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Abstract. In this paper, we study some types of wavelet packets and the corresponding wavelet transforms
associated with the Riemann-Liouville operator on the half plane [0, +co[XR. For these transforms, we

establish Plancherel theorems, orthogonality properties, Calderén’s reproducing formulas, reconstruction
formulas and their scale discrete scaling functions.

1. Introduction

Wavelet analysis is the most widely used mathematical tool which delas various applications in image
processing, wave propagation, data compression, computer graphics, and other areas of engineering and
sciences. In terms of the classical Fourier transform, many smooth functions fail to become a wavelet. In
such situations, the Riemann-Liouville operator associated with singular operators plays an important role.
From the papers of [1, 2], we consider the singular partial differential operators defined on ]0, +oo[ xR by

A
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— +
D—m+ “u E—w,OK?O.

The following integral transform associated with A and 9 is called the Riemann-Liouville operator defined
on the space of continuous functions on R?, even with respect to the first variable, by
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Many harmonic analysis results related to R have been discussed in [2, 3, 14] and others. Baccar, Hamadi
and Rachdi [2], obtained best approximation for the Weierstrass transform connected with R. Baccar and
Rachdi [3], introduced DL? type spaces and studied the convolution product by concerning the Riemann-
Liouville operator. In the same year, Rachdi and Rouz [14], taking the Fourier transform associated with
R and we give a new description of the Schwartz spaces and prove a Paley-Wiener and a Paley-Wiener-
Schwartz theorems. Recently, many researchers have been examining the behavior of the Fourier transform
associated with the Riemann-Liouville operator (4), with respect to various problems that have already
been explored for the classical Fourier transform. Hleili [8], proved Calderon’s reproducing formulas and
extremal functions for the Riemann Liouville -multiplier operators. Hleili [9], introduced variation of uncer-
tainty principles for the continuous wavelet transform by considering the operator R. Hleili and Omri [10],
established L — L7 version of Miyachi’s theorem in terms of the Riemann-Liouville operator. Hleili, Omri
and Rachdi [11], proved some uncertainty principle for the Fourier transform connected with R. Rachdiand
Herch [13], by considering the Riemann Liouville operator, uncertainty principles for continuous wavelet
transform is discussed.

Wavelet analysis appeared in the early 1980s. This theory is a work which brought together engineers, math-
ematicians and physicists who had developed similar ideas in their respective fields. The mathematical
synthesis led to new results, which provided broader perspectives in each original discipline. The wavelet
transform reduces calculation time, facilitates analysis, transmission and compression of information. This
transform has found many applications in a variety of signal analysis tasks, such as geophysics, medical
image processing and acoustics to quantum theory (see [6, 7] and the references therein). Wavelet packets
are an advanced extension of wavelet transforms that allow for a more flexible and detailed decomposition
of signals. While the classical wavelet transform splits the signal into a low-frequency approximation and
high-frequency details, wavelet packets go further by splitting both the approximation and detail com-
ponents at each level into additional frequency bands. This makes wavelet packets particularly useful
in applications like signal compression, noise reduction, and feature extraction. Many authors observed
certain types of wavelet packets in different settings. Some of them are listed below: Chui [5], introduced
to wavelets and discussed various important properties of wavelets. Sifi [12], examined two types of
generalized wavelet packets and the corresponding generalized wavelet transforms in connection with
Laguerre functions on [0, +[XIR, and derived several properties. Trimeche [15], constructed generalized
harmonic analysis and wavelet packets associated with the Bessel operator. Chabeh and Mourou [4], ob-
served wavelet packets associated with a Dunkl type operator on R and many obtained interesting results.
Inspired from the papers of [4, 5, 12, 15], we are devoted to define and study some types of wavelet packets
associated with the Riemann-Liouville operator.

This work is organized as follows. In Section 2, we briefly summarize some harmonic analysis results
related to the Riemann-Liouville operator R. Section 3 is devoted to introducing the first type of wavelet
packets associated with the Riemann-Liouville operator, along with some harmonic analysis properties,
namely a Plancherel theorem and a reconstruction formula. In Section 4, we introduce the scale discrete
scaling function and present its properties. Finally, in Section 5, we define and study the S-wavelet packet,
its dual, and the corresponding S-wavelet transforms.

2. Preliminaries

In this section, we recall some harmonic analysis results related to the Riemann-Liouville operator. For
more details, see [1, 2, 13]. We denote by
o « the measure defined on [0, +[XR by

u2a+1 do

dx(u,v) = T+ 1)du ® 2! ,
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e [F(dx), p € [1,+00] the Lebesgue space of measurable functions f on [0, +oo[XR such that [|f][,,. < +oo,

with 1
1l = (j(; jﬂ;|f(u, v)|F’d1<(u,v))p , ifpe[l, +oof

€ss Sup(u,v)€[0,+oo[><]R |f(u/ U)|, if p = too.
e Y the set given by
Y =RxRU{(i,0), (1,0) € RXR, Ju] < [ol}.

® By, the o-algebra defined on Y, by,
By, = {07(B), B € Bpor([0, +[xR)},

where Bg,, ([0, +00[XIR), is the usual borelian g-algebra on [0, +oo[XR, and 0 is the bijective function defined
on the set
Yy = [0,+eo[XR U{(is, ) ; (5,9) € [0, +oo[xR; 5 < lyl],

by
0(s,y) = (/s> + yI*, y).

o » the measure defined on By, by, #(B) = x(6(B)).
o [P (dxn), p € [1,+00] the Lebesgue space of measurable functions f on Y., such that

| fllp, = (ff If(C EPdx(C, é))p < 400, ifpe[l,+oo]
P ~

eSS SUP ¢ sye, |f(Cr &) < +oo, if p = +o0.
For every ((, &) € C x C, the system

Aw(u, w) = —i&w(u, v),
Dw(u,v) = —Cw(u,v),
T/U(O, O) = 1r

3—?:(0,0) =0, veR,
admits a unique solution 9 ¢ given by
Sce(1,0) = jo(u N +EP)Ee™, Y(u,v) e RXR,
where j, is the modified Bessel function defined by

(_1)k (Z)Zk

+00
ja(Z)Zr(Oé-l-l)kZmE ,ZEC.
=0

The function 9 ) is bounded on R X R if and only if (C, &) belongs to the set Y and in this case

sup |8, 0)| = 1. 1)
(u,0)eRXIR

Definition 2.1. [1]
(1) For every (u,v) € [0, +o0[XIR, the generalized translation operator T,y associated with the Riemann-Liouville
operator is defined on LF(dx), p € [1, +o0], by
Ia+1)
(o + %)

T wo(f)s,y) = jo‘n F(Vu2 + 02 + 2uv cos 0, v + y) sin?*(0)d0. 2)
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(2) The generalized convolution product of f,g € L}(dx) is defined by
+00
Frao= [ [ Tiraie, nate, s, ), Yiu,0) €10, +olxR, ®)

where f(s,y) = f(s,~y)-

For every f € LP(dk), p € [1,+00], and (u,v) € [0, +oo[XR, the function 7,.)(f) belongs to LP(dx) and we
have

17 o) (P llpic < N fllpic-

Definition 2.2. [1] The Fourier transform B associated with the Riemann-Liouville operator is defined on L' (dx) by

B, &) = fo fR F1,0)8 .01, 0)ic(,0), V(C, &) € T @

Theorem 2.3. (Inversion formula) [1] Let f € LY(dx) such that B(f) € L' (dx), then for almost every (u,v) €
[0, +o0o[ XIR,

F,0) = f fY BUF)(C, S en W, 0)Ax(C, &). ©)

Theorem 2.4. (Plancherel theorem) [1] The Fourier transform B can be extended to an isometric isomorphism from
L*(dx) onto L*(dx). In particular, for every f € L*(dx),

1B(Hll2c = Nl fll2 - (6)

Proposition 2.5. [2]
(1) For every f € LY(dx) and (u,v) € [0, +00[XR, the function Ty (f) belongs to LY (dx), and we have

B(T 0,0 &) = Sce)(w, )B(F)C, &), Y(C, &) €Y. (7)

(2) The Fourier transform B is a bounded linear operator from L (dx) into L™ (dx) and that for every f € L'(dx), we
have

1B Mlooe < M fll -

(3) For every f,g € L*(dx); the function f * g belongs to the space C,o(IR X R) consisting of continuous functions h
on R X IR, even with respect to the first variable and such that  lim  h(u,v) = 0.

12 +[v2—>+00
Moreover,

f*g=8"(B(f)B)),
where B~ is the mapping defined on L*(dx) by

B! ,0) = , &) o(u,v)dn(C, &).
9)(1,0) f fY A€o )

Corollary 2.6. [2] For all functions f and g in L*(dx), we have

fo [ s - [ fY B BT D). ®)

Remark 2.7. [13] Let f, g € L*(dx), the function f * g belongs to L?(dx) if and only if B(f)B(g) belongs to L*(dx),
and we have

IB(HB@2x = 1If * gllzx-
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3. P-wavelet packets associated with the Riemann-Liouville operator

In this section, we present harmonic analysis results related to the P-wavelet packets associated with
the Riemann-Liouville operator R. Specifically, we prove a Plancherel theorem and derive a reconstruction
formula.

Let a > 0. The dilation operator D, of a measurable function 1) is defined by

1

3
a0t3

D,(y) =

1,11(2, g), Y(r,x) € [0, +oo[xXR.

This operators satisfies the following properties:
(1) For every ¢ in L?(dx), the function D,(1) belongs to L?(dx), and we have

||Da(¢)”2,1< = ”770”2,10 (9)

and
BD.W))(s, y) = a** 1 B)(as, ay). (10)

(2) For every (r,x) € [0, +oo[XIR, we have
Du(]-(r,x) = 7'(ar,ax)Du-

Definition 3.1. Leta > 0. A generalized wavelet on [0, +0o[XR is a measurable function 1 on [0, +oo[XR satisfying,
for almost all (C, &) € Y\{0j0,+eo[xr}, the condition

0<Cy= [ BwIECFE <.
0

Example 3.2. The function gy, t > 0 defined on [0, +oo[XIR, by

_ — L2 +0?)
u,v) = e u ,
!]t( ) (2[’)0“"%

SﬂtiSﬁeS,
B@)(C &) = ¢ 1E2,

The function (u,v) = —%g,(u, v), is a generalized wavelet on [0, +co[XR, and we have Cy = -

Proposition 3.3. Let ¢ € L*(dx) bea generalized wavelet on [0, +00[XIR and (6;)icz be a scale sequence in ]0, +oo],
which is decreasing, and such that

lim 6; = 400, and lim 0; = 0. (11)
—>—00 1—>+00
Then
1 di da\?
(1) The function (C, &) — (C_ f |B(y)(al, a£)|27) belongs to L?(dx).
'4’ 5i+1

(2) There exists a function {7 € L*(dx), such that for every (, &) € Y,

i 2
suN60 = (& [ wecaord) 12

i+1
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Proof. (1) By using Fubini-Tonelli’s theorem, relations (6), (9) and (10), we obtain

! } ,da
C_¢ff+ LﬂlB(Eb)(ﬂC,aéﬂ —dn(C, &)
_ 1 .
Bl Cl,/J bz+1 (ff |B(lzb)(ﬂc ﬂé)l d%(c é))
1 )
i ( | fy IBDWNEOPBAC D) <

13 ( 1 1

- +§ C a+2 o
(@+3)Cy 6. O,

This shows that the function (C, &) — (— f) IB()(al, ad)* — ) belongs to L?(dx).
(2) It follows from the Plancherel theorem, Theorem 24. O

Definition 3.4. The function 7, i € Z. is called P-wavelet packet member of step i and the sequence (! )icz is called
P-wavelet packet.

Corollary 3.5. For every i € Z, the function )} satisfies the following properties,

0<BWNHCE<TL CEET, (13)
and .
Y BUHCOH? =1, CHeT. (14)

{=—00

Let (/7)icz be a P-wavelet packet. We consider for every i € Z and (7, x) € [0, +o[XRR, the family l,bf’ (o 8iVen

by
ll)g(y/x)(sl y) = ﬂr,x)(l#f)(sr y)r V(S, y) € [0/ +OO[X]R/ (15)

where 7, ) are the generalized translation operators given by (2). We note that
Vi€ Z, V(r,x) € [0, +00[XIR, 197, Il < II7 lloe- (16)

Definition 3.6. Let (7)iez be a P-wavelet packet. The P-wavelet packet transform (DII; associated with the Riemann-
Liouwville operator is defined on L*(dx), for all i € Z and (r, x) € [0, +oo[XR, by

0= [ [ f el s,
This transform can also be written in the form
O, = £+ PP, ), a7

where * is the generalized convolution product given by (3).

Theorem 3.7. Let (t,bf )iez be a P-wavelet packet.
(1) (Plancherel formula for ®): For every f € L*(dx), we have

f;w f |F(r, x)Px(r, x) = i f*“’ fICD ()i s, y)Pdx(s, 1),

i=—co
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(2) (Parseval formula for ®)): For every f, g € L*(dx), we have

oo _ i~ e p . P .
[ [ e 0a 0 = 3 [ [ et et s v .

Proof. Using Remark 2.7 and (17), we get

—+00 b ) ) B +00 *;P ~ )
[ [etoismasn= [ [ irife ki
= [ [ 17w wpaxs
0 R

_ f fY BT OPIBWIIC EPAX(C, E).

Now, by Fubini-Tonelli’s theorem, the relations (6) and (14), we obtain

ijzi, jo‘m j];lq)i(f)(i' s, y)[Pdx(s, y)
:fﬁ 1B, &I +ZOO‘ |B(¢f)(cré)|2]d%(gg)

+00
= f f If (r, x)[dxc(r, x).
0 R
Which gives the desired result.

(2) follows from the polarization identity and (1) of Theorem 3.7. [

6973

(18)

Lemma 3.8. Let (IPf)iez be a P-wavelet packet such that B(\) € L*(dx). Then, for every m,n € Z with m < n, the

function
Vi Co-z [ " 1By ac a2
bn,bnl ’ - Clp 6” IP ' a ’
belongs to L*(dx), and we have
1 1 1 1 1
P2 2 2
“Vén,ém“Z,K < Clzp(4a + 5) (a - 6_m)((53a+5 - 63?_'_5 )”¢||2/K||B(l7b)||oolu

Proof. Using Holder’s inequality for the measure da, we get for every ((, &) € Y

11

1 O
¥, OF < G50 | s anran

Now, using Fubini-Tonelli’s theorem and (10), we obtain

1,1 1™
R 1 | [ [ [ et o
1/; n m On Y
1 1 1 1

(5 - 3 s - #)HB(DJ@)H;X||B<¢>||§o,x-

C2(4a+5) 0n O

Then, the relations (6) and (9) gives the desired result. O
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In the following, we establish reproducing inversion formula of Calderén’s type for the mapping CDZ.

Theorem 3.9. Let (gbf’)iez be a P-wavelet packet such that B(p) € L®(dx). Then, for every f € L*(dx) and m,n € Z.
with m < n, the function

n-1 +00
fratr) =Y [ [ im0y i,
i=m 0 R

belongs to L*(dx), and satisfies
lim )” rrrjz,n - f||2,K =0.

(m,n)—>(—0co,+00

Proof. Let f in L*(dx). By (7), (8), (15) and (17), we have
DL, S, PV (5, YAK(S, )
0 R Y
= [ [ v T @ i,
0 R

_ fo fR £ D8, )T (G0, Y)(s, )

- f f BUF) s BN, 1)BT @D 1) (s, 1)

+

- f L B, PBE)E, ) )T, DS, ).

Then, from Fubini’s theorem and (12), we obtain

b= [ [ B DV, 6 9T
BBV, )1 )

On the other hand, the function VZ 5. belongs to L*(dx), from this fact and (2.4), the function f,f;rn € L*(dx),
and we have

B(fha) = BV, 5 .

Using the previous result and (2.4), we get

fin= 1B = [ [ IBACORT, , € =17,

The relation (4.6) follows from the fact that

hm vp ,6m(CI é) = 1r

(m,n)—>(—00,+00) On
and the dominated convergence theorem. [

Theorem 3.10. Let (!)icz be a P-wavelet packet. Then, for every f € L(dx) N L*(dx) such that B(f) € L'(dx), we
have the reconstruction formula for ¥

flrx) = Z JG,rx),ae,(r,x) €0, +0[XR,

i=—00

where J (i, 1,x) = f f DY ()5, PP (5, Y)K(s, y).
0 R
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Proof. Let f in L'(dx) N L?(dx).

[ [@hntis mel v,
0 R
~ [ | B8 0Tt ).

On the other hand, the function (s, y) — CD{; (NG, s, y)=f+* gb_f(s, —1) belongs to L?(dx) and also the function
(s,y) — ¢, & Y) = T 0 W)(s, y) belongs to L*(dx), then, from the Cauchy-Schwarz’s inequality the

integral J (i, t, x) is absolutely convergent.
Now, from Fubini-Tonelli’s theorem, (1) and (14), we obtain

Y o= Y| [ [ st mishs v »

i=—00 i=—o00

© 2
< ffY 1B(f)(s, vl Z 1B, v)Pldx(s, y)

i=—00
= IB(F)ll1,« < oo,
+00
This shows that the series Z J (i, r,x) is absolutely convergent, and therefore
j=—00

JG,rx) = B MBS, PE S (r, )dx(s, y).
. : Yy

i=—00 i=—00
Again, applying Fubini’s theorem for the previous result, we get

Y, g0 = [ [ 8060( Y 1BEN6 )b v

j=—00 j=—00

Then, the result follows from (5) and (14). O

4. Scale discrete scaling function on [0, +co[XR

In this section, we define and study a scale discrete scaling function on [0, +oo[XIR, corresponding to the
P-wavelet packet (I,Uf )iez studied in the previous section.

Proposition 4.1. Let ({/)icz be a P-wavelet packet. Then
(1) For every j € Z and (C, &) € Y, we have

j-1 +oo
2 _ l Zd_’l
2, (BUNEE} = fb [B)al, a&)P—.

i=—00 J
(2) For every j € Z, there exists a function qb? € L2(dx), such that

1

j-1 2
Y BwHE, 5»2] VGO ET. (19)

i=—00

BN =
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Proof. (1) From (11) and (13), we obtain

Z (BWE &) 2 B aC aP S

bx+l

i=—o0 i=—o0

_ 1 +00 zd_a
- & f 1By aC, a2

]
(2) It follows from the Plancherel theorem: Theorem 2.4. [

Definition 4.2. The sequence ((ﬁ)? )jez is called scale discrete scaling function.

For j € Z, the function qbf satisfy the following property

(1)
0<BENECE <1, and Tim BENEE =1, YT e, (20)
@)
BN = (B@,,)(C ) - BPCE VT €ET,
and
Z (BW)C &) = 2 B@)(COP — BN O =1. (21)
jE=eo jEmeo

For all j € Z, we define the function ¢ [Ty by
O & 1) = T (@6 y), Y(s,y) € [0, +oo[xR.
The function cj)?/(r/x) belongs to L?(dx), and we have

r P
”(Pj,(r,x)HZ’K < ”qb]“Z,K

Theorem 4.3. (1) (Plancherel formula associated with (cp’? )jez): For every f € L2(dx), we have

||f||2K= lim f fl(fqb(”)) PPdx(r, x),

where {.,.), is the scalar product on L*(dx).
(2) (Parseval formula associated with (¢’7)]»€Z): For every f, g € L*(dx), we have

f ff (r, x)g(r, X)dx(r, x) = 11rn f f(f qbpsy))K(g, o) XS, ).

Proof. (1) For every f € L?(dx) and j € Z, we have

.0 e = £ 00, ) @2)

Then, according to Remark 2.7, we obtain

[ [k petant = [ [ 1f<af-pae;
= [ | 1B B pax, o, 23)

Then, the desired result follows from dominated convergence theorem, (6) and (20).
(2) We obtain the result from (1). O
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Theorem 4.4. Let (¢!)iez be a scale discrete scaling function which corresponds to the P-wavelet packet ({)iez.
(1) (Plancherel formula associated with (<¢>§7 )jez and CDf;): For every f € L*(dx), we have

IfI2, = fo f}R 40P + Y fo f}R ()G, P, ).
j=i

(2) (Parseval formula associated with (qb?) jez and @plp): For every f, g € L*(dx), we have

[ [ romgmiaen = [ [ 66,0800 it

+) fo f]R @, (F)(i, 1, )P (9), 7, X)elc(r, ).
j=i

Proof. (1) From Fubini-Tonelli’s theorem, relations (18), (19) and (23), we get

j:oofRKflq);(nx))Klsz(nx)+:Z:‘fomquJfb(f)(i,r,x)lsz(r,x)

- [ [ mneor Y 1Bwie opaxc o,

i=—o00

Then, (6) and (21), gives the desired result.
(2) It follows from (1). O

Lemma 4.5. Let (qbf )iez be a scale discrete scaling function which corresponds to the P-wavelet packet (gbf )iez such
that B() € L*(dn). Then, for every n € Z and (C, &) € Y, the function

P B i +00 zd_a
Vi&9 = &, fé By)ac, a0,

belongs to L*(dx).
Proof. The proof is similar to the proof of Lemma 3.8. [

Theorem 4.6. Let (¢))icz be a scale discrete scaling function which corresponds to the P-wavelet packet ({)icz such
that B() € L™ (dx). Then, for every f € L*(dx) and n € Z, the function

£ = [ [ 4500 e G ),

belongs to L*(dx) and satisfies

dim £ = flla =0,

Proof. Let f € L?(dx). By (22), we can write

£,n(r/ x) = fo\ f]I\{ f * E(S/ _y)(]-(r,x)(@)(sl y)dK(S/ y)
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On the other hand, the function (,x) — f * ¢7;(r, —x) belongs to L?(dk), then, by (8) and (19), we get

cﬁ),n(r/ .X) = j(: Lf*qb_Z(r/ _x)ﬂs,y)(@)(r/ X)dK(S, y)
- f f B, PBOD, 1)) S 7, DdA(s, v)

_ f fY B, V!, (5 1)Senr, DiIx(5, )
= B_l (.‘B(f)vp,n,oo)(r, .X').

On the other hand, the function ngm belongs to L*(dx), from this fact and (2.4), the function fi/n € L*(dx),
and we have

B(fL,) = BV, ..
Now, by (2.4), we get

£ B, = [ fY BUNCORY!. (C,€) - 1dx(C, ©).

Then, the result follows from the equality
lim VP ((,&)=1,
n—+oo ns
and the dominated convergence theorem. [

Theorem 4.7. Let (qbf )iez be a scale discrete scaling function which corresponds to the P-wavelet packet (Ipf)iez. For
every f € LY(dx) N L*(dx) such that B(f) € L'(dx), we have the following reconstruction formulas,
(1)
f(r,x) = lim K(j,rx), ae, (r,x) €[0,+0o[XR,
j—+00

where e
K= [ [ et 0005,
(2)
flr,x) =K(j,rx)+ Z L(i,1,x), ae, (r,x) € [0, +oo[XR,
i
where

L= [ [ s 0006 )
0 R
Proof. Let f € L(dx) N L?(dx) such that B(f) € L'(dx). By (22), we can write
K= [ [ -7 @0, v
0 R
= [ | 856 18665,
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From the dominated convergence theorem, relations (5) and (20), we get
tim K = [ [ 06 lim BN 00,
—+00 T, —+00

= ff B(f)(s, y)‘g(sry)(rr x)d%(s, y) = f(?‘, x)‘

The proof of (2) follows the same way of Theorem 3.10. [

5. S-wavelet packet related to the Riemann-Liouville operator

In this section, we define and study the S-wavelet packet transform and its dual associated with the
Riemann-Liouville operator, and we prove for these transforms Plancherel and reconstruction formulas.

Definition 5.1. A sequence ((Df) jez in L*(dx) is called an S-wavelet packet associated with the Riemann-Liouville
operator if it verifies the following conditions:
(1) For every j € Z, 8(@?) is real-valued.
(2) For every (C, &) € Y, we have
a<B@)CE <P VieZ,

where a, B are constants with 0 < a < < oo,

Definition 5.2. Let (caf) jez be a S-wavelet packet.
(1) The S-wavelet packet transform CDi is defined for a function f € L*(dx), by

®i(f)(j, 1,x) = f(; fﬂ;f(s, y)cai(r/x)(s, y)dx(s,y), Yj € Z,¥(r,x) € [0, +o0[XR,

where @5

o) is the function defined by

@) 5 1) = Tio) (@), ).
(2) The corresponding dual S-wavelet packet (cﬁjs )jez is given by
B@9)(C )

B@)(C &) = =, V(GO e
L2 (B@9)(C,9)

(3) The dual S-wavelet packet transform Cbi is defined for a function f € L*(dx), by

(T)i(f)(j, r,x) = [) Lf(s, y)cﬁjs,,(m)(s, y)dx(s,y), Yj € Z,N(r,x) € [0, +o[XR,

where (I)Js o 18 the function defined by

(r,

<5 _ <5
D0 5 Y) = T (@), Y)-
The transforms fbi and CTDSW can be written as

(NG, 1x) = f *gf(r, -x), Vj € Z,¥(r,x) € [0, +00[XR, (24)

and 5
(N1, %) = f* @N]S.(r, —x), Vj € Z,¥(r,x) € [0, +oo[XR. (25)
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Proposition 5.3. Let (cD]S)jeZ be a S-wavelet packet and let (cﬁjs.) jez the corresponding dual S-wavelet packet. We

have the following properties:
(1) For every (C,&) € Y,

Y, B@)COB@)NCE)=1,YjeZ, (26)
j=—00
ﬂnd +00 +00
Y B@)ca) =( Y (B o)) @7)
= j==oo
(2) For every (C,&) €Y,
i Y (B@9C o)
Y B@)COHB@(C E) = VjeZ.

= T (B@9C o)

Theorem 5.4. (Plancherel formula)
Let (ch )iez be an S-wavelet packet and let (cﬁf )iez the corresponding dual S-wavelet packet. Then, for every f € L2(dx),

we have
[ [ veoraxen = Z f [ @50t s s .

Proof. From relations (8), (24) and (25), we get
[ - [ 25065, T it
= [ [ o5t -0 F P st
- [ fy BN OPB@IC, EBGHC, A, €).
Now, from Fubini-Tonelli’s theorem, Cauchy Schwarz’s inequality and (27), we obtain

m | f - f W(Ns, y)CDS(f)(z s, Y)dx(s, v)

+00

<[ [ 1mneor Y e osene o o

i=—00
<IIfIE, < oo.

Again, applying Fubini’s theorem and (26), we get

:Z fO fq)i (F)Grs, y)WdK(s, Y)

- [ [ mncor 2 B@9)(C OBGC (T, &)

= IfIR,.
Which achieves the proof. [
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Theorem 5.5. Let (ch),-eZ be an S-wavelet packet and let (cﬁf)iez the corresponding dual S-wavelet packet. Then, for
every f € LY(dx) N L2(dx), such that B(f) € L}(dx), we have the following reconstruction formulas,
(1)

flr,x) = Z f f (f)(i, s, y)cﬁf(sfy)(r, x)dx(s,y), a.e, (r,x) € [0, +oo[ XRR.

i=—o00

(2)
f(r,x) = Z f fR B5()i,5, )05, (1, V)x(5, y), ae, (r,x) € [0, +00[XR.

i=—00
Proof. The result can be proved in the same way of Theorem 3.10. [

Definition 5.6. Let ((D]s )jez be a S-wavelet packet and let ((E}S )jez the corresponding dual S-wavelet packet. The scale
discrete scaling function (st.) jez corresponding to ((D,S) jez s defined by

j-1

B(@f»’)(c,é) ZB(CDS)(C/(S)B(LDS)(C,E)) V(&) e .

i=—0co

Proposition 5.7. The scale discrete scaling function (Q]S.) jez corresponding to ((D]S )jez satisfies the following proper-
ties:
0<BENCE <L YjeZVEEET,

and
Jim BE)C 6 =1.

Theorem 5.8. (Plancherel formula) For every f € L*(dx) and j € Z, we have

+00 +00
[ [ o= tim [ [ 1076500,
0 R J—=+ Jo R Y

and
fo h f}R |f(r, 2)Pdx(r, x) = Jlim f - f Kf, 03 )l Pdi(r, %)
+ifmf 3 (N5, PP, DS (F)(i, s, y)dx(s, ),
where

%5008 Y) = Ti0(@)(s, ), Vj € Z,Y(s, y) € [0, +0o[XR.
Proof. The results can be proved in the same way of Theorems 4.3 and 4.4. [

Theorem 5.9. Let (a)?) jez be an S-wavelet packet and let (cﬁ]S. )jez the corresponding dual S-wavelet packet. For every

f € LY(dx) N L*(dx) such that B(f) € L'(dx), we have the following reconstruction formulas,
(1) For almost all (r, x) € [0, +oo[XIR,

+00
£ = T [ [ 450050 ).

j—+o0
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(2) For every j € Z and for almost all (r, x) € [0, +oo[XRR,
+00
f(V/ X) = f f(f/ Q]S'I(Sly)>1< Qi(s/y)(rl X)dK(S, ]/)
0 R

+ Z \fO \f]R q)fp(f)(lr S, ]/)@JS(S, ]/)dK(S, y)
i=j

(3) For every j € Z and for almost all (r, x) € [0, +oo[XRR,
+00
flr,x) = f f {f, QJS./ (S,y)>K@]S;(s,y)(7' x)dx(s, y)
0 R

’ g fo - fm D% ()i, 5, )@ (s, Yx(s, ).

Proof. The Proof of this theorem follows the same way of Theorem 4.4. [
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