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Geometry of orthogonality using a new angular distance function in
normed spaces
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Abstract. This work introduces an angular function orthogonality based on the angular distance function
in normed spaces. We examine the geometrical features of the aforementioned orthogonality by discussing
its homogeneity, alpha-existence, and the conditions under which it may exhibit symmetry. Motivated by
the stated orthogonality, we introduce a well-defined angle using the angular distance function and discuss
its geometrical properties by defining acute, obtuse, and right angles in normed spaces. Some non-trivial
examples are also provided to support the results. Furthermore, we discuss the relationship of the angle
with the Euclidean, isosceles, and Thy angles.

1. Introduction and Preliminaries

The geometry of normed spaces helps in characterizing feasible regions, defining convex sets, and
understanding optimality conditions. It can also be used to determine how far apart or similar two data
points are. Normed space metrics are useful for regression, grouping, and classification. Within the realm
of graphics, normed spaces assist in the processes of transformation, rendering, and modeling geometric
shapes. For realistic depiction, it is essential to have a solid understanding of the distances and angles
present in these regions. There is a particular kind of normed space known as Hilbert space, and it is used
in quantum mechanics to represent the states of a system. It is essential to have a solid understanding of
the geometry of these spaces to comprehend quantum states and processes.

The influence of orthogonality and angular relations on normed vector spaces has been observed from
Euclidean geometry to contemporary functional analysis. Alternative definitions of angle functions and
angular measurements can be explored utilizing a basis in these spaces. This technique is especially fasci-
nating in actual Banach spaces, where geometric characteristics are crucial. Orthogonality is a fundamental
concept that enables the examination of these geometric relationships and denotes perpendicularity. By
investigating these diverse definitions, we can better understand the structural intricacies of normed vector
spaces.

Roberts [11] developed the concept of orthogonality relation in a normed space. In 1935, Birkhoff
proposed Birkhoff orthogonality, which is considered one of the fundamental types of orthogonality in a
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normed space [4]. James provided an extensive analysis of the characteristics of Birkhoff orthogonality [9].
Due to this, Birkhoff orthogonality is commonly known as Birkhoff-James orthogonality. Subsequently,
James [8] presented the concept of isosceles orthogonality. In addition, James [8] proposed the concept of
Pythagorean orthogonality in normed space. This concept extends the idea in Euclidean space that two
vectors are perpendicular if and only if a right triangle exists with the two vectors as its sides. Singer [13]
introduced the Singer orthogonality that is closely associated with isosceles orthogonality. Later, Dadipour
et al. [5] introduced a new orthogonality based on an angular distance inequality and discussed some
properties of this orthogonality in the setting of normed spaces.

In a real inner product space X, the orthogonality relation has the following well-known properties for
any ϖ1, ϖ2 ∈ X,

1. Homogeneity: If ϖ1 ⊥ ϖ2, then µϖ1 ⊥ λϖ2 for any λ, µ in R.

2. Symmetry: If ϖ1 ⊥ ϖ2, then ϖ2 ⊥ ϖ1.

3. α-existence: there exists α ∈ R such that ϖ1 ⊥ αϖ1 + ϖ2.

However, these well-known properties of orthogonality in inner product space, such as symmetry, ho-
mogeneity, and α-existence, need not hold for other well-known orthogonalities in normed spaces. For
instance, Birkhoff–James orthogonality is homogeneous but fails to be symmetric, whereas both isosceles
and Pythagorean orthogonality are symmetric but lack homogeneity. These discrepancies highlight the fact
that generalized orthogonalities can demonstrate fundamentally divergent behaviors. Also, the isosceles
and Singer orthogonalities are symmetric and satisfy the α-existence property (see [1]). The Singer orthog-
onality also has the α-uniqueness feature [15], but the isosceles orthogonality doesn’t usually have this
property. A classification of several types of orthogonality in normed linear spaces, together with their
fundamental features and interrelations, is available in the study [2, 14].

Gunawan et al. [6] introduced two angle functions, namely P-angle and I-angle, as a result of the
Pythagorean and isosceles orthogonalities concepts. The P-angle preserves Pythagorean orthogonality,
while the I-angle preserves isosceles orthogonality. The Cosine Law and Polarization Identity show that
the definitions of P-angle and I-angle correspond to the standard angles in inner product space. In a
normed space, both the P-angle and the I-angle have identical properties: partial homogeneity, continuity,
and symmetry. However, inner product spaces lack numerous parallelism and homogeneity qualities in
comparison to the standard angle. Subsequently, Thürey [12] proposed the notion of the Thy-angle, which
preserves Singer orthogonality. The Thy-angle possesses the properties of continuity, symmetry, homo-
geneity, and non-degeneracy. Thy-angle clearly coincides with the standard angle function in Euclidean
space. Thy-angle obviously corresponds to the standard angle function in Euclidean space. Many writers
have examined the concept of angles in normed spaces (see [3] and [10]).

So motivated by the geometry of angles in normed linear spaces, the main aim of this paper is to introduce
a new angular function orthogonality and to address the following crucial question for its existence:

• Does there exist a non-zero vector that is an angular function orthogonal to some given non-zero
vectors?

The article’s structure is as follows: After the introductory Section 1, we move on to Section 2, where
we present some fundamental definitions, notations, and results pertaining to the orthogonality problem.
Section 3 defines a well-defined notion of orthogonality termed angular function orthogonality using the
concept of the angular distance function. Additionally, we give some examples to discuss the existence of a
non-zero vector that is an angular function orthogonal to a given vector. To explore the geometrical prop-
erties of the aforementioned orthogonality, we discuss its homogeneity, alpha-existence, and the conditions
for which it is symmetric. In addition, we show that the orthogonality of the angular distance is equivalent
to the standard concept of orthogonality for inner product spaces. Inspired by the aforementioned orthog-
onality, we establish a well-defined angle through the angular distance function and examine its geometric
features by defining acute, obtuse, and right angles in normed spaces. Several significant examples are
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also presented to substantiate the findings. Additionally, we examine the relationship of the angle with the
Euclidean angle, the isosceles angle, and the Thy angle.

The following are some notations and definitions that will be utilized in the subsequent sections.

Definition 1.1. The vectors ϖ1, ϖ2 in a normed space X are Singer-type orthogonal [7] (ϖ1 ⊥s′ ϖ2) if∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
+

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥ = ∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
−

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥ .
Definition 1.2. Let X be an inner product space. The number

∠Euclid(ϖ1, ϖ2) = arccos
⟨ϖ1, ϖ2⟩

∥ϖ1∥∥ϖ2∥

is called the Euclidean-angle between two non-zero vectors ϖ1 and ϖ2.

Definition 1.3. The angle between two non-zero vectors ϖ1, ϖ2 in a normed space X is called

• I-angle [6], if ∠I(ϖ1, ϖ2) = arccos ∥ϖ1+ϖ2∥
2
−∥ϖ1−ϖ2∥

2

4∥ϖ1∥∥ϖ2∥
.

• P-angle [6], if ∠P(ϖ1, ϖ2) = arccos
(
∥ϖ1∥

2+∥ϖ2∥
2
−∥ϖ1−ϖ2∥

2

2∥ϖ1∥∥ϖ2∥

)
.

• Thy-angle [12], if

∠Thy(ϖ1, ϖ2) = arccos
(

1
4

(∥∥∥∥∥ ϖ1

∥ϖ1∥
+
ϖ2

∥ϖ2∥

∥∥∥∥∥2

−

∥∥∥∥∥ ϖ1

∥ϖ1∥
−
ϖ2

∥ϖ2∥

∥∥∥∥∥2))
.

2. Main Results

2.1. Orthogonality and angular distance
We introduce a new orthogonality in a normed space using the angular distance function and the

Singer-type orthogonality as inspiration in this section.
First, we define an angular distance function ϕ : X × X→ R as

ϕ(ϖ1, ϖ2) =
(1 + ∥ϖ1∥)(1 + ∥ϖ2∥)

∥ϖ1∥∥ϖ2∥

∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
−

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2

for two non-zero vectors ϖ1, ϖ2 ∈ X.
Assume that Φ is the collection of all angular distance functions.

Using the above angular distance function and Singer-type orthogonality, we introduce an orthogonality
between two vectors in a normed space.

Definition 2.1. Let X be a normed space. ϖ1 is angular function orthogonal to ϖ2 (ϖ1 ⊥∗ ϖ2) if either of the
following hold for all ϖ1, ϖ2 ∈ X:

(a) ∥ϖ1∥ ∥ϖ2∥ = 0;
or

(b) for all non-zero vectors ϖ1, ϖ2:

(i) {ϖ1, ϖ2} is linearly independent (L.I.),

(ii) |Υ(t)| ≥ |Υ(0)|, where

Υ(t) = Υ(ϖ1, ϖ2; t) := ϕ(ϖ1 + tϖ2,−ϖ2) − ϕ(ϖ1 + tϖ2, ϖ2),

for all t ∈ R and ϕ ∈ Φ.
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It is interesting to note that Υ(ϖ1,−ϖ2;−t) = −Υ(ϖ1, ϖ2; t).

In the following result, we show that Υ(t) is well-defined.

Proposition 2.2. The function

Υ(t) := ϕ(ϖ1 + tϖ2,−ϖ2) − ϕ(ϖ1 + tϖ2, ϖ2), (1)

is well-defined if ϕ ∈ Φ, the non-zero vectors ϖ1 and ϖ2 are linearly independent in a normed space X, and t ∈ R.

Proof. Clearly if {ϖ1, ϖ2} is a linearly independent set, then ϖ1 + tϖ2 , 0 for all t ∈ R and so ϕ(ϖ1 + tϖ2, ϖ2)
and ϕ(ϖ1 + tϖ2,−ϖ2) are well defined. Therefore, the function Υ(t) is well-defined where ϖ1 and ϖ2 are
linearly independent.

Now, we are presenting some examples of non-zero independent vectors, which are angular functional
orthogonal.

Example 2.3. Consider a two-dimensional real sequence space X = ℓ1 equipped with the Holder weights ∥.∥, defined
as ∥ϖ1 = (p, q)∥ = |p| + |q|. Consider the vectors ϖ1 = (2, 3) and ϖ2 = (−1, 1) in X. Then, ∥ϖ1∥ = 5 and ∥ϖ2∥ = 2.
Here ϖ1 and ϖ2 are L.I. with ∥ϖ1∥ ∥ϖ2∥ , 0. Now, consider

Υ(0)
= ϕ(ϖ1,−ϖ2) − ϕ(ϖ1, ϖ2)

=
(1 + ∥ϖ1∥)(1 + ∥ϖ2∥)

∥ϖ1∥∥ϖ2∥

[∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
+

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2

−

∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
−

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2]
=

6 × 3
5 × 2

[(5
6

)2

−

(5
6

)2]
= 0.

So, |Υ(t)| ≥ |Υ(0)| holds clearly for all t ∈ R. Hence ϖ1 ⊥∗ ϖ2.

Example 2.4. Consider a two-dimensional real sequence space X = ℓ∞ equipped with a norm ∥ϖ1 = (p, q)∥ =
max{|p|, |q|}. Consider the vectors ϖ1 = (2,−1) and ϖ2 = (1, 2) in X. Then, ∥ϖ1∥ = 2 and ∥ϖ2∥ = 2. Here ϖ1 and ϖ2
are L.I. with ∥ϖ1∥∥ϖ2∥ , 0. Now, consider

Υ(0)
= ϕ(ϖ1,−ϖ2) − ϕ(ϖ1, ϖ2)

=
(1 + ∥ϖ1∥)(1 + ∥ϖ2∥)

∥ϖ1∥∥ϖ2∥

[∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
+

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2

−

∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
−

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2]
=

3 × 3
2 × 2

[(3
3

)2

−

(3
3

)2]
= 0.

So, |Υ(t)| ≥ |Υ(0)| holds clearly for all t ∈ R. Hence ϖ1 ⊥∗ ϖ2.

Remark 2.5. (a) The two independent non-zero vectors ϖ1 and ϖ2 are orthogonal if and only if |Υ(ϖ1, ϖ2; t)| ≥
|Υ(ϖ1, ϖ2; 0)|, for all t ∈ R.

(b) It is clear that the above notion of orthogonality is not symmetry, in general.

Now, we give an example to show that the angular function orthogonality is not homogeneous.
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Example 2.6. Consider a two-dimensional real sequence space X = ℓ1,∞ equipped with a norm

∥ϖ1 = (p, q)∥ =

|p| + |q|, if pq ≥ 0
max{|p|, |q|}, if pq ≤ 0.

Consider the vectors ϖ1 = ( 1
5 , 0) and ϖ2 = (4,−5) in X. Then, ∥ϖ1∥ =

1
5 and ∥ϖ2∥ = 5. Here ϖ1 and ϖ2 are L.I. with

∥ϖ1∥ ∥ϖ2∥ , 0. Here it is easy to see that Υ(0) = 0. So, |Υ(t)| ≥ |Υ(0)| holds clearly for all t ∈ R. Hence ϖ1 ⊥∗ ϖ2.
Now, 5ϖ1 = (1, 0) and it is easy to see that |Υ(5ϖ1, ϖ2; 0)| = 24

15 = 1.6. Choosing t = − 1
10 , we have 5ϖ1 + tϖ2 =

5ϖ1 −
1
10ϖ2 = (1, 0) − 1

10 (4,−5) = ( 3
5 ,

1
2 ). So, 1 + ∥5ϖ1 + tϖ2∥ =

21
10 . Now, we have

Υ(5ϖ1, ϖ2; t = −
1

10
) = ϕ(5ϖ1 + tϖ2,−ϖ2) − ϕ(5ϖ1 + tϖ2, ϖ2)

=
21 × 6
11 × 5

[(20
21

)2

−

(15
14

)2]
≈ −0.55.

Therefore, |Υ(5ϖ1, ϖ2; t = − 1
10 )| =

∣∣∣∣∣ 21×6
11×5

[(
20
21

)2
−

(
15
14

)2
]∣∣∣∣∣ ≈ 0.55. So, 5ϖ1 ̸⊥∗ ϖ2.

Hence ϖ1 ⊥∗ ϖ2 but 5ϖ1 ̸⊥∗ ϖ2. It implies that the angular function orthogonality is not homogeneous.

Now, in an inner product space to show that the angular function orthogonality is equivalent to the
standard orthogonality, we need the following result:

Lemma 2.7. For an inner product space X, Υ(t) = ⟨ϖ1+tϖ2,ϖ2⟩

∥ϖ1+tϖ2∥∥ϖ2∥
for all linearly independent vectors ϖ1, ϖ2 ∈ X.

Proof. For all linearly independent vectors ϖ1, ϖ2 ∈ X we have,

Υ(t) = ϕ(ϖ1 + tϖ2,−ϖ2) − ϕ(ϖ1 + tϖ2, ϖ2)

=
(1 + ∥ϖ1 + tϖ2∥)(1 + ∥ϖ2∥)

∥ϖ1 + tϖ2∥∥ϖ2∥

[ ∥∥∥∥∥ (ϖ1 + tϖ2)
1 + ∥ϖ1 + tϖ2∥

+
ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2

−

∥∥∥∥∥ (ϖ1 + tϖ2)
1 + ∥ϖ1 + tϖ2∥

−
ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2 ]
=

(1 + ∥ϖ1 + tϖ2∥)(1 + ∥ϖ2∥)
∥ϖ1 + tϖ2∥∥ϖ2∥

× 4
〈
ϖ1 + tϖ2

1 + ∥ϖ1 + tϖ2∥
,
ϖ2

1 + ∥ϖ2∥

〉
=

(1 + ∥ϖ1 + tϖ2∥)(1 + ∥ϖ2∥)
∥ϖ1 + tϖ2∥∥ϖ2∥

×
4⟨ϖ1 + tϖ2, ϖ2⟩

(1 + ∥ϖ1 + tϖ2∥)(1 + ∥ϖ2∥)

=
4⟨ϖ1 + tϖ2, ϖ2⟩

∥ϖ1 + tϖ2∥ ∥ϖ2∥
.

Hence the result.

Theorem 2.8. Let ϖ1 and ϖ2 be two vectors in an inner product space X. Then ϖ1 ⊥∗ ϖ2 if and only if ⟨ϖ1, ϖ2⟩ = 0.

Proof. Let ϖ1 ⊥∗ ϖ2 holds for ϖ1, ϖ2 ∈ X. So, |Υ(t)| ≥ |Υ(0)| holds. Using the Lemma 2.7, we get

|ϕ2(ϖ1,−ϖ2) − ϕ2(ϖ1, ϖ2)| ≤ |ϕ2(ϖ1 + tϖ2,−ϖ2) − ϕ2(ϖ1 + tϖ2, ϖ2)|

⇐⇒

∣∣∣∣∣4⟨ϖ1, ϖ2⟩

∥ϖ1∥∥ϖ2∥

∣∣∣∣∣ ≤ ∣∣∣∣∣4⟨ϖ1 + tϖ2, ϖ2⟩

∥ϖ1 + tϖ2∥∥ϖ2∥

∣∣∣∣∣
⇐⇒ ∥ϖ1 + tϖ2∥|⟨ϖ1, ϖ2⟩| ≤ ∥ϖ1∥|⟨ϖ1 + tϖ2, ϖ2⟩|. (2)

Putting t = − ⟨ϖ1,ϖ2⟩

∥ϖ2∥
2 in (2), we get ⟨ϖ1, ϖ2⟩ = 0.

Conversely, if ⟨ϖ1, ϖ2⟩ = 0, then (2) holds and so |Υ(t)| ≥ 0 for all t ∈ R and hence ϖ1 ⊥∗ ϖ2.
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Remark 2.9. If the norm comes from an inner product space, then angular function orthogonality is symmetry.

Now, to discuss the α-existence property of the angular function orthogonality, we need the following
results.

Lemma 2.10. Let ϖ1, ϖ2 be two independent vectors in a normed space X. Then, for ϕ ∈ Φ, lim
t→±∞

Υ(t) = ±4, that is,

lim
t→±∞

ϕ(ϖ1 + tϖ2,−ϖ2) − ϕ(ϖ1 + tϖ2, ϖ2) = ±4.

Proof. Consider

lim
t→+∞

ϕ(ϖ1 + tϖ2,−ϖ2)

= lim
t→+∞

(1 + ∥ϖ1 + tϖ2∥)(1 + ∥ϖ2∥)
∥ϖ1 + tϖ2∥∥ϖ2∥

∥∥∥∥∥ ϖ1 + tϖ2

1 + ∥ϖ1 + tϖ2∥
+

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2

=
(∥ϖ2∥)(1 + ∥ϖ2∥)
∥ϖ2∥∥ϖ2∥

∥∥∥∥∥ ϖ2

∥ϖ2∥
+

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2

=
(1 + ∥ϖ2∥)
∥ϖ2∥

×
(1 + 2∥ϖ2∥)2

(1 + ∥ϖ2∥)2

=
(1 + 2∥ϖ2∥)2

∥ϖ2∥(1 + ∥ϖ2∥)
.

Also,

lim
t→+∞

ϕ(ϖ1 + tϖ2, ϖ2)

= lim
t→+∞

(1 + ∥ϖ1 + tϖ2∥)(1 + ∥ϖ2∥)
∥ϖ1 + tϖ2∥∥ϖ2∥

∥∥∥∥∥ ϖ1 + tϖ2

1 + ∥ϖ1 + tϖ2∥
−

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2

=
(∥ϖ2∥)(1 + ∥ϖ2∥)
∥ϖ2∥∥ϖ2∥

∥∥∥∥∥ ϖ2

∥ϖ2∥
−

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2

=
1

∥ϖ2∥(1 + ∥ϖ2∥)
.

Therefore, lim
t→+∞

ϕ(ϖ1 + tϖ2,−ϖ2) − ϕ(ϖ1 + tϖ2, ϖ2) = 4.

On calculating, we obtain

lim
t→−∞

ϕ(ϖ1 + tϖ2,−ϖ2) =
(∥ϖ2∥)(1 + ∥ϖ2∥)
∥ϖ2∥∥ϖ2∥

∥∥∥∥∥− ϖ2

∥ϖ2∥
+

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2

=
1

∥ϖ2∥(1 + ∥ϖ2∥)
.

and

lim
t→−∞

ϕ(ϖ1 + tϖ2, ϖ2) =
(∥ϖ2∥)(1 + ∥ϖ2∥)
∥ϖ2∥∥ϖ2∥

∥∥∥∥∥− ϖ2

∥ϖ2∥
−

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2

=
(1 + 2∥ϖ2∥)2

∥ϖ2∥(1 + ∥ϖ2∥)
.

Therefore,

lim
t→−∞

ϕ(ϖ1 + tϖ2,−ϖ2) − ϕ(ϖ1 + tϖ2, ϖ2) = −4.

Hence the result.
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Lemma 2.11. Suppose that ϖ1, ϖ2 are two independent vectors in a normed space X. Then |Υ(t)| < 16(1+∥ϖ1∥)(1+∥ϖ2∥)
∥ϖ1∥∥ϖ2∥

.

Proof. For two independent vectors ϖ1, ϖ2 ∈ X, we have

|Υ(ϖ1, ϖ2; t)|
= |ϕ(ϖ1 + tϖ2,−ϖ2) − ϕ(ϖ1 + tϖ2, ϖ2)|

=

∣∣∣∣∣∣ (1 + ∥ϖ1∥)(1 + ∥ϖ2∥)
∥ϖ1∥∥ϖ2∥

[∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
+

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2

−

∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
−

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2]∣∣∣∣∣∣
=

(1 + ∥ϖ1∥)(1 + ∥ϖ2∥)
∥ϖ1∥∥ϖ2∥

∣∣∣∣∣∣
[∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
+

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2

−

∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
−

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2]∣∣∣∣∣∣ .
Taking A = ϖ1

1+∥ϖ1∥
with ∥A∥ < 1 and B = ϖ2

1+∥ϖ2∥
with ∥B∥ < 1, we have∣∣∣∣∣∣

[∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
+

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2

−

∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
−

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2]∣∣∣∣∣∣
= |∥A + B∥2 − ∥A − B∥2|

≤ |∥A + B∥ + ∥A − B∥|2

≤ |∥A∥ + ∥B∥ + ∥A∥ + ∥B∥|2

< 16.

Therefore, |Υ(ϖ1, ϖ2; t)| < 16(1+∥ϖ1∥)(1+∥ϖ2∥)
∥ϖ1∥∥ϖ2∥

, for two independent vectors ϖ1, ϖ2 ∈ X.

In the following result, we show the α-existence property for the angular function orthogonality.

Theorem 2.12. The angular function orthogonality has an α-existence property.

Proof. Let ϖ1, ϖ2 be two independent vectors in a normed space X. We’ll show that there exists t0 ∈ R such
that ϖ1 + t0ϖ2 ⊥∗ ϖ2. Since Υ(ϖ1, ϖ2; t) ≥ Υ(ϖ1, ϖ2; 0), it is sufficient to prove that there exists t0 ∈ R such
that the function Υ(ϖ1 + t0ϖ2, ϖ2; t) takes a minimum at t0. Also, we know that

Υ(ϖ1 + t0ϖ2, ϖ2; t) ≥Υ(ϖ1 + t0ϖ2, ϖ2; 0) if and only if Υ(ϖ1, ϖ2; t + t0) ≥ Υ(ϖ1, ϖ2; t0). (3)

Also, lim
t→±∞

Υ(ϖ1, ϖ2; t) = ±4 (by Lemma 2.10) and − 16(1+∥ϖ1∥)(1+∥ϖ2∥)
∥ϖ1∥∥ϖ2∥

< Υ(ϖ1, ϖ2; t) < 16(1+∥ϖ1∥)(1+∥ϖ2∥)
∥ϖ1∥∥ϖ2∥

(by

Lemma 2.11). Thus by using the continuity of Υ, Υ(ϖ1, ϖ2; t) takes a minimum at some t0 ∈ R, that is,
Υ(ϖ1, ϖ2; t) ≥ Υ(ϖ1, ϖ2; t0). Hence, the result follows from (3).

2.2. S∗-type angle
Angles between vectors in normed spaces have been defined in several ways, all of them are equivalent

to the Euclidean angle in inner product spaces. Inspired by this, we provide a new perspective utilizing the
angular distance function and derive several of its geometric features in this subsection. Also, we define
the acute, obtuse, and right angles using it.

Suppose that X is a real inner product space with an inner product ⟨., .⟩, and induced norm ∥.∥. Then for
any ϖ1, ϖ2 ∈ X, we have

∥ϖ1 + ϖ2∥
2
− ∥ϖ1 − ϖ2∥

2 = 4⟨ϖ1, ϖ2⟩. (4)

For any two non-zero vectors ϖ1, ϖ2 ∈ X, replacing ϖ1 with ϖ1
1+∥ϖ1∥

and ϖ2 with ϖ2
1+∥ϖ2∥

in (4), we get∥∥∥∥∥ ϖ1

1 + ϖ1
+

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2

−

∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
−

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2
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= 4
〈
ϖ1

1 + ∥ϖ1∥
,
ϖ2

1 + ∥ϖ2∥

〉
=

4⟨ϖ1, ϖ2⟩

(1 + ∥ϖ1∥)(1 + ∥ϖ2∥)
.

Taking modulus on both sides, we have∣∣∣∣∣∣
∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
+

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2

−

∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
−

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2
∣∣∣∣∣∣

=
4|⟨ϖ1, ϖ2⟩|

(1 + ∥ϖ1∥)(1 + ∥ϖ2∥)

≤
4∥ϖ1∥∥ϖ2∥

(1 + ∥ϖ1∥)(1 + ∥ϖ2∥)
.

Therefore,∣∣∣∣∣∣ (1 + ∥ϖ1∥)(1 + ∥ϖ2∥)
4∥ϖ1∥∥ϖ2∥

[ ∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
+

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2

−

∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
−

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2 ]∣∣∣∣∣∣ ≤ 1. (5)

Inspired by this, we introduce the following notion of angle using the angular distance function in a
real normed space X.

Definition 2.13. Let (X, ∥.∥) be a real normed space. We define S∗-type angle function ∠S∗ : X × X 7→ [0, π] as

∠S∗ (ϖ1, ϖ2) = arccos


0, for ∥ϖ1∥∥ϖ2∥ = 0,
{1,−1}, for ϖ1, ϖ2 are L.D.,
1
4

(
ϕ(ϖ1,−ϖ2) − ϕ(ϖ1, ϖ2)

)
, for ∥ϖ1∥∥ϖ2∥ , 0, and ϖ1, ϖ2 are L.I.

where ϕ ∈ Φ and ϖ1, ϖ2 ∈ X.

Remark 2.14. (i) When ∥ϖ1∥ ∥ϖ2∥ , 0 and ϖ1, ϖ2 are L.I., we can also write ∠S∗ (ϖ1, ϖ2) = 1
4Υ(ϖ1, ϖ2; 0).

(ii) From (5), it is easy to see that in an inner product space, ∠S∗ is less than or equal to unity.

(iii) Suppose that ϖ1, ϖ2 ∈ X are L.I. with ∥ϖ1∥∥ϖ2∥ , 0. If ∠S∗ (ϖ1, ϖ2) = π
2 , then ϖ1 ⊥∗ ϖ2 because |ϕ(ϖ1 +

tϖ2,−ϖ2) − ϕ(ϖ1 + tϖ2, ϖ2)| ≥ |ϕ(ϖ1,−ϖ2) − ϕ(ϖ1, ϖ2)| = 0 that is, |Υ(t)| ≥ |Υ(0)| for all t ∈ R.

We discuss the geometrical properties of the S∗-type angle (∠S∗ ).

Proposition 2.15. The angle function ∠S∗ satisfies the following properties for all non-zero ϖ1, ϖ2 ∈ X:

(i) Parallelism Property: For α ∈ R, we have

∠S∗ (ϖ1, αϖ1) =

0, if α > 0
π, if α < 0.

(ii) Symmetry Property: ∠S∗ (ϖ1, ϖ2) = ∠S∗ (ϖ2, ϖ1),

(iii) Part of Homogeneity Property: For a, b ∈ {−1, 1} we have,

∠S∗ (aϖ1, bϖ2) =

∠S∗ (ϖ1, ϖ2), if ab > 0
π − ∠S∗ (ϖ1, ϖ2), if ab < 0.
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(iv) Continuity Property: If ϖ1n → ϖ1 and ϖ2n → ϖ2 (in norm) then ∠S∗ (ϖ1n, ϖ2n)→ ∠S∗ (ϖ1, ϖ2).

Proof. (i) From the definition of angle, the parallelogram property is obvious.
(ii) When ϖ1 and ϖ2 are L.I., we have

∠S∗ (ϖ2, ϖ1)

= arccos
[1
4

(
ϕ(ϖ2,−ϖ1) − ϕ(ϖ2, ϖ1)

)]
= arccos

(1 + ∥ϖ2∥)(1 + ∥ϖ1∥)
4∥ϖ2∥∥ϖ1∥

[ ∥∥∥∥∥ ϖ2

1 + ∥ϖ2∥
+

ϖ1

1 + ∥ϖ1∥

∥∥∥∥∥2

−

∥∥∥∥∥ ϖ2

1 + ∥ϖ2∥
−

ϖ1

1 + ∥ϖ1∥

∥∥∥∥∥2 ]
= arccos

(1 + ∥ϖ1∥)(1 + ∥ϖ2∥)
4∥ϖ1∥∥ϖ2∥

[ ∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
+

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2

−

∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
−

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2 ]
= ∠S∗ (ϖ1, ϖ2).

(iii) For the homogeneity property, we take only the non-zero L.I. vectors; otherwise, it is obvious.

(a) If a, b ∈ {−1, 1} and ab > 0 then we get two cases.

Case-I: For a = 1 and b = 1, ∠S∗ (aϖ1, bϖ2) = ∠S∗ (ϖ1, ϖ2) is obvious.

Case-II: For a = −1 and b = −1, we get

∠S∗ (aϖ1, bϖ2) = ∠S∗ (−ϖ1,−ϖ2)

= arccos
[1
4

(
ϕ(−ϖ1, ϖ2) − ϕ(−ϖ1,−ϖ2)

)]
= arccos

(1 + ∥ϖ1∥)(1 + ∥ϖ2∥)
4∥ϖ1∥∥ϖ2∥

[∥∥∥∥∥ (−ϖ1)
1 + ∥ − ϖ1∥

−
ϖ2

1 + ∥ − ϖ2∥

∥∥∥∥∥2

−

∥∥∥∥∥ (−ϖ1)
1 + ∥ − ϖ1∥

−
(−ϖ2)

1 + ∥ − ϖ2∥

∥∥∥∥∥2]
= arccos

(1 + ∥ϖ1∥)(1 + ∥ϖ2∥)
4∥ϖ1∥∥ϖ2∥

[ ∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
+

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2

−

∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
−

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2 ]
= ∠S∗ (ϖ1, ϖ2).

(b) If a, b ∈ {−1, 1} and ab < 0 then we get two cases.
Case-I: For a = 1 and b = −1, we get

∠S∗ (aϖ1, bϖ2) = ∠S∗ (ϖ1,−ϖ2)

= arccos
[1
4

(
ϕ(ϖ1, ϖ2) − ϕ(ϖ1,−ϖ2)

)]
= arccos

(1 + ∥ϖ1∥)(1 + ∥ϖ2∥)
4∥ϖ1∥∥ϖ2∥

[∥∥∥∥∥ ϖ1

1 + ∥ϖ2∥
−

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2

−

∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
−

(−ϖ2)
1 + ∥ − ϖ2∥

∥∥∥∥∥2]
= arccos

(1 + ∥ϖ1∥)(1 + ∥ϖ2∥)
4∥ϖ1∥∥ϖ2∥

[ ∥∥∥∥∥− ϖ1

1 + ∥ϖ1∥
−

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2

−

∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
+

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2 ]
= arccos(−1)

(1 + ∥ϖ1∥)(1 + ∥ϖ2∥)
4∥ϖ1∥∥ϖ2∥

[ ∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
+

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2

−

∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
−

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2 ]
= arccos

[
−

1
4

(
ϕ(ϖ1,−ϖ2) − ϕ(ϖ1, ϖ2)

)]
= π − arccos

[1
4

(
ϕ(ϖ1,−ϖ2) − ϕ(ϖ1, ϖ2)

)]
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= π − ∠S∗ (ϖ1, ϖ2).

Case-II: For a = −1 and b = 1, in a similar manner, we have ∠S∗ (aϖ1, bϖ2) = π − ∠S∗ (ϖ1, ϖ2).

(iv) We know that the norm and cosine inverse functions are continuous. This continuity implies that
the angle function ∠S∗ has a continuity property, that is if ϖ1n → ϖ1 and ϖ2n → ϖ2 (in norm) then
∠S∗ (ϖ1n, ϖ2n) = ∠S∗ (ϖ1, ϖ2).

Remark 2.16. Using Proposition 2.15 (iii), it is easy to see that the angle function ∠S∗ satisfies the supplementary
angle property, that is, ∠S∗ (ϖ1, ϖ2) + ∠S∗ (ϖ2,−ϖ1) = π.

In the following example, we show that the angle function ∠S∗ does not satisfy the additivity property
in general, that is, ∠(ϖ1, αϖ1 + βϖ2) + ∠(αϖ1 + βϖ2, ϖ2) , ∠(ϖ1, ϖ2) for every ϖ1, ϖ2 ∈ X\{0} and α, β > 0.

Example 2.17. Consider a two-dimensional real sequence space X = ℓ1 equipped with the Holder weights ∥.∥, where
∥ϖ1 = (p, q)∥ = |p| + |q|. Consider the vectors ϖ1 = (2, 3) and ϖ2 = (−1, 1) in a normed space X. Then, ∥ϖ1∥ = 5 and
∥ϖ2∥ = 2. Here ϖ1 and ϖ2 are L.I. with ∥ϖ1∥∥ϖ2∥ , 0. From the definition of the angle function, we have

∠S∗ (ϖ1, ϖ2) = arccos
[1
4

(
ϕ(ϖ1,−ϖ2) − ϕ(ϖ1, ϖ2)

)]
= arccos(0)

=
π
2
.

Also, we have

∠S∗ (ϖ1, ϖ1 + ϖ2) = ∠S∗ ((2, 3), (1, 4))

= arccos
48
50

=
9π
100
,

and

∠S∗ (ϖ1 + ϖ2, ϖ2) = ∠S∗ ((1, 4), (2, 3))
= arccos 1
= 0.

Therefore ∠S∗ (ϖ1, ϖ1 + ϖ2) + ∠S∗ (ϖ1 + ϖ2, ϖ2) , ∠S∗ (ϖ1, ϖ2).

In the following example, we show that the angle function ∠S∗ does not satisfy the homogeneity property
in general, that is, ∠S∗ (αϖ1, βϖ2) , ∠S∗ (ϖ1, ϖ2) for every linearly independent vector ϖ1, ϖ2 ∈ X\{0}.

Example 2.18. Consider a two-dimensional real sequence space X = ℓ1 equipped with a Holder weight ∥.∥, where
∥(p, q)∥ = |p| + |q|. Consider the vectors ϖ1 = (2, 3) and ϖ2 = (−1, 1) in a normed space X. From Example 2.17, we
have

∠S∗ (ϖ1, ϖ2) = arccos 0.

Choosing α = 2 and β = 3, we have

∠S∗ (2ϖ1, 3ϖ2) = arccos
[1
4

(
ϕ(2ϖ1,−3ϖ2) − ϕ(2ϖ1, 3ϖ2)

)]
= arccos

( 25
308

)
.

Therefore ∠S∗ (2ϖ1, 3ϖ2) , ∠S∗ (ϖ1, ϖ2).
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In the following example, we discuss the geometry of acute, obtuse, and right angles.

Definition 2.19. Letϖ1, ϖ2 be two non-zero independent vectors in a normed space X. The angle between two vectors
ϖ1 and ϖ2 is called an obtuse (respectively, acute) angle if there exists a unique number t0 ∈ (0,∞) (respectively,
t0 ∈ (−∞, 0)) such that

|Υ(t0)| = 0,

where Υ function is same as in Proposition 2.2.
Moreover, the angle between ϖ1 and ϖ2 is right if |Υ(0)| = 0.

Theorem 2.20. Letϖ1, ϖ2 be two non-zero independent vectors in an inner product space X. Then the angle between
ϖ1 and ϖ2 is

(i) acute angle if and only if 0 < arccos ⟨ϖ1,ϖ2⟩

∥ϖ1∥∥ϖ2∥
< π2 ;

(ii) obtuse angle if and only if π2 < arccos ⟨ϖ1,ϖ2⟩

∥ϖ1∥∥ϖ2∥
< π;

(iii) right angle if and only if arccos ⟨ϖ1,ϖ2⟩

∥ϖ1∥∥ϖ2∥
= π2 .

Proof. In an inner product space X, using Lemma 2.7 we have

Υ(t) =
4⟨ϖ1 + tϖ2, ϖ2⟩

∥ϖ1 + tϖ2∥∥ϖ2∥

= 4 ×
⟨ϖ1, ϖ2⟩ + t∥ϖ2∥

2

∥ϖ1 + tϖ2∥∥ϖ2∥
, (6)

where ϖ1 and ϖ2 are non-zero L.I. vector.

(i) Let the angle between ϖ1 and ϖ2 be an acute angle. Then there exists t0 ∈ (−∞, 0) such that |Υ(t0)| = 0.
From (6) we have ⟨ϖ1, ϖ2⟩ > 0 which implies that 0 < arccos ⟨ϖ1,ϖ2⟩

∥ϖ1∥∥ϖ2∥
< π2 .

Conversely, assume that 0 < arccos ⟨ϖ1,ϖ2⟩

∥ϖ1∥∥ϖ2∥
< π

2 that is, ⟨ϖ1, ϖ2⟩ > 0. Using (6), Υ(t) = 0 implies that
t < 0, that is, the angle between ϖ1 and ϖ2 is an acute angle.

(ii) Let the angle between ϖ1 and ϖ2 be obtuse. Then there exists t0 ∈ (0,∞) such that |Υ(t0)| = 0. From
(6), we have ⟨ϖ1, ϖ2⟩ ≤ 0 which implies that π2 < arccos ⟨ϖ1,ϖ2⟩

∥ϖ1∥∥ϖ2∥
< π.

Conversely, assume that π2 < arccos ⟨ϖ1,ϖ2⟩

∥ϖ1∥∥ϖ2∥
< π, that is, ⟨ϖ1, ϖ2⟩ < 0. Using (6), Υ(t) = 0 implies that

t > 0 that is, the angle between ϖ1 and ϖ2 is an obtuse angle.

(iii) Let the angle between ϖ1 and ϖ2 be a right angle. Then there exists t0 = 0 such that |Υ(t0)| = 0. From
(6) we have ⟨ϖ1, ϖ2⟩ = 0.
Conversely, assume that arccos ⟨ϖ1,ϖ2⟩

∥ϖ1∥∥ϖ2∥
= π

2 that is ⟨ϖ1, ϖ2⟩ = 0. Using (6) we have Υ(t) = 0 implies
t = 0. Therefore, the angle between ϖ1 and ϖ2 is a right angle.

In the following example, we discuss the geometry of acute, obtuse, and right angles.

Example 2.21. Consider a two-dimensional real sequence space with a ℓ1 norm.

(a) Taking ϖ1 = (5, 2) and ϖ2 = (3, 2) we have the angle between ϖ1 and ϖ2 is an acute angle. In Figure 1(a), we see
that Υ(t) = 0 when t = −1.4 < 0 for ϖ1 = (5, 2) and ϖ2 = (3, 2). This indicates that the angle between ϖ1 and
ϖ2 is an acute angle, and the value of the angle is approximately 10◦.

(b) Taking ϖ1 = (5,−2) and ϖ2 = (−3, 3) we have the angle between ϖ1 and ϖ2 is obtuse angle. In Figure 1(b), we
see that Υ(t) = 0 when t = 0.5 > 0 for ϖ1 = (5,−2) and ϖ2 = (−3, 3). This indicates that the angle between ϖ1
and ϖ2 is an obtuse angle, and the value of the angle is approximately 162◦.
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(c) Taking ϖ1 = (3, 0) and ϖ2 = (0, 2) we have the angle between ϖ1 and ϖ2 is a right angle. In Figure 1(c), we see
that Υ(t) = 0 when t = 0 for ϖ1 = (3, 0) and ϖ2 = (0, 2). This indicates that the angle between ϖ1 and ϖ2 is a
right angle.

(a) Acute Angle (b) Obtuse Angle

(c) Right Angle

Figure 1: Plot of Υ(t) vs t of Example 2.21 (a), (b), (c)

Now, we discuss the relationship between the angle function ∠S∗ and other renowned angles present in
the literature.

First, we obtain that in an inner product space, the angle function ∠S∗ corresponds to the Euclidean
angle.

Theorem 2.22. Assume that (X, ⟨., .⟩) is an inner product space with ⟨., .⟩ and ∥.∥ is the generated norm. Then
∠S∗ (ϖ1, ϖ2) = ∠Euclid(ϖ1, ϖ2), for all non-zero linearly independent vectors ϖ1, ϖ2 ∈ X.

Proof. For all non-zero linearly independent vectors ϖ1, ϖ2 ∈ X, we have

(1 + ∥ϖ1∥)(1 + ∥ϖ2∥)
4∥ϖ1∥∥ϖ2∥

[ ∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
+

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2

−

∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
−

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2 ]
=

(1 + ∥ϖ1∥)(1 + ∥ϖ2∥)
4∥ϖ1∥∥ϖ2∥

× 4
〈
ϖ1

1 + ∥ϖ1∥
,
ϖ2

1 + ∥ϖ2∥

〉
=

(1 + ∥ϖ1∥)(1 + ∥ϖ2∥)
4∥ϖ1∥∥ϖ2∥

×
4⟨ϖ1, ϖ2⟩

(1 + ∥ϖ1∥)(1 + ∥ϖ2∥)

=
⟨ϖ1, ϖ2⟩

∥ϖ1∥∥ϖ2∥
.

Therefore, ∠S∗ (ϖ1, ϖ2) = ∠Euclid(ϖ1, ϖ2) for all linearly independent vectors ϖ1, ϖ2 , 0.

Now, we discuss the relationship between angle (∠S∗ ), isosceles angle (∠I) and Thy angle (∠Thy).
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It is interesting to note that for the L.I. unit vectors ϖ1, ϖ2 ∈ X, ∠S∗ (ϖ1, ϖ2) = ∠I(ϖ1, ϖ2) = ∠Thy(ϖ1, ϖ2).

Now, we give an example of non-zero linearly independent vectors ϖ1, ϖ2 such that ∠S∗ (ϖ1, ϖ2) ,
∠I(ϖ1, ϖ2) , ∠Thy(ϖ1, ϖ2).

Example 2.23. We consider X = R2 equipped with a max norm. Choose ϖ1 = (1, 2) ∈ X and ϖ2 = (3,−1) ∈ X such
that ∥ϖ1∥ = 2 and ∥ϖ2∥ = 3. Consider

∠S∗ (ϖ1, ϖ2)

= arccos
(1 + ∥ϖ1∥)(1 + ∥ϖ2∥)

4∥ϖ1∥∥ϖ2∥

[ ∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
+

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2

−

∥∥∥∥∥ ϖ1

1 + ∥ϖ1∥
−

ϖ2

1 + ∥ϖ2∥

∥∥∥∥∥2 ]
= arccos

(1 + 2)(1 + 3)
4 × 2 × 3

[∥∥∥∥∥1
3

(1, 2) +
1
4

(3,−1)
∥∥∥∥∥2

−

∥∥∥∥∥1
3

(1, 2) −
1
4

(3,−1)
∥∥∥∥∥2]

= arccos
1
2
×

1
12 × 12

[
∥(13, 5)∥2 − ∥(−5, 11)∥2

]
= arccos

132
− 112

2 × 144

= arccos
(1

6

)
=

4π
9
.

∠I(ϖ1, ϖ2) = arccos
∥ϖ1 + ϖ2∥

2
− ∥ϖ1 − ϖ2∥

2

4∥ϖ1∥∥ϖ2∥

= arccos
∥(1, 2) + (3,−1)∥2 − ∥(1, 2) − (3,−1)∥2

4 × 2 × 3

= arccos
∥(4, 1)∥2 − ∥(−2, 3)∥2

4 × 2 × 3

= arccos
16 − 9

24

= arccos
( 7

24

)
=

73π
180
.

∠Thy(ϖ1, ϖ2) = arccos
1
4

[∥∥∥∥∥ ϖ1

∥ϖ1∥
+
ϖ2

∥ϖ2∥

∥∥∥∥∥2

−

∥∥∥∥∥ ϖ1

∥ϖ1∥
−
ϖ2

∥ϖ2∥

∥∥∥∥∥2]
= arccos

1
4

[∥∥∥∥∥1
2

(1, 2) +
1
3

(3,−1)
∥∥∥∥∥2

−

∥∥∥∥∥1
2

(1, 2) −
1
3

(3,−1)
∥∥∥∥∥2]

= arccos
1

4 × 36

[
∥(9, 4)∥2 − ∥(−3, 8)∥2

]
= arccos

81 − 64
4 × 36

= arccos
( 17

4 × 36

)
=

83π
180
.
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∠P(ϖ1, ϖ2) = arccos
(
∥ϖ1∥

2 + ∥ϖ2∥
2
− ∥ϖ1 − ϖ2∥

2

2∥ϖ1∥∥ϖ2∥

)
= arccos

(
∥(1, 2)∥2 + ∥(3,−1)∥2 − ∥(1, 2) − (3, 1)∥2

2∥(1, 2)∥∥(3,−1)∥

)
= arccos

(4 + 9 − 4
2 × 2 × 3

)
= arccos

(3
4

)
=

41π
180
.

Therefore, ∠S∗ (ϖ1, ϖ2) , ∠I(ϖ1, ϖ2) , ∠Thy(ϖ1, ϖ2) , ∠P(ϖ1, ϖ2) non-zero linearly independent vectors ϖ1, ϖ2.

3. Conclusion

In conclusion, the paper presents a novel concept of angular function orthogonality in normed spaces,
exploring its properties and geometrical implications. It establishes a connection between this new orthog-
onality and standard orthogonality in inner product spaces. We present a well-defined angle using the
angular distance function and analyze its geometric features, classifying angles as acute, obtuse, or right
in normed spaces. We demonstrate our conclusions with several non-trivial cases and describe how this
angle relates to other angles.

We have the following open question from our observation:
“ Is it possible to connect two non-zero angular function orthogonal vectors through a third non-zero vector,
which is an angular function orthogonal to both?”

Acknowledgements. The authors are thankful to the learned referee for the valuable suggestions.
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