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Abstract. In this paper we study the exponential stability of a damped variable coefficients Rayleigh
beam, that is clamped at one end and is free at the other. This is a continuation of the work of Wang et
al in [17]. To stabilize the system, we apply a leaner boundary control in position and velocity at the free
end of the beam. Using the modern spectral analysis approach, we obtain the Riesz basis property and the
exponential stability.

1. Introduction

We study the nonuniform Rayleigh beam system with a indefinite damping term under boundary
controls feedbacks given by:

ρ(x)
∂2u
∂t2 −

∂
∂x

(
Iρ(x)

∂3u
∂t2∂x

)
+
∂2

∂x2

(
EI(x)

∂2u
∂x2

)
−
∂
∂x

(
a(x)

∂2u
∂x∂t

)
= 0, x ∈ (0, 1), t > 0

u(0, t) =
∂u
∂x

(0, t) =
∂2u
∂x2 (1, t) = 0, t > 0

∂
∂x

(
EI(·)

∂2u
∂x2

)
(1, t) − Iρ(1)

∂3u
∂t2∂x

(1, t) = αu(1, t) + β
∂u
∂t

(1, t), t > 0

u(x, 0) = u0(x),
∂u
∂t

(x, 0) = u1(x), x ∈ (0, 1).

(1)

Here u(x, t) is the transversal deviation of the beam, x and t stand respectively for the position and time,
ρ(x) > 0 is the mass density, EI(x) > 0 is the stiffness of the beam, Iρ(x) > 0 is the mass moment of inertia.
The length of the beam is chosen to be unity, α and β are two given positive constants. The damping a(x) is
indefinite and continuously differentiable coefficient function such that

a(1) = 0, (2)
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∫ 1

0

a(x)
Iρ(x)

dx > 0. (3)

For convenience, we assume that

ρ(x), Iρ(x), EI(x) ∈ C4[0, 1].

The nonuniform Rayleigh problem was investigate in [16] except that there was no damping term. In [16],
the authors use the Riesz basis approach to stabilize the system. We refer the readers to [1, 15–17] for further
details of this model. The uniform and nonuniform Rayleigh problem with boundary feedbacks controls
were discussed respectably in [1, 7, 16, 17], where a conjecture on how the control parameters affect decay
rate was proposed and then answered, respectively. There are several approaches to study these perturbed
systems.

In this paper we use the Riesz basis approach, which shows that the generalized eigenfunctions of
the system form a Riesz basis, and then deduces the spectrum determined growth condition and various
stability results from the eigenvalue distribution of the system.This approach was used in [1, 16, 17]. The
system (1) was studied in [17] with zero boundary conditions where the authors obtained a necessary
condition for the stability and establish the Riesz basis property as well as the spectrum determined growth
condition for the system.

The rest of this paper is organized as follows. In Section 2, we will find a suitable Hilbert space
framework for system (1), and then the system will be shown to generate a C0-semigroup. We then study
the eigenvalue problem. The main trick is to use a space-scaling transformation to derive an equivalent
eigenvalue boundary problem and this leads to much simpler asymptotic expansions. In Section 3, we
shall apply techniques in [12–14] to the fundamental solutions of the eigenvalue boundary problem, and
then use the results to expand the characteristic determinant in deducing the asymptotic behavior of the
eigenvalues. In the last Section, we shall reveal how the damping term affects the decay rate asymptotically,
and then discuss how negative the damping could be so that the system is still exponentially stable.

2. Formulation of the problem and well-posedness

We start our investigation by formulating the system (1) in the suitable functional setting. We first
introduce the following spaces

V =
{
u ∈ H1(0, 1); u(0) = 0

}
,

with the inner product

⟨u, v⟩V =
∫ 1

0

ρ(x)u(x)v(x) + Iρ(x)
du
dx

(x)
dv
dx

(x)

 dx,

W =
{

u ∈ H2(0, 1); u(0) = 0,
du
dx

(0) = 0
}
,

with the inner product

⟨u, v⟩W =
∫ 1

0
EI(x)

d2u
dx2 (x)

d2v
dx2 (x)dx + αu(1)v(1).

Also, the energy spaceH =W × V which is endowed with the inner product〈
(u, v), ( f , 1)

〉
H
=

〈
u, f

〉
W +

〈
v, 1

〉
V , (u, v), ( f , 1) ∈ H .

Easy to see that

W ⊂ V ⊂ L2(0, 1) ⊂ V′ ⊂W′, (4)
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where W′ and V′ are the dual spaces of W and V, respectively.
Let u be a smooth solution of system (1) and ϕ ∈ W. Multiplying the first equation of system (1) and

integrating on [0, 1]. Then integrating by parts, we get∫ 1

0

ρ(x)
∂2u
∂t2 (x, t)ϕ(x) + Iρ(x)

∂3u
∂x∂t2 (x, t)

∂ϕ

∂x
(x)

 dx +
∫ 1

0
EI(x)

∂2u
∂x2 (x, t)

∂2ϕ

∂x2 (x)dx

+

∫ 1

0
a(x)

∂2u
∂x∂t

(x, t)
∂ϕ

∂x
(x)dx + αu(1, t)ϕ(1) + β

∂u
∂t

(1, t)ϕ(1) = 0 (5)

Now we define the continuous linear operators A ∈ L (W,W′) and B, C, D ∈ L(V,V′) by

A : W −→ W′

ϕ 7−→ Aϕ : W −→ C

ψ 7−→

〈
Aϕ,ψ

〉
=

∫ 1

0
EI(x)

d2ϕ

dx2 (x)
d2ψ

dx2 (x)dx + αϕ(1)ψ(1),
(6)

B : V −→ V′

ϕ 7−→ Bϕ : V −→ C

ψ 7−→

〈
Bϕ,ψ

〉
=

∫ 1

0
a(x)

dϕ
dx

(x)
dψ
dx

(x)dx,
(7)

C : V −→ V′

ϕ 7−→ Cϕ : V −→ C

ψ 7−→

〈
Cϕ,ψ

〉
=

∫ 1

0

ρ(x)ϕ(x)ψ(x) + Iρ(x)
dϕ
dx

(x)
dψ
dx

(x)

 dx.
(8)

D : V −→ V′

ϕ 7−→ Dϕ : V −→ C

ψ 7−→

〈
Dϕ,ψ

〉
= ϕ(1)ψ(1),

(9)

Then by the Lax-Milgram Theorem (see [3, 18]), the operator A (resp. C) is a canonical isomorphism of W
(resp. V) onto W′ (resp. V′). With these operators, the equation (5) becomes〈

C
∂2u
∂t2 , ϕ

〉
+

〈
Au, ϕ

〉
+

〈
B
∂u
∂t
, ϕ

〉
+ β

〈
D
∂u
∂t
, ϕ

〉
= 0, ∀ϕ ∈W. (10)

Assume that Au ∈ V′, since C : V −→ V′ is isomorphism, we get:

∂2u
∂t2 = −C−1

(
Au + B

∂u
∂t
+ βD

∂u
∂t

)
in V.

Therefore, we define the linear unbounded operator A by

D(A ) =
{
(u, v) ∈ H ; v ∈W and Au ∈ V′

}
, (11)

A (u, v) =
(
v,−C−1Au

)
, ∀ (u, v) ∈ D(A ), (12)

and the linear bounded operator B as follows

B (u, v) =
(
0,−C−1 (

Bv + βDv
))
, ∀ (u, v) ∈ H . (13)



Z. Bouallagui et al. / Filomat 39:19 (2025), 6573–6588 6576

Thus, (5) can be formulated into an evolution equation inH as dU
dt

(t) = (A +B) U(t)
U(0) = U0,

(14)

where U =
(
u,
∂u
∂t

)
and U0 = (u0,u1) .

Lemma 2.1. A is a skew-adjoint operator on the energy spaceH and 0 ∈ ρ (A ).

Proof. Let (u, v), ( f , 1) ∈ D(A ), using the fact that

⟨Au, v⟩ = ⟨u, v⟩W , ∀u, v ∈W,

⟨Cu, v⟩ = ⟨u, v⟩V , ∀u, v ∈ V,

we get〈
A (u, v), ( f , 1)

〉
H
=

〈
(v,−C−1Au), ( f , 1)

〉
H

=
〈
v, f

〉
W −

〈
C−1Au, 1

〉
V

= −
〈
CC−1Au, 1

〉
+

〈
f , v

〉
W

= −
〈
Au, 1

〉
+

〈
A f , v

〉
= −

〈
u, 1

〉
W +

〈
CC−1A f , v

〉
= −

〈
u, 1

〉
W +

〈
C−1A f , v

〉
V

= −
〈
u, 1

〉
W +

〈
v,C−1A f

〉
V

= −
〈
(u, v),A ( f , 1)

〉
H
.

To show that 0 ∈ ρ(A ), let ( f , 1) ∈ H , we look for a unique element (u, v) ∈ D(A ) such that

A (u, v) =
(

f , 1
)
,

then v = f and
−C−1Au = 1.

Since C : V −→ V′ is isomorphism,
Au = −C1.

So, for any ϕ ∈W, we get〈
Au, ϕ

〉
= −

〈
C1, ϕ

〉
. (15)

For any ϕ ∈W, we have
〈
Aϕ,ϕ

〉
= ∥ϕ∥2W .

The left-hand side of (15) is a continuous coercive bilinear form Ψ of u and ϕ. Moreover, the right-hand
side of (15) is a continuous linear form L of ϕ on W.
Using the well-known Lax-Milgram Theorem, there exists a unique u ∈W so that

Ψ(u, ϕ) = L(ϕ), ∀ϕ ∈W,

holds and 0 ∈ ρ(A).

Furthermore we have the following characterization of the space D(A ) (see [16]).
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Lemma 2.2. Let (u, v) ∈ H . Then (u, v) ∈ D(A ) if and only if u ∈W ∩H3(0, 1) and v ∈W such that

d2u
dx2 (1) = 0. (16)

In particular, A −1 is compact on the energy spaceH .

Proof. The sufficiency is obvious. To prove the necessity, let (u, v) ∈ D(A ) such that A (u, v) = ( f , 1) ∈ H .
Then we have v = f and

−C−1Au = 1.

Since C : V −→ V′ is isomorphism,
Au + C1 = 0,

hence∫ 1

0
EI(x)

d2u
dx2 (x)

d2ψ

dx2 (x)dx + αu(1)ψ(1) +
∫ 1

0

ρ(x)1(x)ψ(x) + Iρ(x)
d1
dx

(x)
dψ
dx

(x)

 dx = 0,∀ψ ∈W. (17)

Let ϕ ∈ C∞0 (0, 1), taking ψ(x) =
∫ x

0
ϕ(t)dt and substitute it into (17) yields

∫ 1

0
EI(x)

d2u
dx2 (x)

dϕ
dx

(x)dx+ αu(1)
∫ 1

0
ϕ(x)dx+

∫ 1

0

(∫ 1

x
ρ(t)1(t)dt

)
ϕ(x)dx+

∫ 1

0
Iρ(x)

d1
dx

(x)ϕ(x)dx = 0, (18)

then ∫ 1

0
EI(x)

d2u
dx2 (x)

dϕ
dx

(x)dx = −
∫ 1

0

[
αu(1) +

∫ 1

x
ρ(t)1(t)dt + Iρ(x)

d1
dx

(x)
]
ϕ(x)dx.

Thus

d
dx

(
EI(·)

d2u
dx2

)
= αu(1) +

∫ 1

x
ρ(t)1(t)dt + Iρ

d1
dx
∈ L2(0, 1). (19)

Since EI ∈ C4(0, 1), so u ∈W ∩H3(0, 1). Let ϕ ∈ V such that ϕ(1) = 1 and ψ(x) =
∫ x

0
ϕ(t)dt, substitute it into

(17). Then integrating by parts and using (19), we get (16) holds. By Lemma 2.1, A −1 exists and is bounded
onH . From The Sobolev Embedding Theorem, A −1 is compact.

Therefore, since A is a skew-adjoint operator with compact resolvent and B is bounded, a standard
perturbation result (see Pazy[10]) will then imply that A +B generates a C0-group onH and has compact
resolvent. Thus, the spectrum σ(A +B) consists of only isolated eigenvalues that have a finite algebraic
multiplicity.

Using standard semigroup theory, we get the following theorem on the existence, uniqueness, and
regularity of the equation (14) solution.

Theorem 2.3. (Existence and uniqueness)

1. If U0 ∈ D(A ), then system (14) has a unique strong solution

U ∈ C ([0,+∞[ ,D(A )) ∩ C1 ([0,+∞[ ,H) .

2. If U0 ∈ H , then system (14) has a unique weak solution

U ∈ C ([0,+∞[ ,H) .
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3. High frequencies

In this section, we obtain asymptotic expansions for the eigenvalues of A +B. Let λ ∈ σ (A +B) and
U = (u, v) ∈ D (A ) such that

(A +B) U = λU.

Equivalently{
v = λu
−C−1(Au + Bv + βDv) = λv.

Since C : V −→ V′ is an isomorphism, we have v = λu and

Au + λBu + λβDu + λ2Cu = 0. (20)

Using (6)-(9), we get∫ 1

0
EI(x)

d2u
dx2 (x)

d2ψ

dx2 (x)dx + αu(1)ψ(1) + λ
∫ 1

0
a(x)

du
dx

(x)
dψ
dx

(x)dx + λβu(1)ψ(1)

+ λ2
∫ 1

0

ρ(x)u(x)ψ(x) + Iρ(x)
du
dx

(x)
dψ
dx

(x)

 dx = 0, ∀ψ ∈W.

(21)

Let ψ ∈ C∞0 (0, 1) and substitute it into (21), we get〈
d2

dx2

(
EI

d2u
dx2

)
− λ

d
dx

(
a

du
dx

)
+ λ2

(
ρu −

d
dx

(
Iρ

du
dx

))
, ψ

〉
= 0.

Then, we have

d2

dx2

(
EI

d2u
dx2

)
= λ

d
dx

(
a

du
dx

)
− λ2

(
ρu −

d
dx

(
Iρ

du
dx

))
∈ L2(0, 1). (22)

Integrating by parts (21) and using (22), we get

d
dx

(
EI(·)

d2u
dx2

)
(1) − λ2Iρ(1)

du
dx

(1) = αu(1) + λβu(1).

Consequently, the function u is determined by the following system:

d2

dx2

(
EI(x)

d2u
dx2

)
− λ

d
dx

(
a(x)

du
dx

)
+ λ2

(
ρ(x)u −

d
dx

(
Iρ(x)

du
dx

))
= 0

u(0) =
du
dx

(0) =
d2u
dx2 (1) = 0

d
dx

(
EI(·)

d2u
dx2

)
(1) − λ2Iρ(1)

du
dx

(1) = αu(1) + λβu(1).

(23)

We showed that (20) implies (23). Now, we will prove the converse : that (23) implies (20). From (22), we
multiply the first equation of (23) by ψ with ψ ∈ W and integrate over [0, 1]. By integrating by parts, the
second equation of (23) and the fact that ψ ∈W, we obtain

d
dx

(
EI(·)

d2u
dx2

)
(1)ψ(1) +

∫ 1

0
EI(x)

d2u
dx2 (x)

d2ψ

dx2 (x)dx + λ
∫ 1

0
a(x)

du
dx

(x)
dψ
dx

(x)dx

− λ2Iρ(1)
du
dx

(1)ψ(1) + λ2
∫ 1

0

ρ(x)u(x)ψ(x) + Iρ(x)
du
dx

(x)
dψ
dx

(x)

 dx = 0.
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And by the third equation of (23), we get (21):

∫ 1

0
EI(x)

d2u
dx2 (x)

d2ψ

dx2 (x)dx + αu(1)ψ(1) + λ
∫ 1

0
a(x)

du
dx

(x)
dψ
dx

(x)dx + λβu(1)ψ(1)

+ λ2
∫ 1

0

ρ(x)u(x)ψ(x) + Iρ(x)
du
dx

(x)
dψ
dx

(x)

 dx = 0, ∀ψ ∈W.

From the operators (6)-(9), the preceding equation is written as〈
Au + λBu + λβDu + λ2Cu, ψ

〉
= 0, ∀ψ ∈W.

What implies (20). Consequently, any solution to equation (23) is a solution to (20) and vice versa. For this,
we focus on solving equation (23).

We need the following lemma (see [16, 17]).

Lemma 3.1. Let h1(x) and h2(x) be two linearly independent solutions for the second order linear homogeneous
differential equation (

Iρ(x)u′(x)
)′
− ρ(x)u(x) = 0.

Then we have

D := h1(0)h′2(1) − h′1(1)h2(0) , 0. (24)

Expanding (23) into the following form:



u(4)(x) + 2
EI′(x)
EI(x)

u′′′(x) +
EI′′(x)
EI(x)

u′′(x) − λ2

(
Iρ(x)
EI(x)

u′′(x) +
I′ρ(x)

EI(x)
u′(x) −

ρ(x)
EI(x)

u(x)
)

−λ

(
a(x)

EI(x)
u′′(x) +

a′(x)
EI(x)

u′(x)
)
= 0

u(0) = u′(0) = u′′(1) = 0
(EI u′′)′ (1) − λ2Iρ(1)u′(1) = αu(1) + λβu(1).

(25)

Now we convert the eigenvalue problem (25) into a more convenient form by a space-scaling transformation.
For this, let

u(x) = f (z), z =
1
h

∫ x

0

(
Iρ(ξ)
EI(ξ)

)1
2 dξ, h =

∫ 1

0

(
Iρ(ξ)
EI(ξ)

)1
2 dξ, (26)

then (25) can be rewritten as
f (4)(z) + a1(z) f ′′′(z) + a2(z) f ′′(z) + a3(z) f ′(z) − λ2h2 [

f ′′(z) + b1(z) f ′(z) − b2(z) f (z)
]

−λ
[
c0(z) f ′′(z) + c1(z) f ′(z)

]
= 0

f (0) = f ′(0) = 0
b21 f ′′(1) + b22 f ′(1) = 0
b11 f ′′′(1) + b12 f ′′(1) + b13 f ′(1) − λ2b14 f ′(1) − α f (1) − λβ f (1) = 0,

(27)
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where

a1(z) = 6
zxx

z2
x
+ 2

EI′(x)
zxEI(x)

, zx =
1
h

(
Iρ(x)
EI(x)

)1
2
, (28)

a2(z) = 3
z2

xx

z4
x
+ 4

zxxx

z3
x
+ 6

zxxEI′(x)
z3

xEI(x)
+

EI′′(x)
z2

xEI(x)
, (29)

a3(z) =
zxxxx

z4
x
+ 2

zxxxEI′(x)
z4

xEI(x)
+

zxxEI′′(x)
z4

xEI(x)
, (30)

b1(z) =
zxx

z2
x
+

I′ρ(x)

h2z3
xEI(x)

, b2(z) =
ρ(x)

h2z4
xEI(x)

, (31)

c0(z) =
a(x)

z2
xEI(x)

, c1(z) =
zxxa(x)
z4

xEI(x)
+

a′(x)
z3

xEI(x)
, (32)

b11 = z3
x(1)EI(1), b12 = 3zx(1)zxx(1)EI(1) + z2

x(1)EI′(1), (33)
b13 = zxxx(1)EI(1) + zxx(1)EI′(1), b14 = Iρ(1)zx(1), (34)

b21 = z2
x(1), b22 = zxx(1). (35)

If we replace λ by µ := hλ, then (27) becomes

f (4)(z) + a1(z) f ′′′(z) + a2(z) f ′′(z) + a3(z) f ′(z) − µ2 [
f ′′(z) + b1(z) f ′(z) − b2(z) f (z)

]
−µ

[1
h

c0(z) f ′′(z) +
1
h

c1(z) f ′(z)
]
= 0

f (0) = f ′(0) = 0
b21 f ′′(1) + b22 f ′(1) = 0
b11 f ′′′(1) + b12 f ′′(1) + b13 f ′(1) − h−2µ2b14 f ′(1) − α f (1) − h−1µβ f (1) = 0,

(36)

In summary, we have the following theorem:

Theorem 3.2. λ is an eigenvalue of A +B if and only if (36) has a nonzero solution f (z) for µ = hλ. Moreover, the
function u in the corresponding eigenfunction (ϕ, λϕ) of A +B is given by (26).

First, we start to treat the fundamental solutions of equation (36). We notice that this equation is not in
the classical form that is to say the highest power of the eigenvalue parameter µ is not equal to the order of
the highest derivative of the equation. For this, the results of [2, 9] is not applicable. Its results are modified
in the papers of Tretter [12–14] that we can apply in our case. To begin, we divide the complex plan into
four sectors:

Sk =

{
z ∈ C :

kπ
2
≤ arg z ≤

(k + 1)π
2

}
, k = 0, 1, 2, 3 (37)

and for each Sk, we will pick ω1 and ω2 to be the square roots of −1 so that

Re
(
ρω1

)
≤ Re

(
ρω2

)
, ∀ρ ∈ Sk. (38)

In particular, we will choose ω1 = eiπ/2, ω2 = ei3π/2 in sector S0 and re-shuffle them in each the remaining
sectors so that (38) holds. Writing µ = ρω1 for ρ in each sector Sk, we have the following result on the
fundamental solutions of (36) from [1, 17] (see also [15]).

Lemma 3.3. In each sector Sk, for ρ ∈ Sk, with |ρ| sufficiently large, the equation

f (4)(z) + a1(z) f ′′′(z) + a2(z) f ′′(z) + a3(z) f ′(z) + ρ2 [
f ′′(z) + b1(z) f ′(z) − b2(z) f (z)

]



Z. Bouallagui et al. / Filomat 39:19 (2025), 6573–6588 6581

−iρ
[1
h

c0(z) f ′′(z) +
1
h

c1(z) f ′(z)
]
= 0, (39)

has four linearly independent fundamental solutions ys(z, ρ)(s = 1, 2, 3, 4) and they possess the following asymptotic
expressions (for j = 0, 1, 2, 3)

y( j)
s (z, ρ) = h( j)

s (z) + O
(
ρ−1

)
, s = 1, 2, (40)

y( j)
s (z, ρ) =

(
ρωs−2

) j eρωs−2x
[
ys(z) + O

(
ρ−1

)]
, s = 3, 4, (41)

where for s = 3, 4,

ys(z) = exp
(∫ z

0

1
2

[
b1(t) − a1(t) −

i
h
ωs−2c0(t)

]
dt

)
, (42)

ys(0) = 1, ys(1) = exp (D1 + iωs−2D2) , (43)

with

D1 =
1
2

∫ 1

0
[b1(t) − a1(t)] dt, D2 = −

1
2h

∫ 1

0
c0(t)dt (44)

and h1(z) = h1(x(z)), h2(z) = h2(x(z)) are two linearly independent solutions to the following equation:

f ′′(z) + b1(z) f ′(z) − b2(z) f (z) = 0.

From (40) and (41), we can obtain asymptotic expansions for the boundary conditions of system (36). In the
following, we introduce the notation

[a]1 = a + O
(
ρ−1

)
.

Theorem 3.4. Denote the boundary conditions of system (36) by U1, U2, U3 and U4, then for ρ ∈ S0, with |ρ|
sufficiently large, we have the following asymptotic expansions:

U4(ys, ρ) = ys(0, ρ) =

 hs(0) + O
(
ρ−1

)
= [hs(0)]1 , s = 1, 2,

1 + O
(
ρ−1

)
= [1]1 , s = 3, 4,

(45)

U3(ys, ρ) = y′s(0, ρ) =

 xz(0)h′s(0) + O
(
ρ−1

)
=

[
xz(0)h′s(0)

]
1 , s = 1, 2,

ρωs−2

(
1 + O

(
ρ−1

))
= ρωs−2 [1]1 , s = 3, 4,

(46)

U2(ys, ρ) = y′′s (1, ρ) +
b22

b21
y′s(1, ρ)

=

 x′′z (1)h′s(1) + x′2z (1)h′′s (1) +
b22

b21
x′z(1)h′s(1) + O

(
ρ−1

)
, s = 1, 2,

ρ2eρωs−2
(
ys(1)ω2

s−2 + O
(
ρ−1

))
, s = 3, 4,

=


[
x′′z (1)h′s(1) + x′2z (1)h′′s (1) +

b22

b21
x′z(1)h′s(1)

]
1
, s = 1, 2,

ρ2eρωs−2
[
ys(1)ω2

s−2

]
1
, s = 3, 4,

(47)
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U1(ys, ρ) = y′′′s (1, ρ) +
b12

b11
y′′s (1, ρ) + +

b13

b11
y′s(1, ρ) + ρ2 b14

h2b11
y′s(1, ρ) −

α
b11

ys(1, ρ)

− i
β

hb11
ρys(1, ρ)

=


ρ2

(
b14

h2b11
xz(1)h′s(1) +O

(
ρ−1

))
, s = 1, 2,

ρ3eρωs−2

(
ys(1)ω3

s−2 +
b14

h2b11
ys(1)ωs−2 + O

(
ρ−1

))
, s = 3, 4,

=


ρ2

[
b14

h2b11
xz(1)h′s(1)

]
1
, s = 1, 2,

ρ3eρωs−2

[
ys(1)ω3

s−2 +
b14

h2b11
ys(1)ωs−2

]
1
, s = 3, 4.

(48)

Proof. The proof is just a direct substitution of the fundamental solutions (40) and (41) into the boundary
conditions.

Note that µ = iρ for any ρ ∈ S0, is the eigenvalue in (36) if and only if ρ satisfies the characteristic equation

∆(ρ) =

∣∣∣∣∣∣∣∣∣∣
U4(y1, ρ) U4(y2, ρ) U4(y3, ρ) U4(y4, ρ)
U3(y1, ρ) U3(y2, ρ) U3(y3, ρ) U3(y4, ρ)
U2y1, ρ) U2(y2, ρ) U2(y3, ρ) U2(y4, ρ)
U1(y1, ρ) U1(y2, ρ) U1(y3, ρ) U1(y4, ρ)

∣∣∣∣∣∣∣∣∣∣ = 0. (49)

We have the following asymptotic expansion of the characteristic equation ∆(ρ).

Theorem 3.5. In sector S0, the characteristic determinant ∆(ρ) of the eigenvalue problem (36) has an asymptotic
expansion

∆(ρ) = −iρ5xz(1)D
{
eiρeD1−D2 + e−iρeD1+D2 + O

(
ρ−1

)}
, (50)

where D is defined in (24) and D1, D2 are defined in (44). The asymptotic expansion (50) also holds in the other
sectors as well. Furthermore, the boundary problem (36) is strongly regular in the sense of [13, Definition 2.7]. Then,
the zeros of ∆(ρ) are simple when their modulus are sufficiently large.

Proof. In sector S0, using the fact that in (48),

b14

b11
=

Iρ(1)zx(1)

z3
x(1)EI(1)

= h2,

and substituting (45)-(48) into the characteristic determinant ∆(ρ), we have

∆(ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[h1(0)]1[
xz(0)h′1(0)

]
1[

x′′z (1)h′1(1) + x′2z (1)h′′1 (1) +
b22

b21
x′z(1)h′1(1)

]
1

ρ2
[
xz(1)h′1(1)

]
1
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[h2(0)]1[
xz(0)h′2(0)

]
1[

x′′z (1)h′2(1) + x′2z (1)h′′2 (1) +
b22

b21
x′z(1)h′2(1)

]
1

ρ2
[
xz(1)h′2(1)

]
1

[1]1 [1]1

iρ[1]1 −iρ[1]1

−ρ2eiρeD1−D2 [1]1 −ρ2e−iρeD1+D2 [1]1

ρ3eiρeD1−D2 [0]1 ρ3e−iρeD1+D2 [0]1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Developing the above determinant, we obtain (50). The strong regularity defined in [13, Definition 2.7]
together with the simplicity of the zeros with large enough modulus can be verified directly from the fact
that eD1−D2 , eD1+D2 , xz(1) > 0 and (24).

Theorem 3.6. There exists an integer N > 0 such that the eigenvalues λk of problem (23) are simple and possess the
following asymptotic expressions:

λk =
1
h

(
−

1
2h

∫ 1

0
c0(t)dt + i

(
π
2
+ kπ

))
+ O

(
k−1

)
, k > N, k ∈ Z, (51)

where N is a sufficiently large positive integer, h =
∫ 1

0

(
Iρ(ξ)
EI(ξ)

)1
2 dξ defined in (26) and c0(z) =

a(x)
z2

xEI(x)
defined in

(32). Thus,

Reλk → −
1

2h2

∫ 1

0
c0(t)dt = −

1
2

∫ 1

0

a(x)
Iρ(x)

dx as k→∞. (52)

Proof. In sector S0, we see from (24) and (50) that equation (49) becomes

eiρeD1−D2 + e−iρeD1+D2 + O
(
ρ−1

)
= 0 (53)

If we consider the equation

eiρeD1−D2 + e−iρeD1+D2 = 0

equivalently
e2iρ−2D2 = −1,

with solutions

µ̃k = iρk = D2 + i
(
π
2
+ kπ

)
, k = 1, 2, . . . , (54)

where D2 is defined in (44). Using (54) and the Rouché’s theorem, the solutions of (53) will satisfy

µk = D2 + i
(
π
2
+ kπ

)
+ O

(
k−1

)
, k > N, k ∈N, (55)
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where N is a sufficiently large positive integer. Note that the eigenvalues of A + B are distributed
symmetrically with respect to the real axis. So the dual eigenvalues are

µk = D2 − i
(
π
2
+ kπ

)
+ O

(
k−1

)
, k > N, k ∈N. (56)

Hence, we can conclude from (55), (56) and µ = hλ that

λk =
1
h
µk =

1
h

(
D2 + i

(
π
2
+ kπ

))
+ O

(
k−1

)
, k > N, k ∈ Z

Also, for large enough k, λk is simple because problem (36) is strongly regular [9, pp. 64 − 74].

Remark 3.7. The same remark of [17] , we explain the interplay between the strong regularity and the simplicity of
the eigenvalues for problem (36) (or (27)). From the characteristic equation (36) (or (27)) and the structure of the
corresponding Green’s function for the inverse of the associated ordinary differential operator [9, pp. 34 − 37], the
multiplicity of each λ ∈ σ(A ) with large enough modulus, as a pole of the resolvent operator R(λ,A ), is less than

or equal to the order of λ as a zero for the entire function ∆(ρ) with λ =
iρ
h

. On the other hand, since problem (36)
is strongly regular, it is easy to verify that λ is geometrically simple when modulus of λ is large and the zeros of
∆(ρ) = 0 are simple when their modulus are large. So eigenvalues of problem (36) with sufficiently large modulus are
algebraically simple because: ma ≤ p.m1 [8, pp. 148], where p denotes the order of the pole of the resolvent operator
and ma,m1 denote the algebraic and geometric multiplicities, respectively.

All the above discussions can be summarized into the following result on the spectrum of A +B.

Theorem 3.8. Let A +B be defined as in (11), (12) and (13). Then each λ ∈ σ(A +B) is simple when |λ| is large
enough, and has an asymptotic expression given by (51).

4. Exponential stability of the system

In this section, we investigate the Riesz basis property and the stability of system (14). We will first
establish the completeness of the generalized eigenfunctions of A +B. For this, we need the following
Theorem [4, pp. 170].

Theorem 4.1. Let K be a compact self-adjoint operator in a Hilbert space H with ker K = {0} and eigenvalues
λ j(K), j = 1, 2, . . . ,∞. Assume that

∞∑
j=1

|λ j(K)|r < ∞,

for some r ≥ 1, and let S be a compact operator such that I + S is invertible. Then the system of generalized
eigenfunctions of the operator A := K(I + S) is complete in H.

Theorem 4.2. Let A +B be defined as in (11),(12) and (13). Then the system of the generalized eigenfunctions of
A +B are complete in Hilbert spaceH .

Proof. Lemma 2.1 ensures that (iA )−1 is a compact self-adjoint operator with ker(iA )−1 = {0}. By Theorem
3.6 (when c0(t) ≡ 0), it is easy to see that {λk((iA )−1)}∞k=1 ∈ l2. We have

(i(A +B))−1 = (iA )−1(I +BA −1)−1

= (iA )−1(I −BA −1(I +BA −1)−1).

Since BA −1(I+BA −1)−1 is compact and I−BA −1(I+BA −1)−1 is invertible. So by Theorem 4.1, the proof
is complete.
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To show the basis property of generalized eigenvectors of A +B, we need the following theorem (see [16]).

Theorem 4.3. Let X be a separable Hilbert space, and A the generator of a C0-semigroup T(t) on X. Suppose that
the following conditions hold:

(1) We can decompose σ(A) = σ1(A) ∪ σ2(A) and σ2(A) = {λk}
∞

k=1 consists of only isolated eigenvalues of finite
algebraic multiplicity.

(2) For ma(λk) := dim E(λk,A)X, where E(λk,A) denotes the Riesz-projection associated with λk, we have
sup
k≥1

ma(λk) < ∞.

(3) There is a constant α such that

sup {Reλ|λ ∈ σ1(A)} ≤ α ≤ inf {Reλ|λ ∈ σ2(A)}

and
inf
n,m
|λn − λm| > 0.

Then the following assertions are true:

(i) There exist two T(t)-invariant closed subspaces X1 and X2 such that σ
(
A|X1

)
= σ1(A), σ

(
A|X2

)
= σ2(A) and

{E (λk,A) X2}
∞

k=1 forms a Riesz basis of subspaces for X2. Furthermore,

X = X1 ⊕ X2.

(ii) If sup
k≥1
∥E (λk,A)∥ < ∞, then D(A) ⊂ X1 ⊕ X2 ⊂ X.

(iii) X has the topological direct sum decomposition X = X1 ⊕ X2 if and only if

sup
n≥1

∥∥∥∥∥∥∥
n∑

k=1

E (λk,A)

∥∥∥∥∥∥∥ < ∞.
Combining Theorems 3.6, 3.8, 4.2 and 4.1, we have the following result.

Theorem 4.4. System (14) is a Riesz spectral system (in the sense that its generalized eigenfunctions form a Riesz
basis inH). Thus, the spectrum determined growth condition holds, i.e.

ω(A +B) = s(A +B),

with s(A +B) := sup {Reλ|λ ∈ σ(A +B)} being the spectral bound of A +B and ω(A +B) being the growth
bound of the semigroup e(A +B)t.

Proof. Let σ2(A +B) = σ(A +B) and σ1(A +B) = {−∞}. From Theorem 3.6 and 3.8, all hypotheses in
Theorem 4.3 are true. So Theorem 4.2 implies that X1 = {0}. Therefore, the first assertion of Theorem 4.3 says
that there is a sequence of generalized eigenvectors of A +B that forms a Riesz basis inH . Accordingly, the
spectrum determined growth condition can be obtained by a direct consequence of the Riesz basis property
and the simplicity of the high eigenfrequencies of A +B.

Finally, we state the following two results describe how stability depends upon the sign of damping
function.

Theorem 4.5. Suppose that conditions (2) hold, a(x) is continuously differentiable on [0, 1] and α, β ≥ 0. If a(x) ≥ 0,
then, (14) is exponentially stable.
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Proof. We have

Re ⟨(A +B) (u, v), (u, v)⟩H = −
∫ 1

0
a(x)

∣∣∣∣∣dv
dx

(x)
∣∣∣∣∣2 dx − β |v(1)|2 ≤ 0, ∀ (u, v) ∈ D(A ),

then A + B is dissipative in H and it is easy to see that 0 ∈ ρ (A +B). Hence, A + B generates a
C0-semigroup of contractions on H . We show now ℜeλ < 0 for all λ ∈ σ (A +B). Multiplying the first
equation of system (23) by u, the conjugate of u, and integrating on [0, 1], we obtain

λ2
∫ 1

0

(
ρ(x) |u(x)|2 + Iρ(x)

∣∣∣∣∣du
dx

(x)
∣∣∣∣∣2) dx+α |u(1)|2+λβ |u(1)|2+

∫ 1

0
EI(x)

∣∣∣∣∣∣d2u
dx2 (x)

∣∣∣∣∣∣2 dx+λ
∫ 1

0
a(x)

∣∣∣∣∣du
dx

(x)
∣∣∣∣∣2 dx = 0.

(57)

Let λ = Reλ + iImλ, where Reλ, Imλ are real. Then(
(Reλ)2

− (Imλ)2
) ∫ 1

0

(
ρ(x) |u(x)|2 + Iρ(x)

∣∣∣∣∣du
dx

(x)
∣∣∣∣∣2) dx + α |u(1)|2 + (Reλ) β |u(1)|2

+

∫ 1

0
EI(x)

∣∣∣∣∣∣d2u
dx2 (x)

∣∣∣∣∣∣2 dx + (Reλ)
∫ 1

0
a(x)

∣∣∣∣∣du
dx

(x)
∣∣∣∣∣2 dx = 0, (58)

and

2 (Reλ) (Imλ)
∫ 1

0

(
ρ(x) |u(x)|2 + Iρ(x)

∣∣∣∣∣du
dx

(x)
∣∣∣∣∣2) dx + (Imλ)

∫ 1

0
a(x)

∣∣∣∣∣du
dx

(x)
∣∣∣∣∣2 dx + (Imλ) β |u(1)|2 = 0. (59)

If Imλ = 0, then by (58), we have

(Reλ)2
∫ 1

0

(
ρ(x) |u(x)|2 + Iρ(x)

∣∣∣∣∣du
dx

(x)
∣∣∣∣∣2) dx + α |u(1)|2 + (Reλ) β |u(1)|2

+

∫ 1

0
EI(x)

∣∣∣∣∣∣d2u
dx2 (x)

∣∣∣∣∣∣2 dx + (Reλ)
∫ 1

0
a(x)

∣∣∣∣∣du
dx

(x)
∣∣∣∣∣2 dx = 0, (60)

thus Reλ < 0 because a(x) ≥ 0.
If Imλ , 0, then by (59), we have

(Imλ)
[
2 (Reλ)

∫ 1

0

(
ρ(x) |u(x)|2 + Iρ(x)

∣∣∣∣∣du
dx

(x)
∣∣∣∣∣2) dx +

∫ 1

0
a(x)

∣∣∣∣∣du
dx

(x)
∣∣∣∣∣2 dx + β |u(1)|2

]
= 0. (61)

Hence

Reλ = −
1
2

∫ 1

0
a(x)

∣∣∣∣∣du
dx

(x)
∣∣∣∣∣2 dx + β |u(1)|2∫ 1

0

(
ρ(x) |u(x)|2 + Iρ(x)

∣∣∣∣∣du
dx

(x)
∣∣∣∣∣2) dx

< 0, (62)

thus Reλ < 0 because a(x) ≥ 0. Moreover, Theorem 3.6 ensure that the imaginary axis is not an asymptote
of σ (A +B). Therefore, from Theorem 4.4, we get

ω (A +B) = sup {Reλ|λ ∈ σ(A +B)} < 0

and the proof is completed.
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Now, we are ready to consider the case that a(x) can change its sign on [0, 1]. We note

a+(x) = max{a(x), 0} and a−(x) = max{−a(x), 0}, for x ∈ [0, 1], (63)

and B± be the corresponding damping operators with respect to a±(x), respectively.

Theorem 4.6. Suppose that conditions (2) and (3) hold, a(x) is indefinite and continuously differentiable on [0, 1]
and α, β ≥ 0. If

max

 sup
x∈[0,1]

{
a−(x)
Iρ(x)

}
, β

 sup
x∈[0,1]

 1√
Iρ(x)




2 < ∣∣∣s (A +B+)
∣∣∣ , (64)

where s (A +B+) = sup {Reλ|λ ∈ σ (A +B+)}, then, system (14) is exponentially stable.

Proof. Assume that a(x) is indefinite on [0, 1]. Then, it is easy to see that a+(x) satisfies the assumptions of
Theorem 4.5. Thus, we can decompose A +B into

A +B = A +B+ −B−.

Let (u, v) ∈ H , we have∥∥∥B−(u, v)
∥∥∥2

H

=
∥∥∥C−1 (

B−v + βDv
)∥∥∥2

V

=
〈
C−1 (

B−v + βDv
)
,C−1 (

B−v + βDv
)〉

V

=
〈
B−v + βDv,C−1 (

B−v + βDv
)〉

=

∫ 1

0
a−(x)

dv
dx

(x)
d

dx
C−1 (

B−v + βDv
)

(x)dx + βv(1)C−1 (
B−v + βDv

)
(1)

≤ max

 sup
x∈[0,1]

{
a−(x)
Iρ(x)

}
, β

 sup
x∈[0,1]

 1√
Iρ(x)




2 ∥v∥V ∥∥∥C−1 (
B−v + βDv

)∥∥∥
V

≤ max

 sup
x∈[0,1]

{
a−(x)
Iρ(x)

}
, β

 sup
x∈[0,1]

 1√
Iρ(x)




2 ∥(u, v)∥H
∥∥∥C−1 (

B−v + βDv
)∥∥∥

V ,

where B− is the linear operator corresponding to a−(x) defined in (7). Then

∥∥∥B−∥∥∥ ≤ max

 sup
x∈[0,1]

{
a−(x)
Iρ(x)

}
, β

 sup
x∈[0,1]

 1√
Iρ(x)




2 . (65)

Applying the perturbation theory of contractive semigroups (see [10]), we have λ ∈ ρ (A +B) whenever

Reλ > s (A +B+) +
∥∥∥B−∥∥∥ .

Then
s (A +B) ≤ s (A +B+) +

∥∥∥B−∥∥∥ .
So from Theorem 4.4 and (64)-(65), we get

ω (A +B) = s (A +B) < 0.

Thus system (14) is exponentially stable.
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