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Abstract. In this paper, we study some types of wavelet packets and the corresponding wavelet transforms
associated with the Riemann-Liouville operator on the half plane [0,+∞[×R. For these transforms, we
establish Plancherel theorems, orthogonality properties, Calderón’s reproducing formulas, reconstruction
formulas and their scale discrete scaling functions.

1. Introduction

Wavelet analysis is the most widely used mathematical tool which delas various applications in image
processing, wave propagation, data compression, computer graphics, and other areas of engineering and
sciences. In terms of the classical Fourier transform, many smooth functions fail to become a wavelet. In
such situations, the Riemann-Liouville operator associated with singular operators plays an important role.
From the papers of [1, 2], we consider the singular partial differential operators defined on ]0,+∞[×R by{

∆ = ∂
∂v ,

D = ∂2

∂u2 +
2α+1

u
∂
∂u −

∂2

∂v2 , α ⩾ 0.

The following integral transform associated with ∆ andD is called the Riemann-Liouville operator defined
on the space of continuous functions on R2, even with respect to the first variable, by

R( f )(u, v) =


α
π

∫ 1

−1

∫ 1

−1
f (us
√

1 − t2, v + ut)(1 − t2)α−
1
2 (1 − s2)α−1 dt ds;

if α > 0,
1
π

∫ 1

−1
f (u
√

1 − t2, v + ut)
dt

√

1 − t2
; if α = 0.
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Many harmonic analysis results related to R have been discussed in [2, 3, 14] and others. Baccar, Hamadi
and Rachdi [2], obtained best approximation for the Weierstrass transform connected with R. Baccar and
Rachdi [3], introduced DLp type spaces and studied the convolution product by concerning the Riemann-
Liouville operator. In the same year, Rachdi and Rouz [14], taking the Fourier transform associated with
R and we give a new description of the Schwartz spaces and prove a Paley-Wiener and a Paley-Wiener-
Schwartz theorems. Recently, many researchers have been examining the behavior of the Fourier transform
associated with the Riemann-Liouville operator (4), with respect to various problems that have already
been explored for the classical Fourier transform. Hleili [8], proved Calderon’s reproducing formulas and
extremal functions for the Riemann Liouville -multiplier operators. Hleili [9], introduced variation of uncer-
tainty principles for the continuous wavelet transform by considering the operator R. Hleili and Omri [10],
established Lp

− Lq version of Miyachi’s theorem in terms of the Riemann-Liouville operator. Hleili, Omri
and Rachdi [11], proved some uncertainty principle for the Fourier transform connected withR. Rachdi and
Herch [13], by considering the Riemann Liouville operator, uncertainty principles for continuous wavelet
transform is discussed.
Wavelet analysis appeared in the early 1980s. This theory is a work which brought together engineers, math-
ematicians and physicists who had developed similar ideas in their respective fields. The mathematical
synthesis led to new results, which provided broader perspectives in each original discipline. The wavelet
transform reduces calculation time, facilitates analysis, transmission and compression of information. This
transform has found many applications in a variety of signal analysis tasks, such as geophysics, medical
image processing and acoustics to quantum theory (see [6, 7] and the references therein). Wavelet packets
are an advanced extension of wavelet transforms that allow for a more flexible and detailed decomposition
of signals. While the classical wavelet transform splits the signal into a low-frequency approximation and
high-frequency details, wavelet packets go further by splitting both the approximation and detail com-
ponents at each level into additional frequency bands. This makes wavelet packets particularly useful
in applications like signal compression, noise reduction, and feature extraction. Many authors observed
certain types of wavelet packets in different settings. Some of them are listed below: Chui [5], introduced
to wavelets and discussed various important properties of wavelets. Sifi [12], examined two types of
generalized wavelet packets and the corresponding generalized wavelet transforms in connection with
Laguerre functions on [0,+∞[×R, and derived several properties. Trimèche [15], constructed generalized
harmonic analysis and wavelet packets associated with the Bessel operator. Chabeh and Mourou [4], ob-
served wavelet packets associated with a Dunkl type operator onR and many obtained interesting results.
Inspired from the papers of [4, 5, 12, 15], we are devoted to define and study some types of wavelet packets
associated with the Riemann-Liouville operator.

This work is organized as follows. In Section 2, we briefly summarize some harmonic analysis results
related to the Riemann-Liouville operator R. Section 3 is devoted to introducing the first type of wavelet
packets associated with the Riemann-Liouville operator, along with some harmonic analysis properties,
namely a Plancherel theorem and a reconstruction formula. In Section 4, we introduce the scale discrete
scaling function and present its properties. Finally, in Section 5, we define and study the S-wavelet packet,
its dual, and the corresponding S-wavelet transforms.

2. Preliminaries

In this section, we recall some harmonic analysis results related to the Riemann-Liouville operator. For
more details, see [1, 2, 13]. We denote by
• κ the measure defined on [0,+∞[×R by

dκ(u, v) =
u2α+1

2αΓ(α + 1)
du ⊗

dv

(2π)
1
2

,
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• Lp(dκ), p ∈ [1,+∞] the Lebesgue space of measurable functions f on [0,+∞[×R such that ∥ f ∥p,κ < +∞,
with

∥ f ∥p,κ =


(∫ +∞

0

∫
R

| f (u, v)|pdκ(u, v)
) 1

p

, if p ∈ [1,+∞[

ess sup(u,v)∈[0,+∞[×R | f (u, v)|, if p = +∞.

• Υ the set given by
Υ = R ×R ∪

{
(iu, v), (u, v) ∈ R ×R, |u| ⩽ |v|

}
.

• BΥ+ the σ-algebra defined on Υ+ by,

BΥ+ =
{
θ−1(B) , B ∈ BBor([0,+∞[×R)

}
,

whereBBor([0,+∞[×R), is the usual borelian σ-algebra on [0,+∞[×R, and θ is the bijective function defined
on the set

Υ+ = [0,+∞[×R ∪
{
(is, y) ; (s, y) ∈ [0,+∞[×R; s ⩽ |y|

}
,

by

θ(s, y) = (
√

s2 + |y|2, y).

• κ the measure defined on BΥ+ by, κ(B) = κ(θ(B)).
• Lp (dκ) , p ∈ [1,+∞] the Lebesgue space of measurable functions f on Υ+, such that

∥ f ∥p,κ =


(∫ ∫

Υ+

| f (ζ, ξ)|pdκ(ζ, ξ)
) 1

p

< +∞, if p ∈ [1,+∞[

ess sup(ζ,ξ)∈Υ+ | f (ζ, ξ)| < +∞, if p = +∞.

For every (ζ, ξ) ∈ C × C, the system 

∆w(u,w) = −iξw(u, v),
Dw(u, v) = −ζ2w(u, v),
w(0, 0) = 1,

∂w
∂u

(0, v) = 0, v ∈ R,

admits a unique solution ϑ(ζ,ξ) given by

ϑ(ζ,ξ)(u, v) = jα(u
√
ζ2 + |ξ|2)e−iξv, ∀(u, v) ∈ R ×R,

where jα is the modified Bessel function defined by

jα(z) = Γ(α + 1)
+∞∑
k=0

(−1)k

k!Γ(α + 1 + k)
(
z
2

)2k, z ∈ C.

The function ϑ(ζ,ξ) is bounded on R ×R if and only if (ζ, ξ) belongs to the set Υ and in this case

sup
(u,v)∈R×R

∣∣∣ϑ(ζ,ξ)(u, v)
∣∣∣ = 1. (1)

Definition 2.1. [1]
(1) For every (u, v) ∈ [0,+∞[×R, the generalized translation operator T(u,v) associated with the Riemann-Liouville
operator is defined on Lp(dκ), p ∈ [1,+∞], by

T(u,v)( f )(s, y) =
Γ(α + 1)
√
πΓ(α + 1

2 )

∫ π

0
f (
√

u2 + v2 + 2uv cosθ, v + y) sin2α(θ)dθ. (2)
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(2) The generalized convolution product of f , 1 ∈ L1(dκ) is defined by

f ∗ 1(u, v) =
∫ +∞

0

∫
R

T(u,−v)( f̌ )(s, y)1(s, y)dκ(s, y), ∀(u, v) ∈ [0,+∞[×R, (3)

where f̌ (s, y) = f (s,−y).

For every f ∈ Lp(dκ), p ∈ [1,+∞], and (u, v) ∈ [0,+∞[×R, the function T(u,v)( f ) belongs to Lp(dκ) and we
have

∥T(u,v)( f )∥p,κ ⩽ ∥ f ∥p,κ.

Definition 2.2. [1] The Fourier transform B associated with the Riemann-Liouville operator is defined on L1(dκ) by

B( f )(ζ, ξ) =
∫ +∞

0

∫
R

f (u, v)ϑ(ζ,ξ)(u, v)dκ(u, v), ∀(ζ, ξ) ∈ Υ. (4)

Theorem 2.3. (Inversion formula) [1] Let f ∈ L1(dκ) such that B( f ) ∈ L1(dκ), then for almost every (u, v) ∈
[0,+∞[×R,

f (u, v) =
∫ ∫

Υ+

B( f )(ζ, ξ)ϑ(ζ,ξ)(u, v)dκ(ζ, ξ). (5)

Theorem 2.4. (Plancherel theorem) [1] The Fourier transform B can be extended to an isometric isomorphism from
L2(dκ) onto L2(dκ). In particular, for every f ∈ L2(dκ),

∥B( f )∥2,κ = ∥ f ∥2,κ. (6)

Proposition 2.5. [2]
(1) For every f ∈ L1(dκ) and (u, v) ∈ [0,+∞[×R, the function T(u,v)( f ) belongs to L1(dκ), and we have

B(T(u,−v)( f ))(ζ, ξ) = ϑ(ζ,ξ)(u, v)B( f )(ζ, ξ), ∀(ζ, ξ) ∈ Υ. (7)

(2) The Fourier transform B is a bounded linear operator from L1(dκ) into L∞(dκ) and that for every f ∈ L1(dκ), we
have

∥B( f )∥∞,κ ⩽ ∥ f ∥1,κ.

(3) For every f , 1 ∈ L2(dκ); the function f ∗ 1 belongs to the space Ce,0(R ×R) consisting of continuous functions h
on R ×R, even with respect to the first variable and such that lim

u2+|v|2−→+∞
h(u, v) = 0.

Moreover,
f ∗ 1 = B−1(B( f )B(1)),

where B−1 is the mapping defined on L1(dκ) by

B
−1(1)(u, v) =

∫ ∫
Υ+

1(ζ, ξ)ϑ(ζ,ξ)(u, v)dκ(ζ, ξ).

Corollary 2.6. [2] For all functions f and g in L2(dκ), we have∫ +∞

0

∫
R

f (u, v)1(u, v)dκ(u, v) =
∫ ∫

Υ+

B( f )(ζ, ξ)B(1)(ζ, ξ)dκ(ζ, ξ). (8)

Remark 2.7. [13] Let f , 1 ∈ L2(dκ), the function f ∗ 1 belongs to L2(dκ) if and only if B( f )B(1) belongs to L2(dκ),
and we have

∥B( f )B(1)∥2,κ = ∥ f ∗ 1∥2,κ.
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3. P-wavelet packets associated with the Riemann-Liouville operator

In this section, we present harmonic analysis results related to the P-wavelet packets associated with
the Riemann-Liouville operator R. Specifically, we prove a Plancherel theorem and derive a reconstruction
formula.
Let a > 0. The dilation operator Da of a measurable function ψ is defined by

Da(ψ) =
1

aα+
3
2

ψ(
r
a
,

x
a

), ∀(r, x) ∈ [0,+∞[×R.

This operators satisfies the following properties:
(1) For every ψ in L2(dκ), the function Da(ψ) belongs to L2(dκ), and we have

∥Da(ψ)∥2,κ = ∥ψ∥2,κ, (9)

and

B(Da(ψ))(s, y) = aα+
3
2B(ψ)(as, ay). (10)

(2) For every (r, x) ∈ [0,+∞[×R, we have

DaT(r,x) = T(ar,ax)Da.

Definition 3.1. Let a > 0. A generalized wavelet on [0,+∞[×R is a measurable functionψ on [0,+∞[×R satisfying,
for almost all (ζ, ξ) ∈ Υ\{0[0,+∞[×R}, the condition

0 < Cψ =
∫ +∞

0
|B(ψ)(aζ, aξ)|2

da
a
< ∞.

Example 3.2. The function 1t, t > 0 defined on [0,+∞[×R, by

1t(u, v) =
1

(2t)α+
3
2

e−
1
4t (u2+v2),

satisfies,

B(1t)(ζ, ξ) = e−t(ζ2+2ξ2).

The function ψ(u, v) = − d
dt1t(u, v), is a generalized wavelet on [0,+∞[×R, and we have Cψ = 1

8t2 .

Proposition 3.3. Let ψ ∈ L2(dκ) be a generalized wavelet on [0,+∞[×R and (δi)i∈Z be a scale sequence in ]0,+∞[,
which is decreasing, and such that

lim
i−→−∞

δi = +∞, and lim
i−→+∞

δi = 0. (11)

Then

(1) The function (ζ, ξ) −→
(

1
Cψ

∫ δi

δi+1

|B(ψ)(aζ, aξ)|2
da
a

) 1
2

belongs to L2(dκ).

(2) There exists a function ψP
i ∈ L2(dκ), such that for every (ζ, ξ) ∈ Υ,

B(ψP
i )(ζ, ξ) =

(
1

Cψ

∫ δi

δi+1

|B(ψ)(aζ, aξ)|2
da
a

) 1
2

. (12)
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Proof. (1) By using Fubini-Tonelli’s theorem, relations (6), (9) and (10), we obtain

1
Cψ

∫ ∫
Υ+

∫ δi

δi+1

|B(ψ)(aζ, aξ)|2
da
a

dκ(ζ, ξ)

=
1

Cψ

∫ δi

δi+1

(∫ ∫
Υ+

|B(ψ)(aζ, aξ)|2dκ(ζ, ξ)
)

da
a

=
1

Cψ

∫ δi

δi+1

(∫ ∫
Υ+

|B(Da(ψ))(ζ, ξ)|2dκ(ζ, ξ)
)

da

aα+
5
2

=
∥ψ∥22,κ

(α + 3
2 )Cψ

( 1

δ
α+ 3

2
i+1

−
1

δ
α+ 3

2
i

)
< ∞.

This shows that the function (ζ, ξ) −→
(

1
Cψ

∫ δi

δi+1

|B(ψ)(aζ, aξ)|2
da
a

) 1
2

belongs to L2(dκ).

(2) It follows from the Plancherel theorem, Theorem 2.4.

Definition 3.4. The function ψP
i , i ∈ Z is called P-wavelet packet member of step i and the sequence (ψP

i )i∈Z is called
P-wavelet packet.

Corollary 3.5. For every i ∈ Z, the function ψP
i satisfies the following properties,

0 ⩽ B(ψP
i )(ζ, ξ) ⩽ 1, (ζ, ξ) ∈ Υ, (13)

and
+∞∑

i=−∞

(B(ψP
i )(ζ, ξ))2 = 1, (ζ, ξ) ∈ Υ. (14)

Let (ψP
i )i∈Z be a P-wavelet packet. We consider for every i ∈ Z and (r, x) ∈ [0,+∞[×R, the familyψP

i,(r,x) given
by

ψP
i,(r,x)(s, y) = T(r,x)(ψP

i )(s, y), ∀(s, y) ∈ [0,+∞[×R, (15)

where T(r,x) are the generalized translation operators given by (2). We note that

∀i ∈ Z, ∀(r, x) ∈ [0,+∞[×R, ∥ψP
i,(r,x)∥2,κ ⩽ ∥ψ

P
i ∥2,κ. (16)

Definition 3.6. Let (ψP
i )i∈Z be a P-wavelet packet. The P-wavelet packet transformΦP

ψ associated with the Riemann-
Liouville operator is defined on L2(dκ), for all i ∈ Z and (r, x) ∈ [0,+∞[×R, by

ΦP
ψ( f )(i, r, x) =

∫ +∞

0

∫
R

f (s, y)ψP
i,(r,x)(s, y)dκ(s, y).

This transform can also be written in the form

ΦP
ψ( f )(i, r, x) = f ∗

ˇ
ψP

i (r,−x), (17)

where ∗ is the generalized convolution product given by (3).

Theorem 3.7. Let (ψP
i )i∈Z be a P-wavelet packet.

(1) (Plancherel formula for ΦP
ψ): For every f ∈ L2(dκ), we have∫ +∞

0

∫
R

| f (r, x)|2dκ(r, x) =
+∞∑

i=−∞

∫ +∞

0

∫
R

|ΦP
ψ( f )(i, s, y)|2dκ(s, y).
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(2) (Parseval formula for ΦP
ψ): For every f , 1 ∈ L2(dκ), we have

∫ +∞

0

∫
R

f (r, x)1(r, x)dκ(r, x) =
+∞∑

i=−∞

∫ +∞

0

∫
R

ΦP
ψ( f )(i, s, y)ΦP

ψ(1)(i, s, y)dκ(s, y).

Proof. Using Remark 2.7 and (17), we get∫ +∞

0

∫
R

|ΦP
ψ( f )(i, s, y)|2dκ(s, y) =

∫ +∞

0

∫
R

| f ∗
ˇ
ψP

i (s,−y)|2dκ(s, y)

=

∫ +∞

0

∫
R

| f ∗
ˇ
ψP

i (s, y)|2dκ(s, y)

=

∫ ∫
Υ+

|B( f )(ζ, ξ)|2|B(ψP
i )(ζ, ξ)|2dκ(ζ, ξ). (18)

Now, by Fubini-Tonelli’s theorem, the relations (6) and (14), we obtain

+∞∑
i=−∞

∫ +∞

0

∫
R

|ΦP
ψ( f )(i, s, y)|2dκ(s, y)

=

∫ ∫
Υ+

|B( f )(ζ, ξ)|2
 +∞∑

i=−∞

|B(ψP
i )(ζ, ξ)|2

 dκ(ζ, ξ)

=

∫ +∞

0

∫
R

| f (r, x)|2dκ(r, x).

Which gives the desired result.
(2) follows from the polarization identity and (1) of Theorem 3.7.

Lemma 3.8. Let (ψp
i )i∈Z be a P-wavelet packet such that B(ψ) ∈ L∞(dκ). Then, for every m,n ∈ Z with m < n, the

function

∇
p
δn,δm

(ζ, ξ) =
1

Cψ

∫ δm

δn

|B(ψ)(aζ, aξ)|2
da
a
,

belongs to L2(dκ), and we have

∥∇
p
δn,δm
∥

2
2,κ ⩽

1
C2
ψ(4α + 5)

(
1
δn
−

1
δm

)(
1

δ4α+5
n
−

1
δ4α+5

m
)∥ψ∥22,κ∥B(ψ)∥2∞,κ.

Proof. Using Hölder’s inequality for the measure da, we get for every (ζ, ξ) ∈ Υ

|∇
p
δn,δm

(ζ, ξ)|2 ⩽
1

C2
ψ

(
1
δn
−

1
δm

)
∫ δm

δn

|B(ψ)(aζ, aξ)|4da.

Now, using Fubini-Tonelli’s theorem and (10), we obtain

∥∇
p
δn,δm
∥

2
2,κ ⩽

1
C2
ψ

(
1
δn
−

1
δm

)
∫ δm

δn

[∫ ∫
Υ+

|B(ψ)(aζ, aξ)|4dκ(ζ, ξ)
]

da

⩽
1

C2
ψ(4α + 5)

(
1
δn
−

1
δm

)(
1

δ4α+5
n
−

1
δ4α+5

m
)∥B(Da(ψ))∥22,κ∥B(ψ)∥2∞,κ.

Then, the relations (6) and (9) gives the desired result.
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In the following, we establish reproducing inversion formula of Calderón’s type for the mapping ΦP
ψ.

Theorem 3.9. Let (ψp
i )i∈Z be a P-wavelet packet such thatB(ψ) ∈ L∞(dκ). Then, for every f ∈ L2(dκ) and m,n ∈ Z

with m < n, the function

f p
m,n(r, x) =

n−1∑
i=m

∫ +∞

0

∫
R

ΦP
ψ(i, r, x)ψp

i,(r,x)(s, y)dκ(r, x),

belongs to L2(dκ), and satisfies
lim

(m,n)−→(−∞,+∞)
∥ f p

m,n − f ∥2,κ = 0.

Proof. Let f in L2(dκ). By (7), (8), (15) and (17), we have∫ +∞

0

∫
R

ΦP
ψ( f )(i, s, y)ψP

i,(r,x)(s, y)dκ(s, y)

=

∫ +∞

0

∫
R

f ∗
ˇ
ψP

i (s,−y)T(r,x)(ψP
i )(s, y)dκ(s, y)

=

∫ +∞

0

∫
R

f ∗
ˇ
ψP

i (s, y)T(r,−x)(ψ̌P
i )(s, y)dκ(s, y)

=

∫ ∫
Υ+

B( f )(s, y)B(
ˇ
ψP

i )(s, y)B(T(r,−x)(
ˇ
ψP

i ))(s, y)dκ(s, y)

=

∫ ∫
Υ+

B( f )(s, y)(B(ψP
i )(s, y))2ϑ(s,y)(r, x)dκ(s, y).

Then, from Fubini’s theorem and (12), we obtain

f p
m,n(r, x) =

∫ ∫
Υ+

B( f )(s, y)∇p
δn,δm

(s, y)ϑ(s,y)(r, x)dκ(s, y)

=B−1(B( f )∇p
δn,δm

)(r, x).

On the other hand, the function ∇p
δn,δm

belongs to L∞(dκ), from this fact and (2.4), the function f p
m,n ∈ L2(dκ),

and we have
B( f p

m,n) = B( f )∇p
δn,δm

.

Using the previous result and (2.4), we get

∥ f p
m,n − f ∥22,κ =

∫ ∫
Υ+

|B( f )(ζ, ξ)|2(∇p
δn,δm

(ζ, ξ) − 1)2dκ(ζ, ξ).

The relation (4.6) follows from the fact that

lim
(m,n)−→(−∞,+∞)

∇
p
δn,δm

(ζ, ξ) = 1,

and the dominated convergence theorem.

Theorem 3.10. Let (ψp
i )i∈Z be a P-wavelet packet. Then, for every f ∈ L1(dκ)∩ L2(dκ) such that B( f ) ∈ L1(dκ), we

have the reconstruction formula for ψP
i :

f (r, x) =
+∞∑

i=−∞

J(i, r, x), a.e, (r, x) ∈ [0,+∞[×R,

where J(i, r, x) =
∫ +∞

0

∫
R

ΦP
ψ( f )(i, s, y)ψP

i,(r,x)(s, y)dκ(s, y).
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Proof. Let f in L1(dκ) ∩ L2(dκ).∫ +∞

0

∫
R

ΦP
ψ( f )(i, s, y)ψP

i,(r,x)(s, y)dκ(s, y)

=

∫ ∫
Υ+

B( f )(s, y)(B(ψP
i )(s, y))2ϑ(s,y)(r, x)dκ(s, y).

On the other hand, the function (s, y) 7−→ ΦP
ψ( f )(i, s, y) = f ∗

ˇ
ψP

i (s,−y) belongs to L2(dκ) and also the function
(s, y) 7−→ ψP

i,(r,x)(s, y) = T(r,x)(ψ
p
i )(s, y) belongs to L2(dκ), then, from the Cauchy-Schwarz’s inequality the

integral J(i, r, x) is absolutely convergent.
Now, from Fubini-Tonelli’s theorem, (1) and (14), we obtain

+∞∑
i=−∞

|J(i, r, x)| =
+∞∑

i=−∞

∣∣∣∣ ∫ ∫
Υ+

B( f )(s, y)|B(ψP
i )(s, y)|2ϑ(s,y)(r, x)dκ(s, y)

∣∣∣∣
⩽

∫ ∫
Υ+

|B( f )(s, y)|
+∞∑

i=−∞

|B(ψP
i )(s, y)|2|dκ(s, y)

= ∥B( f )∥1,κ < ∞.

This shows that the series
+∞∑

i=−∞

J(i, r, x) is absolutely convergent, and therefore

+∞∑
i=−∞

J(i, r, x) =
+∞∑

i=−∞

∫ ∫
Υ+

B( f )(s, y)|B(ψP
i )(s, y)|2ϑ(s,y)(r, x)dκ(s, y).

Again, applying Fubini’s theorem for the previous result, we get

+∞∑
i=−∞

J(i, r, x) =
∫ ∫

Υ+

B( f )(s, y)
( +∞∑

i=−∞

|B(ψP
i )(s, y)|2

)
ϑ(s,y)(r, x)dκ(s, y).

Then, the result follows from (5) and (14).

4. Scale discrete scaling function on [0,+∞[×R

In this section, we define and study a scale discrete scaling function on [0,+∞[×R, corresponding to the
P-wavelet packet (ψp

i )i∈Z studied in the previous section.

Proposition 4.1. Let (ψp
i )i∈Z be a P-wavelet packet. Then

(1) For every j ∈ Z and (ζ, ξ) ∈ Υ, we have

j−1∑
i=−∞

(B(ψp
i )(ζ, ξ))2 =

1
Cψ

∫ +∞

δ j

|B(ψ)(aζ, aξ)|2
da
a
.

(2) For every j ∈ Z, there exists a function ϕp
j ∈ L2(dκ), such that

B(ϕp
j )(ζ, ξ) =

 j−1∑
i=−∞

(B(ψp
i )(ζ, ξ))2


1
2

, ∀(ζ, ξ) ∈ Υ. (19)
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Proof. (1) From (11) and (13), we obtain

j−1∑
i=−∞

(B(ψp
i )(ζ, ξ))2 =

1
Cψ

j−1∑
i=−∞

∫ δi

δi+1

|B(ψ)(aζ, aξ)|2
da
a

=
1

Cψ

∫ +∞

δ j

|B(ψ)(aζ, aξ)|2
da
a
.

(2) It follows from the Plancherel theorem: Theorem 2.4.

Definition 4.2. The sequence (ϕp
j ) j∈Z is called scale discrete scaling function.

For j ∈ Z, the function ϕp
j satisfy the following property

(1)
0 ⩽ B(ϕp

j )(ζ, ξ) ⩽ 1, and lim
j−→+∞

B(ϕp
j )(ζ, ξ) = 1, ∀(ζ, ξ) ∈ Υ. (20)

(2)
(B(ψp

j )(ζ, ξ))2 = (B(ϕp
j+1)(ζ, ξ))2

− (B(ϕp
j )(ζ, ξ))2, ∀(ζ, ξ) ∈ Υ,

and
+∞∑

j=−∞

(B(ψp
j )(ζ, ξ))2 =

+∞∑
j=−∞

(B(ϕp
j+1)(ζ, ξ))2

− (B(ϕp
j )(ζ, ξ))2 = 1. (21)

For all j ∈ Z, we define the function ϕp
j,(r,x), by

ϕp
j,(r,x)(s, y) = T(r,x)(ϕ

p
j )(s, y), ∀(s, y) ∈ [0,+∞[×R.

The function ϕp
j,(r,x) belongs to L2(dκ), and we have

∥ϕp
j,(r,x)∥2,κ ⩽ ∥ϕ

p
j ∥2,κ.

Theorem 4.3. (1) (Plancherel formula associated with (ϕp
j ) j∈Z): For every f ∈ L2(dκ), we have

∥ f ∥22,κ = lim
j−→+∞

∫ +∞

0

∫
R

|⟨ f , ϕp
j,(r,x)⟩κ|

2dκ(r, x),

where ⟨., .⟩κ is the scalar product on L2(dκ).
(2) (Parseval formula associated with (ϕp

j ) j∈Z): For every f , 1 ∈ L2(dκ), we have∫ +∞

0

∫
R

f (r, x)1(r, x)dκ(r, x) = lim
j−→+∞

∫ +∞

0

∫
R

⟨ f , ϕp
j,(s,y)⟩κ⟨1, ϕ

p
j,(s,y)⟩κdκ(s, y).

Proof. (1) For every f ∈ L2(dκ) and j ∈ Z, we have

⟨ f , ϕp
j,(r,x)⟩κ = f ∗

ˇ
ϕp

j (r,−x). (22)

Then, according to Remark 2.7, we obtain∫ +∞

0

∫
R

|⟨ f , ϕp
j,(r,x)⟩κ|

2dκ(r, x) =
∫ +∞

0

∫
R

| f ∗
ˇ
ϕp

j (r,−x)|2dκ(r, x)

=

∫ ∫
Υ+

|B( f )(ζ, ξ)|2|B(ϕp
j )(ζ, ξ)|2dκ(ζ, ξ). (23)

Then, the desired result follows from dominated convergence theorem, (6) and (20).
(2) We obtain the result from (1).
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Theorem 4.4. Let (ϕp
i )i∈Z be a scale discrete scaling function which corresponds to the P-wavelet packet (ψp

i )i∈Z.
(1) (Plancherel formula associated with (ϕp

j ) j∈Z and Φp
ψ): For every f ∈ L2(dκ), we have

∥ f ∥22,κ =
∫ +∞

0

∫
R

|⟨ f , ϕp
j,(r,x)⟩κ|

2dκ(r, x) +
+∞∑
j=i

∫ +∞

0

∫
R

|Φ
p
ψ( f )(i, r, x)|2dκ(r, x).

(2) (Parseval formula associated with (ϕp
j ) j∈Z and Φp

ψ): For every f , 1 ∈ L2(dκ), we have

∫ +∞

0

∫
R

f (r, x)1(r, x)dκ(r, x) =
∫ +∞

0

∫
R

⟨ f , ϕp
j,(s,y)⟩κ⟨1, ϕ

p
j,(s,y)⟩κdκ(s, y)

+

+∞∑
j=i

∫ +∞

0

∫
R

Φ
p
ψ( f )(i, r, x)Φp

ψ(1)(i, r, x)dκ(r, x).

Proof. (1) From Fubini-Tonelli’s theorem, relations (18), (19) and (23), we get∫ +∞

0

∫
R

|⟨ f , ϕp
j,(r,x)⟩κ|

2dκ(r, x) +
+∞∑
j=i

∫ +∞

0

∫
R

|Φ
p
ψ( f )(i, r, x)|2dκ(r, x)

=

∫ ∫
Υ+

|B( f )(ζ, ξ)|2
+∞∑

i=−∞

|B(ψp
i )(ζ, ξ)|2dκ(ζ, ξ).

Then, (6) and (21), gives the desired result.
(2) It follows from (1).

Lemma 4.5. Let (ϕp
i )i∈Z be a scale discrete scaling function which corresponds to the P-wavelet packet (ψp

i )i∈Z such
that B(ψ) ∈ L∞(dκ). Then, for every n ∈ Z and (ζ, ξ) ∈ Υ, the function

∇
p
δn,∞

(ζ, ξ) =
1

Cψ

∫ +∞

δn

|B(ψ)(aζ, aξ)|2
da
a
,

belongs to L2(dκ).

Proof. The proof is similar to the proof of Lemma 3.8.

Theorem 4.6. Let (ϕp
i )i∈Z be a scale discrete scaling function which corresponds to the P-wavelet packet (ψp

i )i∈Z such
that B(ψ) ∈ L∞(dκ). Then, for every f ∈ L2(dκ) and n ∈ Z, the function

f p
∞,n(r, x) =

∫ +∞

0

∫
R

⟨ f , ϕp
n,(r,x)⟩κϕ

p
n,(r,x)(s, y)dκ(s, y),

belongs to L2(dκ) and satisfies
lim

n−→+∞
∥ f p
∞,n − f ∥2,κ = 0.

Proof. Let f ∈ L2(dκ). By (22), we can write

f p
∞,n(r, x) =

∫ +∞

0

∫
R

f ∗
ˇ
ϕp

n(s,−y)T(r,x)(ϕ
p
n)(s, y)dκ(s, y).
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On the other hand, the function (r, x) −→ f ∗
ˇ
ϕp

j (r,−x) belongs to L2(dκ), then, by (8) and (19), we get

f p
∞,n(r, x) =

∫ +∞

0

∫
R

f ∗
ˇ
ϕp

n(r,−x)T(s,y)(ϕ
p
n)(r, x)dκ(s, y)

=

∫ ∫
Υ+

B( f )(s, y)(B(ϕP
n)(s, y))2ϑ(s,y)(r, x)dκ(s, y)

=

∫ ∫
Υ+

B( f )(s, y)∇p
δn,∞

(s, y)ϑ(s,y)(r, x)dκ(s, y)

= B−1(B( f )∇p
δn,∞

)(r, x).

On the other hand, the function ∇p
δn,∞

belongs to L∞(dκ), from this fact and (2.4), the function f p
∞,n ∈ L2(dκ),

and we have
B( f p

∞,n) = B( f )∇p
δn,∞

.

Now, by (2.4), we get

∥ f p
∞,n − f ∥22,κ =

∫ ∫
Υ+

|B( f )(ζ, ξ)|2(∇p
δn,∞

(ζ, ξ) − 1)2dκ(ζ, ξ).

Then, the result follows from the equality

lim
n−→+∞

∇
p
δn,∞

(ζ, ξ) = 1,

and the dominated convergence theorem.

Theorem 4.7. Let (ϕp
i )i∈Z be a scale discrete scaling function which corresponds to the P-wavelet packet (ψp

i )i∈Z. For
every f ∈ L1(dκ) ∩ L2(dκ) such that B( f ) ∈ L1(dκ), we have the following reconstruction formulas,
(1)

f (r, x) = lim
j−→+∞

K ( j, r, x), a.e, (r, x) ∈ [0,+∞[×R,

where

K ( j, r, x) =
∫ +∞

0

∫
R

⟨ f , ϕp
j,(s,y)⟩κϕ

p
j,(s,y)(r, x)dκ(s, y).

(2)

f (r, x) = K ( j, r, x) +
+∞∑
i= j

L(i, r, x), a.e, (r, x) ∈ [0,+∞[×R,

where

L(i, r, x) =
∫ +∞

0

∫
R

Φ
p
ψ( f )(i, s, y)ψp

i,(s,y)(r, x)dκ(s, y).

Proof. Let f ∈ L1(dκ) ∩ L2(dκ) such that B( f ) ∈ L1(dκ). By (22), we can write

K ( j, r, x) =
∫ +∞

0

∫
R

f ∗
ˇ
ϕp

j (r,−x)T(s,y)(ϕ
p
j )(r, x)dκ(s, y)

=

∫ ∫
Υ+

B( f )(s, y)|B(ϕP
j )(s, y)|2ϑ(s,y)(r, x)dκ(s, y).
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From the dominated convergence theorem, relations (5) and (20), we get

lim
j−→+∞

K ( j, r, x) =
∫ ∫

Υ+

B( f )(s, y) lim
j−→+∞

|B(ϕP
j )(s, y)|2ϑ(s,y)(r, x)dκ(s, y)

=

∫ ∫
Υ+

B( f )(s, y)ϑ(s,y)(r, x)dκ(s, y) = f (r, x).

The proof of (2) follows the same way of Theorem 3.10.

5. S-wavelet packet related to the Riemann-Liouville operator

In this section, we define and study the S-wavelet packet transform and its dual associated with the
Riemann-Liouville operator, and we prove for these transforms Plancherel and reconstruction formulas.

Definition 5.1. A sequence (ϖS
j ) j∈Z in L2(dκ) is called an S-wavelet packet associated with the Riemann-Liouville

operator if it verifies the following conditions:
(1) For every j ∈ Z, B(ϖS

j ) is real-valued.
(2) For every (ζ, ξ) ∈ Υ, we have

α ⩽ B(ϖS
j )(ζ, ξ) ⩽ β, ∀ j ∈ Z,

where α, β are constants with 0 < α < β < ∞.

Definition 5.2. Let (ϖS
j ) j∈Z be a S-wavelet packet.

(1) The S-wavelet packet transform ΦS
ψ is defined for a function f ∈ L2(dκ), by

ΦS
ψ( f )( j, r, x) =

∫ +∞

0

∫
R

f (s, y)ϖS
j,(r,x)(s, y)dκ(s, y), ∀ j ∈ Z,∀(r, x) ∈ [0,+∞[×R,

where ϖS
j,(r,x) is the function defined by

ϖS
j,(r,x)(s, y) = T(r,x)(ϖS

j )(s, y).

(2) The corresponding dual S-wavelet packet (ϖ̃S
j ) j∈Z is given by

B(ϖ̃S
j )(ζ, ξ) =

B(ϖS
j )(ζ, ξ)∑+∞

j=−∞

(
B(ϖS

j )(ζ, ξ)
)2 , ∀(ζ, ξ) ∈ Υ.

(3) The dual S-wavelet packet transform Φ̃S
ψ is defined for a function f ∈ L2(dκ), by

Φ̃S
ψ( f )( j, r, x) =

∫ +∞

0

∫
R

f (s, y)ϖ̃S
j,(r,x)(s, y)dκ(s, y), ∀ j ∈ Z,∀(r, x) ∈ [0,+∞[×R,

where ϖ̃S
j,(r,x) is the function defined by

ϖ̃S
j,(r,x)(s, y) = T(r,x)(ϖ̃S

j )(s, y).

The transforms ΦS
ψ and Φ̃S

ψ, can be written as

ΦS
ψ( f )( j, r, x) = f ∗

ˇ
ϖS

j (r,−x), ∀ j ∈ Z,∀(r, x) ∈ [0,+∞[×R, (24)

and

Φ̃S
ψ( f )( j, r, x) = f ∗

ˇ̃
ϖS

j (r,−x), ∀ j ∈ Z,∀(r, x) ∈ [0,+∞[×R. (25)
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Proposition 5.3. Let (ϖS
j ) j∈Z be a S-wavelet packet and let (ϖ̃S

j ) j∈Z the corresponding dual S-wavelet packet. We
have the following properties:
(1) For every (ζ, ξ) ∈ Υ,

+∞∑
j=−∞

B(ϖS
j )(ζ, ξ)B(ϖ̃S

j )(ζ, ξ) = 1, ∀ j ∈ Z, (26)

and
+∞∑

j=−∞

(
B(ϖ̃S

j )(ζ, ξ)
)2
=

( +∞∑
j=−∞

(
B(ϖS

j )(ζ, ξ)
)2)−1

. (27)

(2) For every (ζ, ξ) ∈ Υ,

j−1∑
i=−∞

B(ϖS
i )(ζ, ξ)B(ϖ̃S

i )(ζ, ξ) =

∑ j−1
i=−∞

(
B(ϖS

i )(ζ, ξ)
)2

∑+∞
i=−∞

(
B(ϖS

i )(ζ, ξ)
)2 , ∀ j ∈ Z.

Theorem 5.4. (Plancherel formula)
Let (ϖS

i )i∈Z be an S-wavelet packet and let (ϖ̃S
i )i∈Z the corresponding dual S-wavelet packet. Then, for every f ∈ L2(dκ),

we have ∫ +∞

0

∫
R

| f (r, x)|2dκ(r, x) =
+∞∑

i=−∞

∫ +∞

0

∫
R

ΦS
ψ( f )(i, s, y)Φ̃S

ψ( f )(i, s, y)dκ(s, y).

Proof. From relations (8), (24) and (25), we get∫ +∞

0

∫
R

ΦS
ψ( f )(i, s, y)Φ̃S

ψ( f )(i, s, y)dκ(s, y)

=

∫ +∞

0

∫
R

ΦS
ψ( f )(i, s,−y)Φ̃S

ψ( f )(i, s,−y)dκ(s, y)

=

∫ ∫
Υ+

|B( f )(ζ, ξ)|2B(ϖS
i )(ζ, ξ)B(ϖ̃S

i )(ζ, ξ)dκ(ζ, ξ).

Now, from Fubini-Tonelli’s theorem, Cauchy Schwarz’s inequality and (27), we obtain

+∞∑
i=−∞

∣∣∣∣ ∫ +∞

0

∫
R

ΦS
ψ( f )(i, s, y)Φ̃S

ψ( f )(i, s, y)dκ(s, y)
∣∣∣∣

⩽

∫ ∫
Υ+

|B( f )(ζ, ξ)|2
+∞∑

i=−∞

|B(ϖS
i )(ζ, ξ)B(ϖ̃S

i )(ζ, ξ)|dκ(ζ, ξ)

⩽ ∥ f ∥22,κ < ∞.

Again, applying Fubini’s theorem and (26), we get

+∞∑
i=−∞

∫ +∞

0

∫
R

ΦS
ψ( f )(i, s, y)Φ̃S

ψ( f )(i, s, y)dκ(s, y)

=

∫ ∫
Υ+

|B( f )(ζ, ξ)|2
+∞∑

i=−∞

B(ϖS
i )(ζ, ξ)B(ϖ̃S

i )(ζ, ξ)dκ(ζ, ξ)

= ∥ f ∥22,κ.

Which achieves the proof.
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Theorem 5.5. Let (ϖS
i )i∈Z be an S-wavelet packet and let (ϖ̃S

i )i∈Z the corresponding dual S-wavelet packet. Then, for
every f ∈ L1(dκ) ∩ L2(dκ), such that B( f ) ∈ L1(dκ), we have the following reconstruction formulas,
(1)

f (r, x) =
+∞∑

i=−∞

∫ +∞

0

∫
R

ΦS
ψ( f )(i, s, y)ϖ̃S

i,(s,y)(r, x)dκ(s, y), a.e, (r, x) ∈ [0,+∞[×R.

(2)

f (r, x) =
+∞∑

i=−∞

∫ +∞

0

∫
R

Φ̃S
ψ( f )(i, s, y)ϖS

i,(s,y)(r, x)dκ(s, y), a.e, (r, x) ∈ [0,+∞[×R.

Proof. The result can be proved in the same way of Theorem 3.10.

Definition 5.6. Let (ϖS
j ) j∈Z be a S-wavelet packet and let (ϖ̃S

j ) j∈Z the corresponding dual S-wavelet packet. The scale
discrete scaling function (ϱS

j ) j∈Z corresponding to (ϖS
j ) j∈Z is defined by

B(ϱS
j )(ζ, ξ) =

( j−1∑
i=−∞

B(ϖS
i )(ζ, ξ)B(ϖ̃S

i )(ζ, ξ)
) 1

2
, ∀(ζ, ξ) ∈ Υ.

Proposition 5.7. The scale discrete scaling function (ϱS
j ) j∈Z corresponding to (ϖS

j ) j∈Z satisfies the following proper-
ties:

0 ⩽ B(ϱS
j )(ζ, ξ) ⩽ 1, ∀ j ∈ Z,∀(ζ, ξ) ∈ Υ,

and
lim

j−→+∞
B(ϱS

j )(ζ, ξ) = 1.

Theorem 5.8. (Plancherel formula) For every f ∈ L2(dκ) and j ∈ Z, we have∫ +∞

0

∫
R

| f (r, x)|2dκ(r, x) = lim
j−→+∞

∫ +∞

0

∫
R

|⟨ f , ϱS
j,(r,x)⟩κ|

2dκ(r, x),

and ∫ +∞

0

∫
R

| f (r, x)|2dκ(r, x) = lim
j−→+∞

∫ +∞

0

∫
R

|⟨ f , ϱS
j,(r,x)⟩κ|

2dκ(r, x)

+

+∞∑
i= j

∫ +∞

0

∫
R

ΦS
ψ( f )(i, s, y)Φ̃S

ψ( f )(i, s, y)dκ(s, y),

where
ϱS

j,(r,x)(s, y) = T(r,x)(ϱS
j )(s, y), ∀ j ∈ Z,∀(s, y) ∈ [0,+∞[×R.

Proof. The results can be proved in the same way of Theorems 4.3 and 4.4.

Theorem 5.9. Let (ϖS
j ) j∈Z be an S-wavelet packet and let (ϖ̃S

j ) j∈Z the corresponding dual S-wavelet packet. For every
f ∈ L1(dκ) ∩ L2(dκ) such that B( f ) ∈ L1(dκ), we have the following reconstruction formulas,
(1) For almost all (r, x) ∈ [0,+∞[×R,

f (r, x) = lim
j−→+∞

∫ +∞

0

∫
R

⟨ f , ϱS
j,(s,y)⟩κϱ

S
j,(s,y)(r, x)dκ(s, y).
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(2) For every j ∈ Z and for almost all (r, x) ∈ [0,+∞[×R,

f (r, x) =
∫ +∞

0

∫
R

⟨ f , ϱS
j,(s,y)⟩κϱ

S
j,(s,y)(r, x)dκ(s, y)

+

+∞∑
i= j

∫ +∞

0

∫
R

ΦS
ψ( f )(i, s, y)ϖ̃S

j (s, y)dκ(s, y).

(3) For every j ∈ Z and for almost all (r, x) ∈ [0,+∞[×R,

f (r, x) =
∫ +∞

0

∫
R

⟨ f , ϱS
j,(s,y)⟩κϱ

S
j,(s,y)(r, x)dκ(s, y)

+

+∞∑
i= j

∫ +∞

0

∫
R

Φ̃S
ψ( f )(i, s, y)ϖS

j (s, y)dκ(s, y).

Proof. The Proof of this theorem follows the same way of Theorem 4.4.
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