φ(1)λ1EA(λ∗1x))∥2

≤ ϵ∥Λτ′ (x)∥2 + (
∑
1∈G\Skm

|φ(1)|2∥Λτ′ (EA(λ∗1x))∥22)
1
2

≤ (ϵ +
1
m

)∥Λτ′ (x)∥2.

Therefore TΦ ∈ KA(A ⋊α,r G+). This implies that the inclusion A ⊆ A ⋊α,r G+ has the relative Haagerup
property.

On the other hand, it follows from [11, Theorem 3.4] that G has the Haagerup property if and only if the
inclusionA ⊆ A ⋊α,r G has the relative Haagerup property, whereA ⋊α,r G is the reduced crossed product.
Therefore, the relative Haagerup property ofA ⊆ A⋊α,r G+ is equivalent to the relative Haagerup property
ofA ⊆ A ⋊α,r G.

Example 4.7. Let (F2,F+2 ) be the free group on two generators with the total order and let (F,F+) be the Thompson
group F with the total order (see [10]). We denote by γ the conjugation action. We define a map τ : Cb(G) → C by
τ( f ) = f (e) for every f ∈ Cb(G), where G is F2 or F. Then τ is a γ-invariant tracial state. Since F2 and F have the
Haagerup property (see [1, Example 2.9.12]), then the inclusion Cb(F2) ⊆ Cb(F2) ⋊γ,r F+2 and Cb(F) ⊆ Cb(F) ⋊γ,r F+

have the relative Haagerup property.

We conclude this paper with the following remark.

Remark 4.8. IfA = C, thenA ⋊α,r G+ is the reduced semigroup C∗-algebra C∗r(G+), the conditional expectation EA
is a tracial state which is denoted by τ∞, KA(A ⋊α,r G+) is the set of all compact operators on L2(C∗r(G+), τ∞). In the
case, the relative Haagerup property of the inclusion C ⊆ C∗r(G+) is equivalent to the Haagerup property of C∗r(G+)
with respect to τ∞. Hence, Theorem 4.6 is a generalization of [19, Theorem 5.7].
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