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The inhomogeneous Calderón–Zygmund operators on weak local
Hardy spaces associated with ball quasi-Banach function spaces

Xingyu Liua, Jian Tana,∗

aSchool of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, People’s Republic of China

Abstract. Let X be a ball quasi-Banach function space on Rn,WX be the weak ball quasi-Banach function
space on Rn, hX be the local Hardy space associated with X. In this paper, we introduce the weak local
Hardy-type space WhX associated with X via using maximal function characterization. Moreover, we obtain
the boundedness of inhomogeneous Calderón–Zygmund operators from hX to WX or WhX. All these results
have a wide range of generality and, particularly, to our best knowledge, even when they are applied to the
Morrey spaces, Orlicz-slice spaces and mixed-norm Lebesgue spaces, the results in this paper are also new.

1. Introduction

The theory of local Hardy space plays an important role in various fields of analysis and partial differen-
tial equations, see [11, 26]. Moreover, various variants of Hardy spaces onRn and their real-variable theories
have been developed (see, for instance, [1, 22]). Recently, to extend the Banach function space further so that
Morrey spaces, Orlicz-slice spaces and mixed-norm Lebesgue spaces are included in a unified framework,
Sawano et al. [28] introduced the ball quasi-Banach function space X onRn and also investigated the Hardy
space HX via the grand maximal function. Besides, the local Hardy space hX was also introduced in [28],
and the relation between HX and hX was established. For more details on Hardy spaces associated with
ball quasi-Banach function spaces, we refer to [19, 20, 32, 33, 35].

On the other hand, the theory of singular integral operators began in the 1950s when Calderón and
Zygmund studied convolution operators that appeared in elliptic partial differential equations with constant
coefficients. In order to find the biggest function space A such that Calderón–Zygmund operators are
bounded from A to WL1, the weak H1 space theory was first introduced by Fefferman and Soria in [8]. Then
the weak Hp(0 < p < 1) space theory was studied by Liu in [18]. Very recently, Zhang et al. [38] introduce
the weak Hardy-type space and obtain the boundedness of Calderón–Zygmund operators from the Hardy
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space HX to WHX, which includes the critical case. Also see [27] for the case on spaces of homogeneous
type. Meanwhile, Tan [29] proved that the inhomogeneous Calderón–Zygmund operator is bounded on
local variable Hardy spaces hp(·) via establishing the finite atomic decomposition for the local variable Hardy
space. Inspired by these results, we will focus on the boundedness of inhomogeneous Calderón–Zygmund
operators from hX to WX and from hX to WhX, which includes the critical case.

Recall that, the inhomogeneous Calderón–Zygmund operator was considered in [7]. Define D to be
the space of all smooth functions with compact support. The operator T is said to be an inhomogeneous
Calderón–Zygmund operator if T is bounded on L2, and T is a continuous linear operator from D to D′

defined

⟨T( f ), 1⟩ =
∫
K (x, y) f (y)1(x)dxdy

for all f , 1 ∈ Dwith disjoint supports, whereK (x, y), the kernel of T, satisfies the conditions as follows:

|K (x, y)| ≤ C min
{

1
|x − y|n

,
1

|x − y|n+δ

}
, for some δ > 0 and x , y

and for ϵ ∈ (0, 1) ∣∣∣K (x, y) −K
(
x, y′

)∣∣∣ + ∣∣∣K (y, x) −K
(
y′, x

)∣∣∣ ≤ C

∣∣∣y − y′
∣∣∣ϵ

|x − y|n+ϵ

when
∣∣∣y − y′

∣∣∣ ≤ 1
2 |x − y|.

The main purpose of this paper is threefold. The first goal is to introduce the weak local Hardy-type
space WhX via the radial maximal function. The second goal is to obtain the boundedness of inhomogeneous
Calderón–Zygmund operators from hX to WX or WhX. Last but not least, we will apply these results to some
concrete function spaces, such as Morrey spaces, Orlicz-slice spaces and mixed-norm Lebesgue spaces.

Now we state the main results of the paper as follows.

Theorem 1.1. Let 0 < θ < s ≤ 1, q ∈ (1,∞), δ > 0 and ϵ ∈ (0, 1). Assume that X is a ball quasi-Banach function
space satisfying Assumptions 2.12, 2.13 and 2.14. Assume that X1/s is a ball Banach function space. Let T be an
inhomogeneous Calderón–Zygmund operator. If θ ∈ [max

{
n

n+δ ,
n

n+ϵ

}
, 1) and there exists a positive constant C0 such

that for any α ∈ (0,∞) and any sequence
{

f j

}
j∈N
⊂M ,

α

∥∥∥∥∥∥χx∈Rn:

∑ j∈N[M( f j)(x)]
1

max{ n
n+δ ,

n
n+ϵ }


max{ n

n+δ ,
n

n+ϵ }

>α



∥∥∥∥∥∥
X

1
max{ n

n+δ ,
n

n+ϵ }

≤ C0

∥∥∥∥∥∥∥∥∥
∑

j∈N

∣∣∣ f j

∣∣∣ 1
max{ n

n+δ ,
n

n+ϵ }


max{ n

n+δ ,
n

n+ϵ }
∥∥∥∥∥∥∥∥∥

X
1

max{ n
n+δ ,

n
n+ϵ }

, (1)

then T has a unique extension on hX. Moreover, there exists a positive constant C such that for any f ∈ hX,∥∥∥T f
∥∥∥

WX ≤ C∥ f ∥hX .

To state the (hX,WhX)-boundedness of T, we also need to assume one additional condition on T,
∫
Rn T(a)(x)dx =

0 for the local-(X, q, d)-atom a and supp a ⊂ Q with |Q| < 1. For convenience, we write T∗loc(1) = 0, if T satisfies
the above moment condition.

Theorem 1.2. Let 0 < θ < s ≤ 1, q ∈ (1,∞) and ϵ ∈ (0, 1). Assume that X is a ball quasi-Banach function
space satisfying Assumptions 2.12, 2.13 and 2.14. Assume that X1/s is a ball Banach function space. Let T be an
inhomogeneous Calderón–Zygmund operator and T∗loc(1) = 0. If θ ∈ [max

{
n

n+δ ,
n

n+ϵ

}
, 1) and there exists a positive
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constant C0 such that for any α ∈ (0,∞) and any sequence
{

f j

}
j∈N
⊂M , (1) holds true, then T has a unique extension

on hX. Moreover, there exists a positive constant C such that for any f ∈ hX,∥∥∥T f
∥∥∥

WhX
≤ C∥ f ∥hX .

2. Preliminaries

In this section, we present some notions and known results concerning the ball quasi-Banach function
spaces and the weak ball quasi-Banach function spaces. Then we give some assumptions on the Hardy–
Littlewood maximal operator. Meanwhile, we recall the definition and some results of local Hardy type
spaces hX.

2.1. Weak ball quasi-Banach function spaces

Denote by M the set of all measurable functions on Rn. Before presenting the notion of weak ball
quasi-Banach function spaces, we first recall the concepts of Banach function spaces and ball quasi-Banach
function spaces. For the sake of simplicity, Y (Rn) =: Y, where Y is any (quasi-)Banach function spaces or
ball (quasi-)Banach function spaces on Rn.

Definition 2.1. [3, Chapter 1, Definitions 1.1 and 1.3] A Banach function space Y ⊂M is called a Banach function
space if it satisfies (i) ∥ f ∥Y = 0 if and only if f = 0 almost everywhere;

(ii) |1| ≤ | f | almost everywhere implies that ∥1∥Y ≤ ∥ f ∥Y;
(iii) 0 ≤ fm ↑ f almost everywhere implies that

∥∥∥ fm
∥∥∥

Y ↑ ∥ f ∥Y;
(iv) χE ∈ Y for any measurable set E ⊂ Rn with finite measure;
(v) for any measurable set E ⊂ Rn with finite measure, there exists a positive constant C(E), depending on E, such

that, for all f ∈ Y, ∫
E
| f (x)|dx ≤ C(E)∥ f ∥Y,

where f and 1 are measurable functions. In fact, the above conditions ensure that the norm ∥ · ∥Y is a Banach function
norm. For x ∈ Rn and r ∈ (0,∞), let B(x, r) :=

{
y ∈ Rn : |x − y| < r

}
, and

B := {B(x, r) : x ∈ Rn and r ∈ (0,∞)} . (2)

We now present the notion of ball quasi-Banach function spaces as follows [28].

Definition 2.2. A quasi-Banach space X ⊂M is called a ball quasi-Banach function space if it satisfies
(i) ∥ f ∥X = 0 implies that f = 0 almost everywhere;
(ii) |1| ≤ | f | almost everywhere implies that ∥1∥X ≤ ∥ f ∥X;
(iii) 0 ≤ fm ↑ f almost everywhere implies that

∥∥∥ fm
∥∥∥

X ↑ ∥ f ∥X;
(iv) B ∈ B implies that χB ∈ X, where B is as in (2).
For any ball Banach function space X, the associate space (Köthe dual) X′ is defined by setting

X′ :=
{
f ∈M : ∥ f ∥X′ := sup

{
∥ f1∥L1 : 1 ∈ X, ∥1∥X = 1

}
< ∞

}
, (3)

where ∥ · ∥X′ is called the associate norm of ∥ · ∥X.

Remark 2.3. The second condition of the Banach function space X is called the ideal property, which implies that X
is a quasi-Banach lattice [23]. From [28, Proposition 2.3], we know that, if X is a ball Banach function space, then its
associate space X′ is also a ball Banach function space.

Then we recall the notions of the convexity and the concavity of ball quasi-Banach function spaces.
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Definition 2.4. [17, Definition 1.d.3] Let X be a ball quasi-Banach function space and p ∈ (0,∞). (i) The p-
convexification Xp of X is defined by setting Xp :=

{
f ∈M : | f |p ∈ X

}
equipped with the quasi-norm

∥ f ∥Xp :=
∥∥∥| f |p∥∥∥1/p

X .

(ii) The space X is said to be p-concave if there exists a positive constant C such that for any sequence
{

f j

}
j∈N

of X1/p,

∑
j∈N

∥∥∥ f j

∥∥∥
X1/p ≤ C

∥∥∥∥∥∥∥∥
∑
j∈N

∣∣∣ f j

∣∣∣
∥∥∥∥∥∥∥∥

X1/p

.

Particularly, X is said to be strictly p-concave when C = 1. Next we present the notion of weak ball quasi-Banach
function spaces as follows [38, Definition 2.8 and Remark 2.9].

Definition 2.5. Let X be a ball quasi-Banach function space. The weak ball quasi-Banach function space WX is
defined to be the set of all measurable functions f satisfying

∥ f ∥WX := sup
α∈(0,∞)

[
α
∥∥∥∥χ{x∈Rn:| f (x)|>α}

∥∥∥∥
X

]
< ∞. (4)

Remark 2.6. (i) Let X be a ball quasi-Banach function space. For any f ∈ X andα ∈ (0,∞), we haveχ
{x∈Rn:| f (x)|>α}(x) ≤

| f (x)|/α for any x ∈ Rn, which, together with Definition 2.2 (ii), further implies that

sup
α∈(0,∞)

[
α
∥∥∥∥χ{x∈Rn:| f (x)|>α}

∥∥∥∥
X

]
≤ ∥ f ∥X.

This shows that X ⊂WX. (ii) Let f , 1 ∈WX with | f | ≤ |1|. By Definition 2.2 (ii), we conclude that ∥ f ∥WX ≤ ∥1∥WX.

Lemma 2.7. [38, Lemma 2.10] Let X be a ball quasi-Banach function space. Then ∥ · ∥WX is a quasi-norm on WX,
namely,

(i) ∥ f ∥WX = 0 if and only if f = 0 almost everywhere.
(ii) For any λ ∈ C and f ∈WX,

∥λ f ∥WX = |λ|∥ f ∥WX.

(iii) For any f , 1 ∈WX, there exists a positive constant C such that

∥ f + 1∥WX ≤ C
[
∥ f ∥WX + ∥1∥WX

]
.

Moreover, if p ∈ (0,∞) and X1/p is a ball Banach function space, then

∥ f + 1∥1/pWX ≤ 2max{1/p,1}
[
∥ f ∥1/pWX + ∥1∥

1/p
WX

]
.

Remark 2.8. Let X be a ball quasi-Banach function space. By [38, Lemma 2.13], we know that WX is also a ball
quasi-Banach function space. For any given s ∈ (0,∞), it is easy to show that Xs is also a ball quasi-Banach function
space. Thus, (WX)s and W (Xs) make sense and coincide with equal quasi-norms. Indeed, for any f ∈ (WX)s, by
Definitions 2.4 (i) and 2.5, we have

∥ f ∥s(WX)s = ∥| f |s∥WX = ∥ f ∥sW(Xs).

Let X be a ball quasi-Banach function space, then from [38, Lemma 2.13] we know the space WX is also a ball
quasi-Banach function space.

Now, we recall the notions of Muckenhoupt weights Ap in [12].
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Definition 2.9. An Ap weight ω, with p ∈ [1,∞), is a locally integrable and non-negative function onRn satisfying
that, when p ∈ (1,∞),

sup
B∈B

[
1
|B|

∫
B
ω(x)dx

] [
1
|B|

∫
B
{ω(x)}

1
1−p dx

]p−1

< ∞,

and, when p = 1,

sup
B∈B

1
|B|

∫
B
ω(x)dx

[∥∥∥ω−1
∥∥∥

L∞(B)

]
< ∞,

where B is as in (2). Define A∞ :=
⋃

p∈[1,∞) Ap.

Definition 2.10. Let p ∈ (0,∞) andω ∈ A∞. The weighted Lebesgue space Lp
ω is defined to be the set of all measurable

functions f such that

∥ f ∥Lp
ω

:=
[∫
Rn
| f (x)|pω(x)dx

] 1
p

< ∞.

Lemma 2.11. [38, Lemma 2.17] Let X be a ball quasi-Banach function space. Assume that there exists an s ∈ (0,∞)
such that X1/s is a ball Banach function space and M is bounded on

(
X1/s

)′
. Then there exists an ϵ ∈ (0, 1) such that

X continuously embeds into Ls
ω with ω :=

[
M

(
χB

(⃗
0n,1

))]ϵ, namely, there exists a positive constant C such that for any

f ∈ X,
∥ f ∥Ls

ω
≤ C∥ f ∥X.

2.2. Assumptions on the Hardy–Littlewood maximal operator

Denote by L1
loc the set of all locally integrable functions on Rn. Recall that the Hardy–Littlewood

maximal operator M is defined by setting, for all f ∈ L1
loc and x ∈ Rn,

M f (x) := sup
r∈(0,∞)

1
|B(x, r)|

∫
B(x,r)
| f (y)|dy. (5)

For any θ ∈ (0,∞), the powered Hardy-Littlewood maximal operator M(θ) is defined by setting, for all
f ∈ L1

loc and x ∈ Rn,

M(θ)( f )(x) :=
{
M

(
| f |θ

)
(x)

}1/θ
.

In order to prove several theorems in this paper, we need the following assumptions.

Assumption 2.12. Let X be ball quasi-Banach function space. For some θ, s ∈ (0, 1] and θ < s, there exists a positive
constant C such that, for any

{
f j

}∞
j=1
⊂M ,∥∥∥∥∥∥∥∥∥


∞∑
j=1

[
M(θ)

(
f j

)]s


1/s

∥∥∥∥∥∥∥∥∥
X

≤ C

∥∥∥∥∥∥∥∥∥

∞∑
j=1

∣∣∣ f j

∣∣∣s


1/s
∥∥∥∥∥∥∥∥∥

X

. (6)

Assumption 2.13. Let X be a ball quasi-Banach function space satisfying (6) for some θ, s ∈ (0, 1]. Let d ≥
⌊n(1/θ − 1)⌋ be a fixed integer and q ∈ (1,∞]. Assume that for any f ∈M ,∥∥∥∥M((q/s)′)( f )

∥∥∥∥(X1/s)′
≤ C∥ f ∥(X1/s)′ , (7)

where the implicit positive constant is independent of f .
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Assumption 2.14. Let X be a ball quasi-Banach function space. Assume that there exists an r ∈ (0,∞) such that M
in (5) is bounded on (WX)1/r.

Now we recall the definition of the local Hardy type space hX established in [28].

Definition 2.15. Let X be a ball quasi-Banach function space. Let Φ ∈ S satisfy
∫
Rn Φ(x)dx , 0 and b ∈ (0,∞)

sufficiently large. Then the Hardy space hX associated with X is defined as

hX :=
{

f ∈ S′ : ∥ f ∥hX :=
∥∥∥m∗∗b ( f ,Φ)

∥∥∥
X < ∞

}
,

where the maximal function m∗∗b ( f ,Φ) of Peetre type is defined by setting, for all x ∈ Rn,

m∗∗b ( f ,Φ)(x) := sup
(y,t)∈Rn×(0,1)

∣∣∣(Φt ∗ f
)

(x − y)
∣∣∣(

1 + t−1|y|
)b

.

Moreover, the atomic decomposition theory is very useful when we consider the boundedness of
operators on Hardy spaces. For instance, see [9, 30, 31, 36]. Then we recall the definition of the local-
(X, q, d)-atom in [34]. Denote that

dX := ⌈n(1/θ − 1)⌉. (8)

Definition 2.16. Let X be a ball quasi-Banach function space and q ∈ (1,∞]. Assume that d ∈ Z+ fulfills d ≥ dX.
Then a measurable function a is called a local-(X, q, d)-atom if there exists a cube Q ⊂ Rn such that supp (a) ⊂ Q;
∥a∥Lq ≤

|Q|1/q

∥χQ∥X
and if |Q| < 1, then

∫
Rn a(x)xαdx = 0 for any multi-index α ∈ Zn

+ with |α| ≤ d.

Lemma 2.17. [34, Theorem 4.8] Let X be a ball quasi-Banach function space, satisfying both Assumption 2.12 with
0 < θ < s ≤ 1 and Assumption 2.13 with the same s ∈ (0, 1], and d ∈ N such that d ≥ dX, where dX is as in (8).
Then f ∈ hX if and only if f ∈ S′ and there exist a sequence {a j}

∞

j=1 of local-(X,∞, d)-atoms supported, respectively,
in cubes {Q j}

∞

j=1 and a sequence {λ j}
∞

j=1 of non-negative numbers such that

f =
∞∑
j=1

λ ja j in S
′ (9)

and ∥∥∥∥∥∥∥∥
 ∞∑

j=1

(
λ j

∥χQ j∥X

)s

χQ j


1/s∥∥∥∥∥∥∥∥

X

< ∞.

Moreover,

∥ f ∥hX ∼ inf


∥∥∥∥∥∥∥∥
 ∞∑

j=1

(
λ j

∥χQ j∥X

)s

χQ j


1/s∥∥∥∥∥∥∥∥

X

 ,
where the infimum is taken over all decompositions of f as in (9) and the positive equivalence constants are independent
of f but may depend on s.

Lemma 2.18. [34, Lemma 2.21] Assume that X is a ball quasi-Banach function space satisfying Assumption 2.12
with some s ∈ (0, 1] and Assumption 2.13 for some q ∈ (1,∞] and the same s ∈ (0, 1] as in (6). Let

{
a j

}∞
j=1
⊂ Lq be

supported, respectively, in cubes
{
Q j

}∞
j=1

, and a sequence
{
λ j

}∞
j=1
⊂ [0,∞) such that, for any j ∈N,

∥∥∥a j

∥∥∥
Lq ≤

∣∣∣Q j

∣∣∣1/q∥∥∥χQ j

∥∥∥
X
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and ∥∥∥∥∥∥∥∥∥

∞∑
j=1

 λ j∥∥∥χQ j

∥∥∥
X


s

χQ j


1/s

∥∥∥∥∥∥∥∥∥
X

< ∞.

Then f =
∑
∞

j=1 λ ja j converges in S′ and there exists a positive constant C, independent of f , such that

∥ f ∥X ≤ C

∥∥∥∥∥∥∥∥∥

∞∑
j=1

 λ j∥∥∥χQ j

∥∥∥
X


s

χQ j


1/s

∥∥∥∥∥∥∥∥∥
X

.

3. Weak local Hardy spaces and their maximal characterizations

In this section, we introduce the weak local Hardy type space WhX, associated with the ball quasi-
Banach space X, and obtain several maximal function characterizations. To state the results, we need
some definitions. In what follows, we denote by S the space of all Schwartz functions, equipped with the
well-known topology determined by a countable family of seminorms, and byS′ its topological dual space,
equipped with the weak-∗ topology. For any N ∈N, let

FN :=

φ ∈ S :
∑

β∈Zn
+,|β|≤N

sup
x∈Rn

[
(1 + |x|)N+n

∣∣∣∣∂βxφ(x)
∣∣∣∣] ≤ 1

 ,
here and hereafter, for any β :=

(
β1, . . . , βn

)
∈ Zn

+ and x ∈ Rn, |β| := β1 + · · · + βn and ∂βx :=
(
∂
∂x1

)β1
· · ·

(
∂
∂xn

)βn
.

First, we recall the local vertical, non-tangential grand maximal functions as follows.

Definition 3.1. Let f ∈ S′,N ∈N, a, b ∈ (0,∞) and Φ ∈ S.
(i) The local radial maximal function m( f ,Φ) is defined by setting, for all x ∈ Rn,

m( f ,Φ)(x) := sup
t∈(0,1)

∣∣∣(Φt ∗ f
)

(x)
∣∣∣ .

(ii) The local grand maximal function mN( f ) is defined by setting, for all x ∈ Rn,

mN( f )(x) := sup
{∣∣∣∣t−nψ

(
t−1

)
∗ f (y)

∣∣∣∣ : t ∈ (0, 1), |x − y| < t, ψ ∈ FN

}
. (10)

(iii) The local non-tangential maximal function m∗a( f ,Φ), with aperture a ∈ (0,∞), is defined by setting, for all x ∈ Rn,

m∗a( f ,Φ)(x) := sup
t∈(0,1)

 sup
y∈Rn,|y−x|<at

∣∣∣Φt ∗ f (y)
∣∣∣ .

(iv) The local maximal function m∗∗b ( f ,Φ) of Peetre type is defined by setting, for all x ∈ Rn,

m∗∗b ( f ,Φ)(x) := sup
(y,t)∈Rn×(0,1)

∣∣∣(Φt ∗ f
)

(x − y)
∣∣∣(

1 + t−1|y|
)b

.

(v) The local grand maximal function m∗∗b,N( f ) of Peetre type is defined by setting, for all x ∈ Rn,

m∗∗b,N( f )(x) := sup
ψ∈FN

 sup
(y,t)∈Rn×(0,1)

∣∣∣(ψt ∗ f
)

(x − y)
∣∣∣(

1 + t−1|y|
)b

 .
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Definition 3.2. Let X be a ball quasi-Banach function space. Then the weak Hardy-type space WhX associated with
X is defined by setting

WhX :=
{

f ∈ S′ : ∥ f ∥WhX :=
∥∥∥mN( f )

∥∥∥
WX < ∞

}
,

where mN( f ) is as in (10) with N ∈N sufficiently large.

Then we have the following estimates, which further give several maximal function characterizations of
the space WhX.

Theorem 3.3. Let a, b ∈ (0,∞) and X be a ball quasi-Banach function space. Let Φ ∈ S satisfy
∫
Rn Φ(x)dx , 0. (i)

Let N ≥ ⌊b + 2⌋ be an integer. Then, for any f ∈ S′,

∥m( f ,Φ)∥WX ≲
∥∥∥m∗a( f ,Φ)

∥∥∥
WX ≲

∥∥∥m∗∗b ( f ,Φ)
∥∥∥

WX , (11)

∥m( f ,Φ)∥WX ≲
∥∥∥mN( f )

∥∥∥
WX ≲

∥∥∥m⌊b+2⌋( f )
∥∥∥

WX ≲
∥∥∥m∗∗b ( f ,Φ)

∥∥∥
WX , (12)

∥∥∥m∗∗b ( f ,Φ)
∥∥∥

WX ∼
∥∥∥m∗∗b,N( f )

∥∥∥
WX

, (13)

where the implicit positive constants are independent of f .
(ii) Let r, b,A ∈ (0,∞) satisfy

(b − A)r > n. (14)

From Remark 2.8, if X is strictly r-convex and for all f ∈WX,∥∥∥∥∥∥∥
{∫

[0,1]n
| f (· − z)|rdz

}1/r
∥∥∥∥∥∥∥

WX

≲ (1 + |z|)A
∥ f ∥WX, (15)

where the implicit positive constant is independent of f , then, for all f ∈ S′,∥∥∥m∗∗b,N( f )
∥∥∥

WX
≲ ∥m( f ,Φ)∥WX,

where the implicit positive constant is independent of f . In particular, when N ∈ N ∩ [⌊b + 2⌋,∞), and one of the
quantities

∥m( f ,Φ)∥WX,
∥∥∥m∗a( f ,Φ)

∥∥∥
WX ,

∥∥∥mN( f )
∥∥∥

WX ,
∥∥∥m∗∗b ( f ,Φ)

∥∥∥
WX ,

∥∥∥m∗∗b,N( f )
∥∥∥

WX

is finite, then the other quantities are also finite and mutually equivalent with the implicit positive constants indepen-
dent of f .

Remark 3.4. We point out that (15) holds true for any ball quasi-Banach function space X satisfying Remark 2.6 (ii)
and Assumption 2.14. Indeed, for any given r ∈ (0,∞) and any f ∈ X, x, z ∈ Rn,{∫

z+[0,1]n
| f (x − y)|rdy

}1/r

≲ (1 + |z|)
n
r M(r)( f )(x),

where the implicit positive constants are independent of f , x and z, but may depend on n and r. From this and the
assumption that X satisfies Remark 2.6 (ii) and Assumption 2.14, we deduce that, for any given r := θ and A > n

r
and any f ∈WX and z ∈ Rn,∥∥∥∥∥∥∥

{∫
z+[0,1]n

| f (· − y)|rdy
}1/r

∥∥∥∥∥∥∥
WX

≲ (1 + |z|)
n
r

∥∥∥M(r)( f )
∥∥∥

WX ≲ (1 + |z|)A
∥ f ∥WX,

where the implicit positive constants are independent of f and z, but may depend on n and r.
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Proof of Theorem 3.3 The proof of this theorem is similar to that of [28, Theorem 5.3]. For the convenience
of the reader. we present some details. Let f ∈ S′. We first prove (i). From (i), (ii) and (iii) of Definition 3.1,
it follows that, for any x ∈ Rn,

m( f ,Φ)(x) ≤ m∗a( f ,Φ)(x) ≲ m∗∗b ( f ,Φ)(x),

which, together with Remark 2.6 (ii), implies (11). Moreover, by (i) and (iv) of Definition 3.1 again, we have,
for any x ∈ Rn,

m( f ,Φ)(x) ≲ mN( f )(x) ≲ m⌊b+1⌋( f )(x). (16)

In addition, from the proof of [13, Theorem 2.1.4(d)], we deduce that, for any x ∈ Rn,

m⌊b+1⌋( f )(x) ≲ m∗∗b ( f ,Φ)(x),

which, together with (16) and Remark 2.6 (ii), implies (12). It is easy to see that, for any x ∈ Rn,m∗∗b ( f ,Φ)(x) ≲
m∗∗b,N( f )(x), which, combined with [28, Lemma 2.13], implies (13).

Now we prove (ii). Let b,N ∈ (0,∞) satisfy

Nr > n and (b − A)r > n. (17)

Using [28, Lemma 2.8] with a dilation, we conclude that, for any m ∈N, t ∈ [1, 2] and x ∈ Rn,

sup
y∈Rn

∣∣∣Φ2−mt ∗ f (y)
∣∣∣r(

1 + 2m|x − y|
)br
≲ r

∞∑
k=0

2k(n−Nr)
∫
Rn

∣∣∣Φ2−k−mt ∗ f (y)
∣∣∣r(

1 + 2m|x − y|
)br

dy

≲ r
∞∑

k=0

2k(n−Nr)
∫
Rn

∣∣∣Φ2−k−mt ∗ f (y)
∣∣∣r

(1 + |x − y|)br
dy

which, since m ∈N and t ∈ [1, 2] are arbitrary, further implies that, for any x ∈ Rn,

m∗∗b ( f ,Φ)(x) ≲ r

 ∞∑
k=0

2k(n−Nr)
∫
Rn

[m( f ,Φ)(x − y)]r

(1 + |y|)br
dy


1/r

∼

 ∞∑
k=0

2k(n−Nr)
∑

m∈Zn

∫
m+[0,1]n

[m( f ,Φ)(x − y)]r

(1 + |m|)br
dy


1/r

.

From this and the assumption that X is strictly r-convex, it follows that

∥∥∥m∗∗b ( f ,Φ)
∥∥∥

WX ≲r

∥∥∥∥∥∥∥∥
 ∞∑

k=0

2k(n−Nr)
∑

m∈Zn

∫
m+[0,1]n

[m( f ,Φ)(· − y)]r

(1 + |m|)br
dy


1/r

∥∥∥∥∥∥∥∥
WX

≲r

∥∥∥∥∥∥∥
∞∑

k=0

2k(n−Nr)
∑

m∈Zn

∫
m+[0,1]n

[m( f ,Φ)(· − y)]r

(1 + |m|)br
dy

∥∥∥∥∥∥∥
1/r

(WX)1/r

≲r

 ∞∑
k=0

2k(n−Nr)
∑

m∈Zn

∥∥∥∥∥∥
∫

m+[0,1]n

[m( f ,Φ)(· − y)]r

(1 + |m|)br
dy

∥∥∥∥∥∥
(WX)1/r


1/r

∼r

 ∞∑
k=0

2k(n−Nr)
∑

m∈Zn

∥∥∥∥∥∥∥
[∫

m+[0,1]n

[
m( f ,Φ)(· − y)

(1 + |m|)b

]r

dy
]1/r

∥∥∥∥∥∥∥
r

WX


1/r
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which, combined with (14), (15) and (17), further implies that

∥∥∥m∗∗b ( f ,Φ)
∥∥∥

WX ≲ ∥m( f ,Φ)∥WX

 ∞∑
k=0

2k(n−Nr)
∑

m∈Zn

1
(1 + |m|)(b−A)r


1/r

∼ ∥m( f ,Φ)∥WX.

This finishes the proof of (ii), and hence of Theorem 3.3. □

4. Proofs of Main Results

Proof of Theorem 1.1 Assume f ∈ hX and d ∈ [dX,∞) ∩ Z+ is a fixed integer, where dX is defined by
dX := ⌈n(1/θ − 1)⌉. Then from [34], we find that there exists a sequence

{
a j

}∞
j=1

of (X,∞, d)-atoms supported,

respectively, in a
{
Q j

}∞
j=1

of cubes, and a sequence
{
λ j

}∞
j=1

of non-negative numbers, independent of f but

depending on s, such that

f =
∞∑
j=1

λ ja j in S′, (18)

and ∥∥∥∥∥∥∥∥∥

∞∑
j=1

 λ j∥∥∥χQ j

∥∥∥
X


s

χQ j


1/s

∥∥∥∥∥∥∥∥∥
X

≲ ∥ f ∥hX . (19)

In addition, from Lemma 2.11, we find that there exists an ε ∈ (0, 1) such that, for any h ∈M ,

∥h∥Ls0
v
≲ ∥h∥X

where v :=
[
M

(
1Q(0,1)

)]ε
. Combining this, (18) and (19), we conclude that

f =
∑
j∈N

λ ja j =
∑
j∈N

λ j

∥∥∥χQ j

∥∥∥
Ls0

v∥∥∥χQ j

∥∥∥
X



∥∥∥χQ j

∥∥∥
X∥∥∥χQ j

∥∥∥
Ls0

v

a j

 , (20)

in S′ and∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥


∑
j∈N


λ j

∥∥∥∥χQj

∥∥∥∥
L

s0
v∥∥∥∥χQj

∥∥∥∥
X∥∥∥χQ j

∥∥∥s0

Ls0
v



s

χQ j



1
s
∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Ls0
v

≲

∥∥∥∥∥∥∥∥∥
∑

j∈N

 λ j∥∥∥χQ j

∥∥∥
X


s

χQ j


1
s

∥∥∥∥∥∥∥∥∥
X

≲ ∥ f ∥hX < ∞. (21)

Observe that, for any j ∈ N,

∥∥∥∥χQj

∥∥∥∥
X∥∥∥∥χQj

∥∥∥∥
L

s0
v

a j is an local-
(
Ls0

v ,∞, d
)
-atom supported in Q j. This, together with

(20), (21) and [5, Theorem 3.6] further implies that f ∈ hs0
v and f =

∑
j∈N λ ja j in hs0

v . Applying this and [6,

Theorem 1.9], we find that T( f ) =
∑

j∈N λ jT
(
a j

)
holds true in Ls0

v and L2. Therefore, we further infer that

T( f ) =
∑
j∈N

λ jT
(
a j

)
in S

′. (22)
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Then, to prove this theorem, by Definition 2.5, we only need to show that for any f ∈ hX and any α ∈ (0,∞),

α
∥∥∥∥χ{x∈Rn:|T( f )(x)|>α}

∥∥∥∥
X
≲ ∥ f ∥hX . (23)

Moreover, we denote Q(cQ j , l j) the closed cube centered at x and of sidelength l j. Similarly, given
Q = Q(cQ j , l j) and λ > 0, λQ means that the cube with the same center cQ j and with sidelength λl j. We
denote Q̃ = 2

√
nQ simply. Then for any α ∈ (0,∞), by (22), Lemma 2.7 (iii) and Remark 2.6 (i), we have

α
∥∥∥∥χ{x∈Rn:|T( f )(x)|>α}

∥∥∥∥
X
= α

∥∥∥∥χ{
x∈Rn:

∣∣∣∑∞j=1 λ jT(a j)(x)
∣∣∣>α}

∥∥∥∥
X

≲α

∥∥∥∥∥∥χ{
x∈Rn:

∣∣∣∣∣∑∞j=1 λ jT(a j)(x)χ2
√

nQj

∣∣∣∣∣> α
2

}
∥∥∥∥∥∥

X

+ α

∥∥∥∥∥∥∥∥∥χx∈Rn:

∣∣∣∣∣∣∣∑∞j=1 λ jT(a j)(x)χ
(2
√

nQj)∁
∣∣∣∣∣∣∣> α

2



∥∥∥∥∥∥∥∥∥
X

≲

∥∥∥∥∥∥∥∥
∞∑
j=1

λ jT
(
a j

)
χ2
√

nQ j

∥∥∥∥∥∥∥∥
X

+ α

∥∥∥∥∥∥∥∥∥χx∈Rn:

∣∣∣∣∣∣∣∑∞j=1 λ jT(a j)(x)χ
(2
√

nQj)∁
∣∣∣∣∣∣∣> α

2



∥∥∥∥∥∥∥∥∥
X

=I1 + I2. (24)

From this, to prove (23), it is only necessary to prove I1 ≲ ∥ f ∥hX and I2 ≲ ∥ f ∥hX , respectively.
Notice that, for any j ∈N, a j ∈ L2. Since T is bounded on L2, it follows that

∥∥∥∥T
(
a j

)
χ2
√

nQ j

∥∥∥∥
L2
≤

∥∥∥∥T
(
a j

)∥∥∥∥
L2
≲

∥∥∥a j

∥∥∥
L2 ≲

∣∣∣Q j

∣∣∣1/2∥∥∥χQ j

∥∥∥
X

,

which, combined with Lemma 2.18 and (19), implies that

I1 ≲

∥∥∥∥∥∥∥∥∥

∞∑
j=1

 λ j∥∥∥χQ j

∥∥∥
X


s

χQ j


1/s

∥∥∥∥∥∥∥∥∥
X

≲ ∥ f ∥hX , (25)

where the atom a j in Lemma 2.18 is replaced by T
(
a j

)
χ2
√

nQ j
.

To estimate the term I2, we will divide into the following two cases.
Case 1:

∣∣∣Q j

∣∣∣ ≤ 1. In this case, a j satisfies the vanishing moment condition. Notice that l j is the side

length and cQ j is the center of Q j. When x ∈ Q̃∁j , we have
∣∣∣x − cQ j

∣∣∣ ⩾ 2
∣∣∣y − cQ j

∣∣∣ and
∣∣∣y − cQ j

∣∣∣ ⩽ l j. By using the
smooth condition of kernelK we obtain that∣∣∣∣T (

a j

)
(x)

∣∣∣∣ = ∣∣∣∣∣∣
∫

Q j

[
K (x, y) −K

(
x, cQ j

)]
a j(y)dy

∣∣∣∣∣∣
≲

∫
Q j

∣∣∣y − cQ j

∣∣∣ϵ∣∣∣x − cQ j

∣∣∣n+ϵ ∣∣∣a j(y)
∣∣∣ dy

≲
lϵj∣∣∣x − cQ j

∣∣∣n+ϵ ∥∥∥a j

∥∥∥
L2

∣∣∣Q j

∣∣∣1/2
≲

ln+ϵj∣∣∣x − cQ j

∣∣∣n+ϵ 1∥∥∥χQ j

∥∥∥
X

≲
1∥∥∥χQ j

∥∥∥
X

[
M

(
χQ j

)
(x)

] n+ϵ
n .
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Case 2: |Q j| ⩾ 1 In this case, we have |x − y| ∼ |x − cQ j | and |x − y| ⩾ 1
2 , where x ∈ Q̃∁j , and y ∈ Q j. By

using the size condition ofK , for any x ∈ Q̃∁j , we obtain that

∣∣∣∣T (
a j

)
(x)

∣∣∣∣ = ∣∣∣∣∣∣
∫

Q j

K (x, y)a j(y)dy

∣∣∣∣∣∣ ≲
∫

Q j

|K (x, y)|
∣∣∣a j(y)

∣∣∣ dy

≲

∫
Q j

C∣∣∣x − cQ j

∣∣∣n+δ
∣∣∣a j(y)

∣∣∣ dy ≲
C∣∣∣x − cQ j

∣∣∣n+δ
∫

Q j

∣∣∣a j(y)
∣∣∣ dy

≲
C∣∣∣x − cQ j

∣∣∣n+δ ∥a j∥L2 ·

∣∣∣Q j

∣∣∣1/2 ≲ C∣∣∣x − cQ j

∣∣∣n+δ
∣∣∣Q j

∣∣∣∥∥∥χQ j

∥∥∥
X

≲
Cl j

n+δ∣∣∣x − cQ j

∣∣∣n+δ 1∥∥∥χQ j

∥∥∥
X

≲
1∥∥∥χQ j

∥∥∥
X

[
M

(
χQ j

)
(x)

] n+δ
n .

Therefore, by this, Definition 2.4 (i), (1), γ = max
{

n
n+δ ,

n
n+ϵ

}
, 0 < θ < s ≤ 1, θ ∈ [γ, 1) and (19), we find

that

I2 ≲ α

∥∥∥∥∥∥∥∥∥∥∥∥χ
x∈Rn:

∑
∞

j=1
λ j∥∥∥∥∥∥χQj

∥∥∥∥∥∥X

[
M

(
χQj

)
(x)

] 1
γ
> α

2



∥∥∥∥∥∥∥∥∥∥∥∥
X

≲


(
α
2

)γ ∥∥∥∥∥∥∥∥∥∥∥∥χ
x∈Rn:

∑∞j=1
λ j∥∥∥∥∥∥χQj

∥∥∥∥∥∥X

[
M

(
χQj

)
(x)

] 1
γ


γ

>( α2 )γ


∥∥∥∥∥∥∥∥∥∥∥∥
X

1
γ


1
γ

≲

∥∥∥∥∥∥∥∥
 ∞∑

j=1

λ j∥∥∥χQ j

∥∥∥
X

χQ j


γ
∥∥∥∥∥∥∥∥

1
γ

X
1
γ

≲

∥∥∥∥∥∥∥∥∥

∞∑
j=1

 λ jχQ j∥∥∥χQ j

∥∥∥
X


s


1/s
∥∥∥∥∥∥∥∥∥

X

≲ ∥ f ∥hX . (26)

Finally, combining (25) and (26), we conclude that for any α ∈ (0,∞),

α
∥∥∥∥χ{x∈Rn:|T( f )(x)|>α}

∥∥∥∥
X
≲ ∥ f ∥hX ,

namely, (23) holds true. This finishes the proof of Theorem 1.1. □
Next, we will prove Theorem 1.2.

Proof of Theorem 1.2 Let θ, s and d be as in Lemma 2.18 and f ∈ hX. Then, by Lemma 2.18, we find that
there exist a sequence

{
a j

}∞
j=1

of (X, 2, d)-atoms supported, respectively, in a sequence
{
Q j

}∞
j=1

of cubes, and

a sequence
{
λ j

}∞
j=1

of non-negative numbers, independent of f but depending on s, such that (18) and (19)
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hold true. From Theorem 1.1, we know

T( f ) =
∑
j∈N

λ jT
(
a j

)
in Ls0

v and S
′.

Let Φ ∈ S satisfy
∫
Rn Φ(x)dx , 0. Then, to prove Theorem 1.2, by Assumption 2.14 and Theorem 3.3 (ii),

we only need to show that, for any f ∈ hX,

∥m(T f ,Φ)∥WX ≲ ∥ f ∥hX , (27)

where m(T f ,Φ) is as in Definition 3.1(i) with f replaced by T f . For any α ∈ (0,∞), by Lemma 2.7 (iii) and
Remark 2.6 (i), we have

α
∥∥∥∥χ{x∈Rn:m(T f ,Φ)(x)>α}

∥∥∥∥
X
≤ α

∥∥∥∥χ{x∈Rn:
∑

j∈N λ jm(Ta j,Φ)(x)>α}

∥∥∥∥
X

≲ α
∥∥∥∥χ{x∈2

√
nQ j:

∑
j∈N λ jm(Ta j,Φ)(x)> α

2 }

∥∥∥∥
X
+ α

∥∥∥∥∥∥χ{
x∈(2

√
nQ j)∁:

∑
j∈N λ jm(Ta j,Φ)(x)> α

2

}∥∥∥∥∥∥
X

≲

∥∥∥∥∥∥∥∥
∑
j∈N

λ jm
(
Ta j,Φ

)
χ2
√

nQ j

∥∥∥∥∥∥∥∥
X

+ α

∥∥∥∥∥∥χ{
x∈(2

√
nQ j)∁:

∑
j∈N λ jm(Ta j,Φ)(x)> α

2

}∥∥∥∥∥∥
X

=: I1 + I2.

We first estimate I1. Observing that m
(
Ta j,Φ

)
≲ m

(
Ta j

)
and a j ∈ Lq, by the fact that T is bounded on Lq

and the size condition of a j, we conclude that

∥∥∥∥m
(
Ta j,Φ

)∥∥∥∥
Lq
≲

∥∥∥∥M
(
Ta j

)∥∥∥∥
Lq
≲

∥∥∥Ta j

∥∥∥
Lq ≲

∥∥∥a j

∥∥∥
Lq ≲

∣∣∣Q j

∣∣∣1/q∥∥∥χQ j

∥∥∥
X

,

which, combined with Lemma 2.18 and (19), implies that

I1 ≲

∥∥∥∥∥∥∥∥∥

∞∑
j=1

 λ j∥∥∥χQ j

∥∥∥
X


s

χQ j


1/s

∥∥∥∥∥∥∥∥∥
X

≲ ∥ f ∥hX , (28)

where the atom a j in Lemma 2.18 is replaced by m(Ta j,Φ)χ2
√

nQ̃ j
. When x ∈

(
2
√

nQ̃ j

)∁
, we will consider two

cases:
∣∣∣Q j

∣∣∣ ≥ 1 and
∣∣∣Q j

∣∣∣ < 1.
Consider the case

∣∣∣Q j

∣∣∣ ≥ 1. In this case,
∣∣∣Q j

∣∣∣ ≥ 1, then we have∣∣∣∣Φt ∗ T
(
a j

)
(x)

∣∣∣∣ = ∣∣∣∣∣∫
Rn
Φt(x − y)T

(
a j

)
(y)dy

∣∣∣∣∣
≤ t−n

∫
Q(x,t)

∣∣∣∣T (
a j

)
(y)

∣∣∣∣ dy

≤ sup
y∈Q(x,t)

∣∣∣∣T (
a j

)
(y)

∣∣∣∣ .
Noting that 0 < t < 1 ≤ l

(
Q j

)
and x ∈

(
2
√

nQ̃ j

)∁
, it implies that y ∈ (Q̃)∁. From the proof of Theorem

1.1, we conclude that

sup
y∈B(x,t)

|T(a j)(y)| ≤
C∥∥∥χQ j

∥∥∥
X

[
M

(
χQ j

)
(x)

] 1
max{ n

n+δ ,
n

n+ϵ } .
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Consider the case
∣∣∣Q j

∣∣∣ < 1. If 0 < t <
∣∣∣x − cQ j

∣∣∣ /2, then together with x ∈
(
2
√

nQ̃ j

)∁
, we can get that

y ∈ (Q̃)∁. Thus, repeating the same argument as used above, then we have∣∣∣∣Φt ∗ T
(
a j

)
(x)

∣∣∣∣ ≤ C∥∥∥χQ j

∥∥∥
X

[
M

(
χQ j

)
(x)

] 1
max{ n

n+δ ,
n

n+ϵ } .

Finally, we consider the case that t >
∣∣∣x − cQ j

∣∣∣ /2 . Observing that ℓ
(
Q j

)
< 1, it follows that a j has

vanishing moment condition and Tloc
∗ (1) = 0. For any x ∈

(
2
√

nQ̃ j

)∁
, then by using the mean value theorem

together with the Hölder inequality yield that∣∣∣Φt ∗ Ta j(x)
∣∣∣ = 1

tn

∫
Rn

∣∣∣∣∣Φ (x − y
t

)
Ta j(y)dy

∣∣∣∣∣
≤

1
tn

∫
Rn

∣∣∣∣∣∣Φ (x − y
t

)
−Φ

(x − cQ j

t

)∣∣∣∣∣∣ ∣∣∣Ta j(y)
∣∣∣ dy

=
1
tn


∫

∣∣∣∣y−cQj

∣∣∣∣<nl j

+

∫
nl j≤

∣∣∣∣y−cQj

∣∣∣∣<
∣∣∣∣∣∣x−cQj

∣∣∣∣∣∣
2

+

∫
∣∣∣∣y−cQj

∣∣∣∣≥
∣∣∣∣∣∣x−cQj

∣∣∣∣∣∣
2


×

∣∣∣∣∣∣Φ (x − y
t

)
−Φ

(x − cQ j

t

)∣∣∣∣∣∣ ∣∣∣Ta j(y)
∣∣∣ dy

=: A1 +A2 +A3. (29)

For A1, by the the mean value theorem, we find that, for any j ∈N and y ∈ Rn with
∣∣∣y − cQ j

∣∣∣ < nl j, such
that

A1 ≤
1
tn

∫
∣∣∣∣y−cQj

∣∣∣∣<nl j

∣∣∣∣Φ′ ((x − cQ j + θ
(
cQ j − y

))
/t

∣∣∣∣ 
∣∣∣y − cQ j

∣∣∣
t

 ∣∣∣Ta j(y)
∣∣∣ dy,

which, combined with the Hölder inequality and the fact that T is bounded on L2, implies that, for all

t ∈ (0, 1) and x ∈
(
2
√

nQ̃ j

)∁
,

A1 ≲
1
tn

∫
∣∣∣∣y−cQj

∣∣∣∣<nl j

tn+1∣∣∣x − cQ j

∣∣∣n+1

∣∣∣y − cQ j

∣∣∣
t

∣∣∣Ta j(y)
∣∣∣ dy

≲
l j∣∣∣x − cQ j

∣∣∣n+1

∥∥∥Ta j

∥∥∥
L2

∣∣∣Q j

∣∣∣1/2 ≲ ln+1
j∣∣∣x − cQ j

∣∣∣n+1

1∥∥∥χQ j

∥∥∥
X

≲
ln+ϵj∣∣∣x − cQ j

∣∣∣n+ϵ 1∥∥∥χQ j

∥∥∥
X

. (30)

For A2, by using the smooth condition of the kernel K , the vanishing moment condition of a j and the

Hölder inequality, we conclude that, for all z ∈ Q̃ j, for all t ∈ (0, 1) and x ∈
(
2
√

nQ̃ j

)∁
,

A2 ≲

∫
nl j≤

∣∣∣∣y−cQj

∣∣∣∣<
∣∣∣∣∣∣x−cQj

∣∣∣∣∣∣
2

∣∣∣y − cQ j

∣∣∣∣∣∣x − cQ j

∣∣∣n+1

∫
Q j

∣∣∣a j(z)
∣∣∣ ∣∣∣K (y, z) −K (y, cQ j )

∣∣∣ dz

 dy

≲
1∣∣∣x − cQ j

∣∣∣n+1

∫
nl j≤

∣∣∣∣y−cQj

∣∣∣∣<
∣∣∣∣∣∣x−cQj

∣∣∣∣∣∣
2

∣∣∣y − cQ j

∣∣∣ ∫
Q j

∣∣∣a j(z)
∣∣∣ ∣∣∣z − cQ j

∣∣∣ϵ∣∣∣y − cQ j

∣∣∣n+ϵ dzdy
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≲
lϵj∣∣∣x − cQ j

∣∣∣n+1

∫
nl j≤

∣∣∣∣y−cQj

∣∣∣∣<
∣∣∣∣∣∣x−cQj

∣∣∣∣∣∣
2

1∣∣∣y − cQ j

∣∣∣n+ϵ−1 dy
∥∥∥a j

∥∥∥
L2

∣∣∣Q j

∣∣∣1/2
≲

ln+ϵj∣∣∣x − cQ j

∣∣∣n+ϵ 1∥∥∥χQ j

∥∥∥
X

. (31)

For A3, by the vanishing moment condition of a j and the Hölder inequality, we find that, for all z ∈ Q̃ j,

for all t ∈ (0, 1) and x ∈
(
2
√

nQ̃ j

)∁
,

A3 ≤

∫
∣∣∣∣y−cQj

∣∣∣∣≥
∣∣∣∣∣∣x−cQj

∣∣∣∣∣∣
2

∣∣∣∣∣∣ 1
tn

[
Φ

(x − y
t

)
−Φ

(x − cQ j

t

)]∣∣∣∣∣∣
×

∫
Q j

∣∣∣a j(z)
∣∣∣ ∣∣∣K (y, z) −K (y, cQ j )

∣∣∣ dzdy

≲

∫
∣∣∣∣y−cQj

∣∣∣∣≥
∣∣∣∣∣∣x−cQj

∣∣∣∣∣∣
2

∣∣∣Φt(x − y)
∣∣∣ ∫

Q j

∣∣∣a j(z)
∣∣∣ ∣∣∣z − cQ j

∣∣∣ϵ∣∣∣y − cQ j

∣∣∣n+ϵ dzdy

+

∫
∣∣∣∣y−cQj

∣∣∣∣≥
∣∣∣∣∣∣x−cQj

∣∣∣∣∣∣
2

∣∣∣∣∣∣ 1
tnΦ

(x − cQ j

t

)∣∣∣∣∣∣
∫

Q j

∣∣∣a j(z)
∣∣∣ ∣∣∣z − cQ j

∣∣∣ϵ∣∣∣y − cQ j

∣∣∣n+ϵ dzdy

≲
lϵj∣∣∣x − cQ j

∣∣∣n+ϵ ∥∥∥a j

∥∥∥
L2

∣∣∣Q j

∣∣∣1/2 ∫
∣∣∣∣y−cQj

∣∣∣∣≥
∣∣∣∣∣∣x−cQj

∣∣∣∣∣∣
2

∣∣∣Φt(x − y)
∣∣∣ dy

+ lϵj
∥∥∥a j

∥∥∥
L2

∣∣∣Q j

∣∣∣1/2
×

∫
∣∣∣∣y−cQj

∣∣∣∣≥
∣∣∣∣∣∣x−cQj

∣∣∣∣∣∣
2

1
tn

tn∣∣∣x − cQ j

∣∣∣n 1∣∣∣y − cQ j

∣∣∣n+ϵ dy

≲
ln+ϵj∣∣∣x − cQ j

∣∣∣n+ϵ 1∥∥∥χQ j

∥∥∥
X

. (32)

We denote θ ∈ [max
{

n
n+δ ,

n
n+ϵ

}
, 1) and combined (29), (30), (31) and (32), we conclude that, for all

x ∈
(
2
√

nQ̃ j

)∁
,

m
(
Ta j,Φ

)
= sup

t∈(0,1)

∣∣∣Φt ∗ Ta j(x)
∣∣∣ ≤ C∥∥∥χQ j

∥∥∥
X

[
M

(
χQ j

)
(x)

] 1
max{ n

n+δ ,
n

n+ϵ } .

As with (26), by Definition 2.4 (i), (1), 0 < θ < s ≤ 1 and (19), we find that

I2 ≲ ∥ f ∥hX . (33)

Finally, combining (28) and (33), we conclude that for any α ∈ (0,∞),

α
∥∥∥∥χ{x∈Rn:m(T f ,Φ)(x)>α}

∥∥∥∥
X
≲ ∥ f ∥hX ,

namely, (27) holds true. This finishes the proof of Theorem 1.2. □

5. Applications

In this section, we apply all above results to the following concrete examples of ball quasi-Banach
function spaces, namely, Morrey spaces, Orlicz-slice spaces and mixed-norm Lebesgue spaces.
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5.1. Morrey spaces.

We first recall the notion of Morrey spaces.

Definition 5.1. Let 0 < q ≤ p ≤ ∞. The Morrey spaceMp
q is defined to be the set of all f ∈ Lq

loc such that

∥ f ∥
M

p
q

:= sup
B∈B
|B|1/p−1/q

{∫
B
| f (y)|qdy

}1/q

< ∞,

where B is as in (2).

Let X be a ball quasi-Banach function space. Let 0 < q ≤ p ≤ ∞. If X := Mp
q , then WX := WMp

q is the
weak Morrey space, hX := hMp

q is the local Hardy–Morrey space, and WhX := WhMp
q is the weak local

Hardy–Morrey space. The definitions of weak Morrey spaces, local Hardy–Morrey spaces and weak local
Hardy–Morrey spaces are as in Definitions 2.5, 2.15 and 3.2 with X replaced byMp

q .
The space Mp

q was introduced by Morrey [24] in 1938. For more details, for example see [10, 21].
Moreover, the Morrey spaceMp

q satisfies Assumptions 2.12, 2.13 and 2.14, respectively, in Lemmas 5.2, 5.3
and 5.4. The following lemma shows that the Assumption 2.12 forMp

q hold true.

Lemma 5.2. [34, Remark 2.4] Let 0 < q ≤ p < ∞. Assume that s ∈ (0, 1] and θ ∈ (0,min{s, q}). Then there exists a
positive constant C such that for any

{
f j

}∞
j=1
⊂M ,

∥∥∥∥∥∥∥∥∥

∞∑
j=1

[
M(θ)

(
f j

)]s


1
s
∥∥∥∥∥∥∥∥∥
M

p
q

≤ C

∥∥∥∥∥∥∥∥∥

∞∑
j=1

∣∣∣ f j

∣∣∣s


1
s
∥∥∥∥∥∥∥∥∥
M

p
q

.

The following Fefferman–Stein vector-valued maximal inequalities for WMp
q hold true, which shows that

the Morrey spaceMp
q satisfies Assumption 2.14.

Lemma 5.3. [14, Theorem 3.2] Let 0 < q ≤ p < ∞. Assume that r ∈ (1,∞) and s ∈ (0, q). Then there exists a
positive constant C such that for any

{
f j

}∞
j=1
⊂M ,

∥∥∥∥∥∥∥∥∥

∞∑
j=1

[
M

(
f j

)]r


1/r

∥∥∥∥∥∥∥∥∥(WMp
q)

1/s

≤ C

∥∥∥∥∥∥∥∥∥

∞∑
j=1

∣∣∣ f j

∣∣∣r


1/r
∥∥∥∥∥∥∥∥∥(WMp

q)
1/s

.

The following lemma shows that the Morrey spaceMp
q satisfies Assumption 2.13.

Lemma 5.4. [38, Lemma 7.6] Let 0 < q ≤ p < ∞, r ∈ (0, q) and s ∈ (q,∞]. Then there exists a positive constant C
such that for any { f }∞j=1 ⊂M , ∥∥∥M((s/r)′)( f )

∥∥∥[
(Mp

q)
1/r

]′ ≤ C∥ f ∥[
(Mp

q)
1/r

]′
,

where
[(
M

p
q

)1/r
]′

is as in (3) with X :=
(
M

p
q

)1/r
.

To apply Theorems 1.1 and 1.2 to Morrey spaces, we need the following weak-type Fefferman–Stein
vector-valued inequality of the Hardy–Littlewood maximal operator M in (5) from Mp

1 to WMp
1 in [38,

Proposition 7.16].
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Proposition 5.5. Let p ∈ [1,∞) and r ∈ (1,∞). Then there exists a positive constant C such that for any
{

f j

}
j∈N
⊂

M
p
1, ∥∥∥∥∥∥∥∥∥


∞∑
j=1

[
M

(
f j

)]r


1
r
∥∥∥∥∥∥∥∥∥

WMp
1

≤ C

∥∥∥∥∥∥∥∥∥

∞∑
j=1

∣∣∣ f j

∣∣∣r


1
r
∥∥∥∥∥∥∥∥∥
M

p
1

.

Applying Lemmas 5.2, 5.3, 5.4 and proposition 5.5, Theorems 1.1 and 1.2, we immediately obtain the
following boundedness of inhomogeneous Calderón–Zygmund operator, as follows.

Theorem 5.6. Let q ∈ (0, 1], p ∈ (0,∞) with q ≤ p. Let T be an inhomogeneous Calderón–Zygmund operator. If
q ∈

[
max

{
n

n+δ ,
n

n+ϵ

}
, 1

]
, then T has a unique extension on hMp

q . Moreover, there exists a positive constant C such
that for any f ∈ hMp

q , ∥∥∥T( f )
∥∥∥

WMp
q
≤ C∥ f ∥hMp

q
.

Theorem 5.7. Let q ∈ (0, 1], p ∈ (0,∞) with q ≤ p. Let T be an inhomogeneous Calderón–Zygmund operator and
T∗loc(1) = 0. If q ∈

[
max

{
n

n+δ ,
n

n+ϵ

}
, 1

]
, then T has a unique extension on hMp

q . Moreover, there exists a positive
constant C such that for any f ∈ hMp

q , ∥∥∥T( f )
∥∥∥

WhMp
q
≤ C∥ f ∥hMp

q
.

5.2. Orlicz-slice spaces.
We begin with the notions of both Orlicz functions and Orlicz spaces (see, for instance, [4, 16, 25]).

Definition 5.8. A function Φ : [0,∞) → [0,∞) is called an Orlicz function if it is nondecreasing and satisfies
Φ(0) = 0,Φ(t) > 0 whenever t ∈ (0,∞) and limt→∞Φ(t) = ∞.

An Orlicz functionΦ is said to be of lower (resp., upper) type p with p ∈ (−∞,∞) if there exists a positive constant
C(p), depending on p, such that, for any t ∈ [0,∞) and s ∈ (0, 1) [resp., s ∈ [1,∞)],

Φ(st) ≤ C(p)spΦ(t)

A function Φ : [0,∞) → [0,∞) is said to be of positive lower p (resp., upper) type if it is of lower (resp., upper)
type p for some p ∈ (0,∞).

Definition 5.9. LetΦ be an Orlicz function with positive lower type p−Φand positive upper type p+Φ. The Orlicz space
LΦ (Rn) is defined to be the set of all measurable functions f such that

∥ f ∥LΦ(Rn) := inf
{
λ ∈ (0,∞) :

∫
Rn
Φ

(
| f (x)|
λ

)
dx ≤ 1

}
< ∞.

Definition 5.10. [37] Let t, q ∈ (0,∞) and Φ be an Orlicz function with positive lower type p−Φand positive upper
type p+Φ. The Orlicz-slice space

(
Eq
Φ

)
t

is defined to be the set of all measurable functions f such that

∥ f ∥(Eq
Φ)l

(Rn) :=


∫
Rn


∥∥∥ f 1B(x,t)

∥∥∥
LΦ(Rn)∥∥∥1B(x,t)

∥∥∥
LΦ(Rn)


q

dx


1
4

< ∞.

Let X be a ball quasi-Banach function space. If X :=
(
Eq
Φ

)
t
, then WX :=

(
WEq

Φ

)
t

is the weak Orlicz-slice

space, hX :=
(
hEq
Φ

)
t

is the local Orlicz-slice Hardy space, and WhX :=
(
WhEq

Φ

)
t

is the weak local Orlicz-slice
Hardy space. The definitions of weak Orlicz-slice spaces, local Orlicz-slice Hardy spaces and weak local
Orlicz-slice Hardy spaces are as in Definitions 2.5, 2.15 and 3.2 with X replaced by

(
Eq
Φ

)
t
.

The following lemma shows that the Assumption 2.12 for
(
Eq
Φ

)
t

hold true.
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Proposition 5.11. [34, Remark 2.4] Let s ∈ (0, 1] and θ ∈
(
0,min

{
s, p−Φ, r

})
. Then there exists a positive constant

C such that for any
{

f j

}∞
j=1
⊂ L1

loc,∥∥∥∥∥∥∥∥∥

∞∑
j=1

[
M(θ)

(
f j

)]s


1
s
∥∥∥∥∥∥∥∥∥(Eq

Φ)t

≤ C

∥∥∥∥∥∥∥∥∥

∞∑
j=1

∣∣∣ f j

∣∣∣s


1
s
∥∥∥∥∥∥∥∥∥(Eq

Φ)t

.

The following vector-valued inequality of the Hardy–Littlewood operatorM in (5) on
(
WEq

Φ

)
t
, which

shows that
(
Eq
Φ

)
t

satisfies Assumption 2.14.

Proposition 5.12. [38, Proposition 7.47] Let t ∈ (0,∞), q, s ∈ (1,∞) andΦ be an Orlicz function with positive lower
type p−Φ ∈ (1,∞) and positive upper type p+Φ. Then there exists a positive constant C, independent of t, such that, for
any sequence

{
f j

}
j∈N
⊂M , ∥∥∥∥∥∥∥∥∥


∑
j∈N

[
M

(
f j

)]s


1
s
∥∥∥∥∥∥∥∥∥(WEq

Φ)t

≤ C

∥∥∥∥∥∥∥∥∥

∑
j∈N

∣∣∣ f j

∣∣∣s


1
s
∥∥∥∥∥∥∥∥∥(WEq

Φ)t

.

The following lemma shows that the weighted Lebesgue space Lp
ω satisfies Assumption 2.13.

Lemma 5.13. [37, Lemma 4.4] Let t, q ∈ (0,∞) and Φ be an Orlicz function with positive lower type p−Φand positive
upper type p+Φ. Let r ∈

(
max

{
q, p+Φ

}
,∞

]
and s ∈

(
0,min

{
p−Φ, q

})
. Then there exists a positive constant C(s,r),

depending on s and r, but independent of t, such that, for any f ∈M ,∥∥∥M((r/s)′)( f )
∥∥∥(

[(Eq
Φ)t]

1/s
)′ ≤ C(s,r)∥ f ∥(

[(Eq
Φ)t]

1/s
)′ ,

Here and hereafter,
[(

Eq
Φ

)
t

]1/s
denotes the 1

s -convexification of
(
Eq
Φ

)
t

as in Definition 2.4(i) with X :=
(
Eq
Φ

)
t

and p := 1/s, and
([(

Eq
Φ

)
t

]1/s
)′

denotes its dual space.

To apply Theorems 1.1 and 1.2 to Orlicz-slice spaces, we need the following weak-type Fefferman–Stein
vector-valued inequality of the Hardy-Littlewood maximal operator M in (5) from

(
Eq
Φ

)
t

to
(
WEq

Φ

)
t

in [38,
Proposition 7.57]. The following lemma shows that the weighted Lebesgue space Lp

ω satisfies Assumption
2.13.

Proposition 5.14. Let t ∈ (0,∞), q ∈ [1,∞), r ∈ (1,∞) and Φ be an Orlicz function with positive lower type
p−Φ ∈ [1,∞) and positive upper type p+Φ. Then there exists a positive constant C, independent of t, such that, for any{

f j

}
j∈Z
⊂M , ∥∥∥∥∥∥∥∥∥


∑
j∈Z

[
M

(
f j

)]r


1
r
∥∥∥∥∥∥∥∥∥(WEq

Φ)t

≤ C

∥∥∥∥∥∥∥∥∥

∑
j∈Z

∣∣∣ f j

∣∣∣r


1
r
∥∥∥∥∥∥∥∥∥(Eq

Φ)t

.

Applying Lemma 5.11, lemma 5.13, Proposition 5.12, Proposition 5.14, Theorems 1.1 and 1.2, we imme-
diately obtain the following boundedness of inhomogeneous Calderón–Zygmund operator, as follows.

Theorem 5.15. Let t ∈ (0,∞), q ∈ (0,∞) andΦ be an Orlicz function with positive lower type p−Φ and positive upper
type p+Φ . Let T be an inhomogeneous Calderón–Zygmund operator. If min

{
p−Φ, q

}
∈

[
max

{
n

n+δ ,
n

n+ϵ

}
, 1

]
, then T has

a unique extension on
(
hEq
Φ

)
t
. Moreover, there exists a positive constant C such that for any f ∈

(
hEq
Φ

)
t
,

∥T f ∥(WEq
Φ)t
≤ C∥ f ∥(hEq

Φ)t
.
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Theorem 5.16. Let t ∈ (0,∞), q ∈ (0,∞) and Φ be an Orlicz function with positive lower type p−Φ and positive
upper type p+Φ . Let T be an inhomogeneous Calderón–Zygmund operator and T∗loc(1) = 0. If min

{
p−Φ, q

}
∈[

max
{

n
n+δ ,

n
n+ϵ

}
, 1

]
, then T has a unique extension on

(
hEq
Φ

)
t
. Moreover, there exists a positive constant C such that

for any f ∈
(
hEq
Φ

)
t
,

∥T f ∥(WhEq
Φ)t
≤ C∥ f ∥(hEq

Φ)t
.

5.3. Mixed-norm Lebesgue spaces.

Definition 5.17. Let p⃗ :=
(
p1, . . . , pn

)
∈ (0,∞]n. The mixed-norm Lebesgue space Lp⃗ is defined to be the set of all

measurable functions f such that

∥ f ∥Lp⃗(Rn) :=


∫
R

· · ·

[∫
R

∣∣∣ f (x1, . . . , xn)
∣∣∣p1 dx1

] p2
p1

· · · dxn


1

pn

< ∞

with the usual modifications made when pi = ∞ for some i ∈ {1, . . . ,n}.

Let X be a ball quasi-Banach function space. If X := Lp⃗, then WX := WLp⃗ is the weak mixed-norm
Lebesgue space, hX := hp⃗ is the local mixed-norm Hardy space, and WhX := Whp⃗ is the weak local mixed-
norm Hardy space. The definitions of weak mixed-norm Lebesgue spaces, local mixed-norm Hardy spaces
and weak local mixed-norm Hardy spaces are as in Definitions 2.5, 2.15 and 3.2 with X replaced by Lp⃗.

The following lemma shows that the Assumption 2.12 for Lp⃗ hold true. For any p⃗ :=
(
p1, . . . , pn

)
∈ (0,∞)n,

we always let p− := min
{
p1, . . . , pn

}
and p+ := max

{
p1, . . . , pn

}
. By [34, Remark 2.4], we can easily obtain the

following conclusion and we omit the details here.

Lemma 5.18. Let p⃗ ∈ (0,∞)n. Assume that s ∈ (0, 1) and θ ∈ (0,min{s, p−}). Then there exists a positive constant
C such that, for any

{
f j

}∞
j=1
⊂M , ∥∥∥∥∥∥∥∥∥


∞∑
j=1

[
M(θ)

(
f j

)]s


1
s
∥∥∥∥∥∥∥∥∥

Lp⃗

≤ C

∥∥∥∥∥∥∥∥∥

∞∑
j=1

∣∣∣ f j

∣∣∣s


1
s
∥∥∥∥∥∥∥∥∥

Lp⃗

,

where
(
Lp⃗

)1/s
denotes the 1

s -convexification of Lp⃗ as in Definition 2.4(i) with X and p replaced, respectively, by Lp⃗ and
1/s.

The following vector-valued inequality of the Hardy-Littlewood operatorM in (5) on WLp⃗, which shows
that Lp⃗ satisfies Assumption 2.14.

Lemma 5.19. [38, Theorem 7.25] Let p⃗ ∈ (1,∞)n and s ∈ (1,∞). Then there exists a positive constant C such that,
for any sequence

{
f j

}
j∈N
⊂M , ∥∥∥∥∥∥∥∥∥


∑
j∈N

[
M

(
f j

)]s


1
s
∥∥∥∥∥∥∥∥∥

WLp⃗

≤ C

∥∥∥∥∥∥∥∥∥

∑
j∈N

∣∣∣ f j

∣∣∣s


1
s
∥∥∥∥∥∥∥∥∥

WLp⃗

.

We also need the following Fefferman–Stein vector-valued maximal inequality on WLp⃗.The following
lemma shows that the Assumption 2.13 for Lp⃗ hold true. By [15, Lemma 3.5] and [2, Theorem 1.a], we can
easily obtain the following conclusion.
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Lemma 5.20. [38, Lemma 7.26] Let p⃗ ∈ (0,∞)n, r ∈
(
0, p−

]
and s ∈

(
p+,∞

]
. Then there exists a positive constant C

such that, for any f ∈M , ∥∥∥M((s/r)′)( f )
∥∥∥[

(Lp⃗)1/r
]′ ≤ C∥ f ∥[

(Lp⃗)1/r
]′ ,

where
[(

Lp⃗
)1/r

]′
is as in (3) with X :=

(
Lp⃗

)1/r
.

To discuss the boundedness of inhomogeneous Claderón–Zygmund operators , we need the following
vector-valued inequality of the Hardy–Littlewood maximal operatorM in (5) from Lp⃗ to WLp⃗.

Proposition 5.21. [38, Proposition 7.33] Let p⃗ ∈ [1,∞)n and r ∈ (1,∞). Then there exists a positive constant C
such that, for any

{
f j

}
j∈N
⊂M , ∥∥∥∥∥∥∥∥∥


∑
j∈N

[
M

(
f j

)]r


1
r
∥∥∥∥∥∥∥∥∥

WLp⃗

≤ C

∥∥∥∥∥∥∥∥∥

∑
j∈N

∣∣∣ f j

∣∣∣r


1
r
∥∥∥∥∥∥∥∥∥

Lp⃗

.

Applying Lemma 5.18, Lemma 5.19 and 5.20, Proposition 5.21, Theorems 1.1 and 1.2, we immediately
obtain the following boundedness of inhomogeneous Calderón–Zygmund operator as follows.

Theorem 5.22. Let p⃗ ∈ (0,∞)n. Let T be an inhomogeneous Calderón–Zygmund operator. If p− ∈
[
max

{
n

n+δ ,
n

n+ϵ

}
, 1

]
,

then T has a unique extension on hp⃗. Moreover, there exists a positive constant C such that for any f ∈ hp⃗,∥∥∥T( f )
∥∥∥

WLp⃗ ≤ C∥ f ∥hp⃗ .

Theorem 5.23. Let p⃗ ∈ (0,∞)n. Let T be an inhomogeneous Calderón–Zygmund operator and T∗loc(1) = 0. If
p− ∈

[
max

{
n

n+δ ,
n

n+ϵ

}
, 1

]
, then T has a unique extension on hp⃗. Moreover, there exists a positive constant C such that

for any f ∈ hp⃗, ∥∥∥T( f )
∥∥∥

Whp⃗ ≤ C∥ f ∥hp⃗ .
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