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Abstract. In this paper, we determine the maximal subsemigroups of the singular part of endomorphism
monoids of the star graphs Sn, for a given positive integer n, namely End(Sn), wEnd(Sn), and swEnd(Sn),
respectively. The monoid wEnd(Sn) of all weak endomorphisms on Sn, the monoid End(Sn) of all endomor-
phisms on Sn as well as the monoid swEnd(Sn) of all strong weak endomorphisms on Sn is regular. We also
determine the maximal regular submonoids of the singular part of wEnd(Sn), End(Sn), and swEnd(Sn).

1. Introduction and preliminaries

A proper subsemigroup of a semigroup S is maximal if it is contained in no other proper subsemigroup
of S. An element a ∈ S is called regular if there is an element b ∈ S with aba = a. The semigroup S is called
regular semigroup if all elements in S are regular. A proper regular subsemigroup of a (regular) semigroup S
is maximal if it is not contained in any other proper regular subsemigroup of S. Maximal subsemigroups of
full transformations have been extensively studied. A transformation different from a permutation is called
singular transformation. In particular, semigroups of singular transformations have been investigated. We
would like to mention here only a few authors and some interesting semigroups (of transformations), for
which the maximal subsemigroups have been determined.

Graham, Graham, and Rhodes found out that every maximal subsemigroup of a finite semigroup must
be a type given in [8]. In [5], Donoven, Mitchell, and Wilson present an algorithm for the calculations of
the maximal subsemigroup of an arbitrary finite semigroup, starting on the results by Graham, Graham,
and Rhodes. East, Kumar, Mitchell, and Wilson determined the maximal subsemigroups of several finite
monoids of transformations in [6]. Yang described the maximal subsemigroups of semigroup of all singular
transformations on a finite set in [14]. The maximal subsemigroups of the ideals of the semigroup of all
transformations on a finite set were presented by Yang and Yang in [13]. Maximal subsemigroups of infinite
symmetric groups was given by Mendes-Goncalves and Sullivan in [11]. The maximal subsemigroups of
all transformations on a finite chain, preseving the order are determined in [1]. For the semigroup of all
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orientation-preserving or orientation-reversing transformations on a finite chain, the maximal subsemi-
groups were determined by Dimitrova, Fernandes, and the first author of the present paper in [3]. Also
maximal regular subsemigroups were studied, for example, for the ideals of the monoid of all transforma-
tions on a finite set by You in [15], for the ideals of the monoid of all monotone transformations on a finite
set by Dimitrova and the first author of the manusrcipt of the present paper in [2], and for particular other
semigroups of transformations by Yuan and Zhao in [16].

On the other hand, endomorphism semigroups of graphs were intensively studied, for example, for the
cycle graph in [4] or for the path with n vertices in [9]. In particular, regular endomorphism monoids were
studied by Wilkeit in [12] and Li in [10].

In the present paper, we study the maximal as well as the maximal regular subsemigroups of semigroups
of endomorphisms for the star graph. Let G = (V,E) be a simple graph (i.e., undirected, without loops, and
without multiple edges). Let α be a full transformation of V, i.e., a self-mapping on V. We say that α is:

• an endomorphism of G if {u, v} ∈ E implies {uα, vα} ∈ E, for all u, v ∈ V;

• a weak endomorphism of G if {u, v} ∈ E and uα , vα imply {uα, vα} ∈ E, for all u, v ∈ V;

• a strong endomorphism of G if {u, v} ∈ E if and only if {uα, vα} ∈ E, for all u, v ∈ V;

• a strong weak endomorphism of G if {u, v} ∈ E and uα , vα if and only if {uα, vα} ∈ E, for all u, v ∈ V.

Denote by:

• End(G) the set of all singular endomorphisms of G;

• wEnd(G) the set of all singular weak endomorphisms of G;

• sEnd(G) the set of all singular strong endomorphisms of G;

• swEnd(G) the set of all singular strong weak endomorphisms of G.

Note that we use here the same notation, that is often used in literature for the corresponding monoid
containing also permutations. Clearly, End(G), wEnd(G), sEnd(G), and swEnd(G) are semigroups under
composition of maps. It is also obvious that sEnd(G) ⊆ End(G) and sEnd(G) ⊆ swEnd(G) ⊆ wEnd(G).

We fix a positive integer n. Let Tn−1 be the set of all full transformations on the set Xn−1 = {1, 2, . . . ,n−1},
let [n\r] = Xn−1\{r} for any r ∈ Xn−1, and let Ωn = Xn−1 ∪ {0}.
Denote by Sn the star graph (i.e., a tree with diameter two) with n vertices and fix

Sn = (Ωn, {{0, i} : i ∈ Xn−1}).
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Let Tn−1 be the set of all full transformations on Ωn. Further, let T 0
n−1 be the set of all α ∈ Tn−1 with

0α = 0 and let T0
n−1 be the set of all α ∈ T 0

n−1 such that α restricted to Xn−1 belongs to Tn−1 (in symbols:
α|Xn−1 ∈ Tn−1). For α ∈ Tn−1, let Im(α) = {xα : x ∈ Ωn} be the image of α and let rank(α) = | Im(α)| be the
rank of α. For r ∈ {3, 4, . . . ,n − 1}, let Jr = {α ∈ T 0

n−1 : rank(α) = r}, J1 = {α ∈ Tn−1 : rank(α) = 1}, and
J2 = {α ∈ Tn−1 : 0α ∈ Xn−1, Im(α) = {0, 0α}}. It is easy to verify that

End(Sn) = T0
n−1 ∪ {α ∈ J2 : Im(α|Xn−1 ) = {0}},

swEnd(Sn) = End(Sn) ∪ J1, and
wEnd(Sn) = T 0

n−1 ∪ {α ∈ J1 ∪ J2 : 0α , 0}.
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If α ∈ End(Sn) and {xα, yα} ∈ E = {{0, i} : i ∈ Xn−1}, then x = 0 and y ∈ Xn−1 (or conversely), i.e., {x, y} ∈ E. So,
α ∈ sEnd(Sn). This shows that End(Sn) and sEnd(Sn) coincide, and we need not to consider the semigroup
sEnd(Sn).

This paper is devoted to studying the semigroups wEnd(Sn),End(Sn), and swEnd(Sn). In Section 2, we
find the maximal subsemigroups of these structures. By [12], End(Sn) is regular. Since J1 consists entirely of
idempotents, we can conclude that End(Sn)∪ J1 is also regular, i.e., swEnd(Sn) is regular. In [7], it was shown
that wEnd(Sn) is also regular. In the third section, we will determine the maximal regular subsemigroups
of the regular semigroups wEnd(Sn), swEnd(Sn), and End(Sn).

2. Maximal subsemigroups

In this section, we determine the maximal subsemigroups of the semigroups wEnd(Sn), swEnd(Sn), and
End(Sn). First, let us consider the semigroup wEnd(Sn).
If n = 1, then S1 is a point and wEnd(S1) = ∅.
If n = 2, then S2 is a two-element chain and wEnd(S2) consists of two constant mappings π0 and π1. So,
we have {π0} and {π1} as the both maximal subsemigroups of wEnd(S2) as well as of swEnd(S2). Moreover

End(S2) = ∅. We consider now the case n = 3. Clearly, wEnd(S3) =
{(

0 1 2
i1 i2 i3

)
: i1, i2, i3 ∈ {0, 1}

}
∪{(

0 1 2
i1 i2 i3

)
: i1, i2, i3 ∈ {0, 2}

}
.

Lemma 2.1. Let T be a subsemigroup of wEnd(S3). Then T is maximal if and only if T is one of the following forms:

T1 = wEnd(S3)\
{(

0 1 2
1 0 1

)
,

(
0 1 2
2 0 2

)
,

(
0 1 2
0 1 0

)
,

(
0 1 2
0 2 0

)}
,

T2 = wEnd(S3)\
{(

0 1 2
1 1 0

)
,

(
0 1 2
2 2 0

)
,

(
0 1 2
0 0 1

)
,

(
0 1 2
0 0 2

)}
,

T3 = wEnd(S3)\
{(

0 1 2
0 1 1

)
,

(
0 1 2
0 2 2

)
,

(
0 1 2
1 0 0

)
,

(
0 1 2
2 0 0

)}
,

T4 = wEnd(S3)\
{(

0 1 2
1 0 0

)
,

(
0 1 2
1 1 0

)
,

(
0 1 2
1 0 1

)
,

(
0 1 2
2 0 0

)
,

(
0 1 2
2 2 0

)
,

(
0 1 2
2 0 2

)}
,

T5 = wEnd(S3)\
{(

0 1 2
1 0 0

)
,

(
0 1 2
1 1 0

)
,

(
0 1 2
0 0 1

)
,

(
0 1 2
1 0 1

)
,

(
0 1 2
0 1 1

)}
, and

T6 = wEnd(S3)\
{(

0 1 2
2 0 0

)
,

(
0 1 2
2 2 0

)
,

(
0 1 2
0 2 0

)
,

(
0 1 2
2 0 2

)
,

(
0 1 2
0 2 2

)}
.

Proof. It is easy to verify that T1,T2, . . . ,T6 are maximal subsemigroups of wEnd(S3).
Conversely, let T′ be a maximal subsemigroup of wEnd(S3). Assume that there are αi ∈ T′\Ti for all
i ∈ {1, 2, . . . , 6}. By straightforward calculations, one can show that wEnd(S3) =< α1, α2, . . . , α6 >⊆ T, a
contradiction to T is a proper subsemigroup of wEnd(S3).

So, we suppose that n ≥ 4.
We put U0,1 = {α ∈ J2 : 0α , 0} and A0,1 = wEnd(Sn)\U0,1. We will obtain five types of maximal

subsemigroups of wEnd(Sn).

Lemma 2.2. A0,1 is a maximal subsemigroup of wEnd(Sn).

Proof. Let α, β ∈ A0,1. Then rank(α) , 2 or 0α = 0 and rank(β) , 2 or 0β = 0.
If rank(α) = 1 or rank(β) = 1 then rank(αβ) = 1, i.e., αβ ∈ A0,1. If rank(α) > 2 (rank(β) > 2) then 0α = 0
(0β = 0). So, in the remaining case, we have 0αβ = 0β = 0, i.e., αβ ∈ A0,1. This shows that A0,1 is a
subsemigroup of wEnd(Sn) and it remains to show that A0,1 is maximal. For this let α, β ∈ U0,1 and we
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have to show that β ∈< A0,1, α >. There are j, iα, iβ ∈ Xn−1 such that jα = 0, 0α = iα, and 0β = iβ. Let
U = 0β−1 = {x ∈ Xn−1 : xβ = 0}. Then we define γ, δ ∈ Tn−1 by

xγ =

 j if x ∈ U,
0 otherwise

and xδ =

iβ if x = iα,
0 otherwise.

It is easy to verify that γ, δ ∈ wEnd(Sn) and, moreover, 0γ = 0δ = 0 implies γ, δ < U0,1, i.e., γ, δ ∈ A0,1. For
x ∈ Xn−1\U, we have xγαδ = 0αδ = iαδ = iβ = xβ and, for x ∈ U, we have xγαδ = jαδ = 0δ = 0 = xβ. This
shows γαδ = β, i.e., β ∈< A0,1, α >.

For i ∈ Xn−1, we put Ui = {α ∈ Jn−1 : iα = 0} and Ai = wEnd(Sn)\Ui.

Lemma 2.3. Ai is a maximal subsemigroup of wEnd(Sn) for all i ∈ Xn−1.

Proof. Let i ∈ Xn−1. Let α, β ∈ Jn−1\Ui. Then iα , 0. If (iα)β , 0 then αβ < Ui. If (iα)β = 0, then there are
k < l ∈ Xn−1 with kα = lα or there is k ∈ [n\i] with kα = 0. In both cases, we obtain that rank(αβ) < n− 1, i.e.,
αβ ∈ Ai. This shows that Ai is a subsemigroup of wEnd(Sn).
We next show that Ai is maximal. Let α, β ∈ Ui. Then there is a ∈ Xn−1\ Im(α) , ∅ and let b ∈ Im(α). Since
iα = 0 and rank(α) = n − 1, we obtain that Im(α|[n\i]) = [n\a]. We define γ ∈ Tn−1 as follows: aγ = b, 0γ = 0,
and zαγ = zβ for all z ∈ [n\i], i.e., αγ = β. It is easy to verify that γ ∈ wEnd(Sn) and Im(γ|Xn−1 ) ⊆ Xn−1, i.e.,
γ < Ui. Hence, β ∈< Ai, α >.

For i < j ∈ Xn−1, we put Ui, j = {α ∈ Jn−1 : iα = jα} and Ai, j = wEnd(Sn)\Ui, j. We put U j,i = Ui, j by technical
reasons.

Lemma 2.4. Let i < j ∈ Xn−1. Then Ai, j is a maximal subsemigroup of wEnd(Sn).

Proof. Let α, β ∈ Jn−1\Ui, j. We have iα , jα. Then there are r < s ∈ Ωn with rα = sα. Then i , r or s , j, where
rαβ = sαβ. Then iαβ , jαβ or rank(αβ) < n − 1. Hence, αβ < Ui, j. This shows that Ai, j is a subsemigroup of
wEnd(Sn) and it remains to show that Ai, j is maximal.
For this let α, β ∈ Ui, j and we have to show that β ∈< Ai, j, α >. We observe that there is k ∈ Xn−1\ Im(α).
Since iα = jα and rank(α) = n − 1, we obtain that Im(α|[n\i]) = [n\k]. We define γ ∈ Tn−1 by xαγ = xβ for all
x ∈ [n\i] and 0γ = kγ = 0. It is easy to verify that γ is well-defined and γ ∈ wEnd(Sn) with γ < Ui, j since
0 ∈ Im(γ|Xn−1 ). We have xαγ = xβ for all x ∈ [n\i] with 0αγ = 0 = 0β and iαγ = jαγ = jβ = iβ. This shows
that αγ = β, i.e., β ∈< Ai, j, α >.

For i ∈ Xn−1, let Ji
n−1 = {α ∈ Jn−1 : Ωn\{i} = Im(α), iα , 0} and let Bi = wEnd(Sn)\Ji

n−1.

Lemma 2.5. Let i ∈ Xn−1. Then Bi is a maximal subsemigroup of wEnd(Sn).

Proof. Let α, β ∈ Jn−1\Ji
n−1. Then Ωn\{i} ⊈ Im(β) or iβ = 0. If Ωn\{i} ⊈ Im(β) then Ωn\{i} ⊈ Im(αβ), i.e.,

αβ < Ji
n−1. Suppose that iβ = 0 and Ωn\{i} = Im(β). Then β|[n\i] is injective. If iα = 0 then iαβ = 0, i.e.,

αβ < Ji
n−1. If iα , 0 and Ωn\{i} ⊈ Im(α) then i ∈ Im(α) and there is a ∈ iα−1. Clearly, a , 0 and aαβ = iβ = 0.

If there is b ∈ [n\a] with bα = 0 then rank(αβ) < n − 1 and αβ < Ji
n−1. If xα , 0 for all x ∈ Xn−1 then there

is k ∈ [n\i] with k < Im(α) and kβ < Im(αβ), i.e., i, kβ < Im(αβ), where i , kβ. Thus, rank(αβ) < n − 1 and
αβ < Ji

n−1. This shows that Bi is a subsemigroup of wEnd(Sn).
Let now α, β ∈ Ji

n−1 and we will show that β ∈< Bi, α >. For each x ∈ Xn−1 with xβ , 0, there is x ∈ Xn−1
with xα = xβ. We choose x = i if iα = xβ. Then we define γ ∈ Tn−1 by

xγ =

x if xβ , 0,
0 if xβ = 0,

for all x ∈ Ωn. It is easy to verify that γ ∈ wEnd(Sn). Since iα , 0, iα ∈ Im(β), we can conclude that i ∈ Im(γ)
and γ < Ji

n−1, i.e., γ ∈ Bi. For all x ∈ Xn−1, it holds xγα = xα = xβ, whenever xβ , 0 and xγα = 0α = 0 = 0β,
whenever xβ = 0. Therefore, γα = β, i.e., β ∈< Bi, α >. This shows that Bi is a maximal subsemigroup.
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For ∅ , Z ⊆ Xn−1 with |Z| ≤ n − 3, we put RZ
0 = {α ∈ Jn−1 : zα = 0, z ∈ Z\ Im(α)} ∪ {α ∈ Jn−1\LZ : zα =

0 for some z ∈ Xn−1\Z},
RZ =

⋃
{Ui, j : i < j ∈ Xn−1\Z}, and

LZ =
⋃
{Ji

n−1 : i ∈ Z}.

Lemma 2.6. Let ∅ , Z ⊆ Xn−1 with |Z| ≤ n − 3. Then AZ = {α ∈ wEnd(Sn) : rank(α) < n − 1} ∪ LZ ∪ RZ ∪ RZ
0 is

a maximal subsemigroup of wEnd(Sn).

Proof. Let α, β ∈ Jn−1 ∩ AZ then one of the cases (1)-(4) and (5)-(8), respectively, is satisfied.
(1) iα = 0 for some i ∈ Xn−1\Z and α < LZ or
(2) iα = 0 for some i ∈ Z\ Im(α), or
(3) α ∈ Ui, j for some i < j ∈ Xn−1\Z, or
(4) α ∈ Ji

n−1 for some i ∈ Z and
(5) kβ = 0 for some k ∈ Z\ Im(β), or
(6) β ∈ Jk

n−1 for some k ∈ Z, or
(7) β ∈ Uk,l for some k < l ∈ Xn−1\Z, or
(8) kβ = 0 for some k ∈ Xn−1\Z and β < LZ.

If (6) holds then Im(αβ) ⊆ Xn−1\{k}. Then rank(αβ) < n − 1 or αβ ∈ Jk
n−1 ⊆ LZ (whenever kαβ , 0) or αβ ∈ RZ

0
(whenever kαβ = 0). Thus, αβ ∈ AZ.
If (1) holds then i < Im(α). If (8) is satisfied and k = i then iαβ = 0 with αβ < LZ. In the remaining cases, we
have rank(αβ) < n − 1, i.e., αβ ∈ AZ.
If (8) is satisfied then rank(αβ) < n − 1, whenever (2) or (4) with k ∈ Im(α) holds. If (4) holds with k < Im(α)
then (8) implies αβ ∈ Ji

n−1. Hence αβ ∈ AZ.
Suppose now that (3) holds. Then αβ ∈ Ui, j or rank(αβ) < n − 1. Hence, αβ ∈ AZ. Suppose that (2) and (5)
are satisfied. Then iαβ = 0. If k = i then i < Im(αβ), i.e., αβ ∈ RZ

0 . If k , i then rank(αβ) < n − 1, i.e., αβ ∈ AZ.
Suppose that (2) and (7) hold. Then iα = 0. Since i ∈ Z\ Im(α) and k, l ∈ Z, there are p, q ∈ [n\i] with pα = k
and qα = l. Hence, rank(αβ) < n − 1 and αβ ∈ AZ.
Suppose that (4) and (7) hold. Then it is easy to verify that Im(αβ) ⊆ Im(β)\{iβ}, Since i , k, l, we get
rank(αβ) < n−1 and αβ ∈ AZ. If (4) and (5) are satisfied. Then αβ ∈ Ji

n−1, whenever k = i and rank(αβ) < n−1,
whenever k , i. This gives αβ ∈ AZ. This shows that AZ is a subsemigroup of wEnd(Sn).

It remains to show that AZ is maximal. For this let α, β ∈ wEnd(Sn)\AZ. Then αβ ∈ wEnd(Sn) and there
are k, l,m ∈ Xn−1 such that α ∈ Jk

n−1

⋂
Ul,m with k < Z and l ∈ Z or m ∈ Z or there are k ∈ Xn−1\Z and l ∈ Z

with α ∈ Jk
n−1 and lα = 0. Then it is easy to verify that there are γ, δ ∈ AZ such that β = γαδ. So, we have

shown that β ∈< AZ, α >.

Theorem 2.7. Let T be a subsemigroup of wEnd(Sn). Then T is maximal if and only if T is one of the following types:
(1) T = A0,1 or
(2) T = Ai for some i ∈ Xn−1 or
(3) T = Ai, j for some i < j ∈ Xn−1 or
(4) T = Bi for some i ∈ Xn−1 or
(5) T = {α ∈ wEnd(Sn) : rank(α) < n − 1} ∪ RZ ∪ LZ ∪ RZ

0 for some ∅ , Z ⊆ Xn−1 with |Z| ≤ n − 3.

Proof. If T is one of the given forms, then T is a maximal by Lemmas 2.1 - 2.5. Now suppose that T is a
maximal subsemigroup of wEnd(Sn). Let T = T ∩ T0

n−1 and T̂ = {α|Xn−1 : α ∈ T} ⊆ Tn−1. Then it is easy to
verify that T̂ is a maximal subsemigroup of the singular part of Tn−1 or T̂ is the singular part of Tn−1. We
denote the singular part of Tn−1 also by Tn−1.
Suppose that T̂ is a maximal subsemigroup of Tn−1. Then by [14], the semigroup T̂ has one of the following
forms:

(a) T̂ = Tn−1\{α ∈ Tn−1 : rank(α) = n − 2 and i < Im(α)} for some i ∈ Xn−1. So, Ji
n−1 ∩ T0

n−1 ∩ T = ∅. Let
α ∈ Ji

n−1\T
0
n−1. Then there is p ∈ [n\i] with pα = 0. A straightforward calculation provides (Jp

n−1 ∩ T0
n−1)α =

Ji
n−1 ∩ T0

n−1. Since Ji
n−1 ∩ T0

n−1 ∩ T = ∅, we can conclude that α < T. So, (Ji
n−1\T

0
n−1) ∩ T = ∅ and with

Ji
n−1 ∩ T0

n−1 ∩ T = ∅, we obtain Ji
n−1 ∩ T = ∅. By Lemma 2.5, we can conclude that T = wEnd(Sn)\Ji

n−1.
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(b) T̂ = Tn−1\{α ∈ Tn−1 : rank(α) = n−2, iα = jα} for some i < j ∈ Xn−1. So, Ui, j∩T = ∅. Since wEnd(Sn)\Ui, j
is a maximal subsemigroup of wEnd(Sn), by Lemma 2.4, we can conclude that T = wEnd(Sn)\Ui, j.

(c) Let T̂ = {α ∈ Tn−1 : rank(α) < n − 2} ∪
⋃
{Rn−1

i, j : i, j ∈ Xn−1\Z} ∪
⋃
{Ln−1

i : i ∈ Z} for some non-empty set
Z ⊆ Xn−1, with |Z| ≤ n − 3, where

Rn−1
i, j = {α ∈ Tn−1 : rank(α) = n − 2, iα = jα} for i < j ∈ Xn−1 and

Ln−1
j = {α ∈ Tn−1 : rank(α) = n − 2 : j < Im(α)} for some j ∈ Xn−1.

Then (RZ∪LZ)∩T0
n−1 ⊆ T. Assume that there is α ∈ T0

n−1∩ Jn−1 with α|Xn−1 < T̂. Then T̂ = Tn−1 since T̂ is a
maximal subsemigroup of Tn−1, a contradiction. Hence, {α ∈ wEnd(Sn) : rank(α) < n−1}∪RZ∪(LZ∩T0

n−1) ⊆ T.
Assume that for all i ∈ Xn−1, there is βi ∈ T∩ Jn−1 with iβi = 0 and there is α ∈ T\AZ. Let β ∈ (LZ\T0

n−1)∪RZ
0 .

Then there is k ∈ Xn−1 with kβ = 0. We consider βk ∈ T. If Z ⊆ Im(βk). Then there are p, q ∈ Xn−1\Z and
p < Im(βk). It is easy to verify that there is β0 ∈ Up,q ⊆ T with β = βkβ0. Suppose that Z ⊈ Im(βk). Then we
consider α. There is m ∈ Z such that mα = 0 or α ∈ Um,l for some l ∈ Xn−1, where Z ⊆ Im(α). Then it is
easy to verify that there is γ ∈ LZ ∩ T0

n−1 such that [n\t] ⊆ Im(βkγα) for some t ∈ Xn−1\Z and k(βkγα) = 0.
As above, there is β0 ∈ T with β = βkγαβ0. This shows that LZ\T0

n−1 ∪ RZ
0 ⊆ T, i.e., AZ ⊆ T. This contradicts

to T\AZ , ∅. Hence AZ ⊆ T or there is i ∈ Xn−1 such that T ∩ Ui = ∅. This shows that T = AZ or T = Ai,
respectively.

Now suppose that T̂ = Tn−1. We have already shown that T̂ = Tn−1 implies that there is i ∈ Xn−1 with
T ∩ Ui = ∅, i.e., T = Ai, or Jn−1 ⊆ T. So, we consider the case Jn−1 ⊆ T. Then T 0

n−1 ⊆ T. Assume that there
is α ∈ T with 0α , 0, rank(α) = 2. Let γ ∈ J2 with 0γ = i ∈ Xn−1. Then there is a non-empty set Y ⊆ Xn−1
with xγ = 0 for all x ∈ Y and xγ = i, otherwise. Let δi ∈ Tn−1 with 0δi = 0 and xδi = i for all x ∈ Xn−1.
Further, let γY ∈ Tn−1 with xγY = 1 for all x ∈ Y and xγY = 0, otherwise. Clearly δi, γY ∈ T 0

n−1 ⊆ T with
γYαγi = γ. This shows that < T 0

n−1, α >= wEnd(Sn), a contradiction. Thus U0,1 ∩ T = ∅ and by Lemma 2.2,
we get T = A0,1.

We have one maximal subsemigroup of type (1), (n − 1) maximal subsemigroups of type (2) as well as

of type (4),
(n − 1)(n − 2)

2
maximal subsemigroups of type (3) and 2n−1

− n − 1 maximal subsemigroups of

type (5). Altogether, we have
(n − 2)(n + 1)

2
+ 2n−1 maximal subsemigroups of wEnd(Sn).

Next, we determine the maximal subsemigroups of End(Sn). If n = 3 then End(S3) consists of four
elements:

End(S3) =
{(

0 1 2
0 1 1

)
,

(
0 1 2
0 2 2

)
,

(
0 1 2
1 0 0

)
,

(
0 1 2
2 0 0

)}
.

Lemma 2.8. Let T be a subsemigroup of End(S3). Then T is maximal if and only if T is one of the following forms:

(1) T1 =

{(
0 1 2
0 1 1

)
,

(
0 1 2
0 2 2

)}
or

(2) T2 =

{(
0 1 2
0 1 1

)
,

(
0 1 2
1 0 0

)}
or

(3) T3 =

{(
0 1 2
0 2 2

)
,

(
0 1 2
2 0 0

)}
.

Proof. It is easy to see that if T is of the form (1) or (2) or (3), then T is maximal.
Conversely, let T′ be a maximal subsemigroup of End(S3) with T′ ⊈ T1,T′ ⊈ T2 and T′ ⊈ T3. Then there
exist α1 ∈ T′\T1, α2 ∈ T′\T2, and α3 ∈ T′\T3. It is straightforward to check (by all possibilities for α1, α2, and
α3) that < α1, α2, α3 >= End(S3).

Let n ≥ 4 and JEnd
n−1 = Jn−1 ∩ T0

n−1.
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Theorem 2.9. Let T be a subsemigroup of End(Sn). Then T is maximal if and only if T is one of the following four
forms:

(1) T = End(Sn)\Jw
2 , with Jw

2 = {α ∈ J2 : 0α , 0 and Im(α|Xn−1 ) = {0}};
(2) T = End(Sn)\REnd

i, j , with REnd
i, j = {α ∈ JEnd

n−1 : iα = jα} for some i < j ∈ Xn−1;

(3) T = End(Sn)\LEnd
i , with LEnd

i = {α ∈ JEnd
n−1 : i < Im(α)} for some i ∈ Xn−1;

(4) T = {α ∈ End(Sn) : rank(α) < n − 1} ∪ REnd
Z ∪ LEnd

Z = Are1
Z , where

REnd
Z =

⋃
{REnd

i, j : i, j ∈ Xn−1\Z},
LEnd

Z =
⋃
{LEnd

i : i ∈ Z} for some ∅ , Z ⊆ Xn−1 with |Z| ≤ n − 3.

Proof. Note that End(Sn) = T0
n−1 ∪ Jw

2 , where T0
n−1 � Tn−1. Let T be a maximal subsemigroup of End(Sn).

Then T̂ = {α|Xn−1 : α ∈ T\Jw
2 } is a maximal subsemigroup of Tn−1 or T0

n−1 ⊆ T since rank(α) ≤ 2 for all
α ∈ End(Sn)\T0

n−1. Suppose now that {α ∈ End(Sn) : rank(α) > 2} ⊈ T. Then by [14], we have
T̂ = Tn−1\{α ∈ Jn−1

n−2 : xα , i for all x ∈ Xn−1} for some i ∈ Xn−1 or
T̂ = Tn−1\{α ∈ Jn−1

n−2 : iα = jα} for some i < j ∈ Xn−1 or
T̂ = {α ∈ Tn−1 : rank(α) ≤ n − 3}

⋃
{α ∈ Jn−1

n−2 : xα , z for all x ∈ Xn−1 and some z ∈ Z} ∪ {α ∈ Jn−1
n−2 : iα =

jα for some i < j ∈ Xn−1\Z} for some non-empty set Z ⊆ Xn−1 with |Z| ≤ 3, where Jn−1
n−2 = {α ∈ Tn−1 : rank(α) =

n − 2}.
Let T̃ = {α ∈ T0

n−1 : α|Xn−1 ∈ T̂}. Since T0
n−1 � Tn−1 and T̂ is a maximal subsemigroup of Tn−1, we get that T̃

is a maximal subsemigroup of T0
n−1. Note that T̃ = End(Sn)\J for some J ⊆ JEnd

n−1. So, T ⊆ T̃ ∪ Jw
2 and T̃ ∪ Jw

2
is a maximal subsemigroup of T0

n−1 ∪ Jw
2 = End(Sn), i.e., T = T̃ ∪ Jw

2 = End(Sn)\{α ∈ T0
n−1 : α|Xn−1 < T̂}. By the

three possibilities for T̂, we obtain the cases (2), (3), or (4).
Suppose now that T0

n−1 ⊆ T. Let α, β ∈ Jw
2 . We define γ ∈ Tn−1 by 0γ = 0 and xγ = 0β , 0 for all x ∈ Xn−1.

It is clear that γ ∈ T0
n−1 and 0αγ = 0β as well as xαγ = 0γ = 0 = xβ for all x ∈ Xn−1. This shows that β = γα,

i.e., β ∈< T0
n−1, α >. Hence, T0

n−1 is a maximal subsemigroup of T0
n−1 ∪ Jw

2 = End(Sn) with T0
n−1 ⊆ T. Hence

T = T0
n−1 = End(Sn)\Jw

2 .

Similar as for the semigroup wEnd(Sn), we obtain that there is one maximal subsemigroup of type (1),
(n − 1)(n − 2)

2
maximal subsemigroups of type (2), (n−1) maximal subsemigroups of type (3) and 2n−1

−n−1

maximal subsemigroups of type (4). So, we have
(n − 3)n

2
+ 2n−1 maximal subsemigroups of End(Sn).

Lemma 2.10. End(Sn) is a maximal subsemigroup of swEnd(Sn).

Proof. Since End(Sn) is a semigroup, it is enough to show that End(Sn) is a maximal subsemigroup of
swEnd(Sn). Let α, β ∈ J1. Then there are i, j ∈ Ωn such that Im(α) = {i} and Im(β) = { j}. Let γ ∈ Tn−1 with

yγ =


0 if x = 0,
i if x = j,
j otherwise.

Then it is easy to verify that γ ∈ End(Sn) and β = αγ, i.e., β ∈< End(Sn), α >. Consequently, End(Sn) is a
maximal subsemigroup of swEnd(Sn).

Since J1 ⊆ swEnd(Sn), we can conclude that J1 is an ideal of swEnd(Sn).

Lemma 2.11. Let T be a maximal subsemigroup of End(Sn). Then T ∪ J1 is a maximal subsemigroup of swEnd(Sn).

Proof. T ∪ J1 is the disjoint union of a subsemigroup and an ideal of swEnd(Sn). This provides that T ∪ J1
is a semigroup itself. We will show that T ∪ J1 is maximal. For this, let α ∈ swEnd(Sn)\(T ∪ J1). Then
< T ∪ J1, α >=< T, α > ∪J1 = End(Sn) ∪ J1 = swEnd(Sn) since T is a maximal subsemigroup of End(Sn). This
shows that T ∪ J1 is a maximal subsemigroup of swEnd(Sn).
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Theorem 2.12. Let T be a subsemigroup of swEnd(Sn). Then T is maximal if and only if T = End(Sn) or T = T̂ ∪ J1
for some maximal subsemigroup T̂ of End(Sn).

Proof. End(Sn) is a maximal subsemigroup of swEnd(Sn) by Lemma 2.10. On the other hand, T̂ ∪ J1 is
maximal subsemigroup of swEnd(Sn) for all maximal subsemigroups T̂ of End(Sn) by Lemma 2.11.
Let now T be a maximal subsemigroup of swEnd(Sn). Since swEnd(Sn) is the disjoint union of End(Sn) and
J1, there are sets T̃ ⊆ End(Sn) and G ⊆ J1 such that T = T̃ ∪ G. If G = ∅ then T = T̃ and by Lemma 2.10,
we have T = End(Sn). Suppose now that G , ∅. Assume that T̃ does not be a maximal subsemigroup of
End(Sn). We can conclude that T̃ ⊂ T̂ for some maximal subsemigroup T̂ of End(Sn). Let α ∈ T̂\T̃ , ∅.
Then swEnd(Sn) =< T, α >=< T̃,G, α >⊆< T̃, α > ∪ J1 = T̂ ∪ J1 since J1 is an ideal of swEnd(Sn) and T̂ is a
subsemigroup of swEnd(Sn). Thus, End(Sn)∪ J1 = swEnd(Sn) ⊆ T̂∪ J1, a contradiction to T̂ ⊂ End(Sn). Hence,
T = T̂ ∪ G ⊆ T̂ ∪ J1. As in the proof of Lemma 2.11, we can conclude that G = J1, i.e., T = T̂ ∪ J1.

The number of maximal subsemigroups of swEnd(Sn) is the number of maximal subsemigroups of

End(Sn) plus one. So, we have
(n − 3)n

2
+ 2n−1 + 1 maximal subsemigroups of swEnd(Sn).

3. Maximal regular subsemigroups

This section is devoted to the maximal regular subsemigroups. In Section 2, we have determined the
maximal subsemigroups of wEnd(Sn) and End(Sn), respectively. The maximal regular subsemigroups of
wEnd(Sn) and End(Sn), respectively, are the maximal regular subsemigroups of their maximal subsemi-
groups.

Lemma 3.1. For i < j ∈ Xn−1,Ai, j is regular.

Proof. Let i < j ∈ Xn−1 and let α ∈ Ai, j. Then it is sufficient to consider the case α ∈ Jn−1. We can write

α =

(
A0 A1 . . . An−2
0 i1 . . . in−2

)
and put ak = minAk for k ∈ {1, 2, . . . ,n − 2}. Let β ∈ Tn−1 be defined by

xβ =

ak if x = ik for some k ∈ {1, 2, . . . ,n − 2},
0 otherwise.

It is easy to verify that β ∈ wEnd(Sn)\Ui, j and α = αβα.

Lemma 3.2. For i ∈ Xn−1,Ai is regular.

Proof. Let i ∈ Xn−1 and let α ∈ Ai. Then we have only to consider the case α ∈ Jn−1. We can write

α =

(
A0 A1 . . . An−2
0 i1 . . . in−2

)
and put ak = minAk if i < Ak and ak = i if i ∈ Ak, for all k ∈ {1, 2, . . . ,n− 2}. We

define now β ∈ Tn−1 by

xβ =


ak if x = ik for some k ∈ {1, 2, . . . ,n − 2},
0 if x = 0,
i otherwise.

It is easy to verify that β ∈ wEnd(Sn), rank(α) = rank(β) = n − 1, and α = αβα. Since 0α = 0 implies 0 ∈ A0,
we can conclude that iβ , 0. Hence, β < Ui.

Lemma 3.3. A0,1 is regular.

Proof. Let α ∈ A0,1. Then α < U0,1. If 0α , 0 then rank(α) ≤ 2. Since α < U0,1, we have rank(α) = 1. Then
α is idempotent and this implies that α is regular. If 0α = 0, then there is β ∈ wEnd(Sn) with α = αβα since
wEnd(Sn) is regular. Then it is easy to verify that 0β = 0, i.e., β < U0,1. So, β ∈ A0,1.
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For i ∈ Xn−1, let Ci = {α ∈ Bi ∩ Jn−1 : iα = 0, i ∈ Im(α)}. It is easy to verify that Ci , ∅.

Lemma 3.4. Let i ∈ Xn−1 and let α ∈ Ci. Then α is not regular in Bi.

Proof. Assume that α is regular in Bi. Then there is β ∈ Bi with α = αβα. Let A = [n\i]. Since rank(α) = n− 1
and iα = 0, we have α|A is injective. Then β|Aα is injective with Im(β|Aα) = A, i.e., Im(β) = Ωn\{i}. Since iα = 0
and i ∈ Im(α), we can conclude that i ∈ Aα. So, Im(β|Aα) = A implies iβ ∈ A, i.e., iβ , 0. Thus β ∈ Ji

n−1, i.e.,
β < Bi, a contradiction.

Corollary 3.5. For i ∈ Xn−1, Bi is not regular.

For i ∈ Xn−1, let Vi = {α ∈ Bi ∩ Jn−1 : |iαα−1
| = 2 and iα , 0} and let Bre1

i,1 = Bi\(Ci ∪ Vi).

Lemma 3.6. Let i ∈ Xn−1. Then Bre1
i,1 is a regular subsemigroup of Bi.

Proof. Let α, β ∈ Bre1
i,1 ∩ Jn−1. Then |iγγ−1

| = 1 or iγ = 0 (and i < Im(γ)) for γ ∈ {α, β}. It is routine to verify
that rank(αβ) < n − 1 or |iαβ(αβ)−1

| = 1 or iαβ = 0 (and i < Im(αβ)). This shows that Bre1
i,1 is a semigroup.

Next, we show that Bre1
i,1 is regular. Let α ∈ Bre1

i,1 . It is enough to consider the case α ∈ Jn−1. So, we can write

α =

(
A0 A1 . . . An−2
0 i1 . . . in−2

)
. For each k ∈ {1, 2, . . . ,n − 2}, there is ak ∈ Ak with akα = ik. Suppose that

|iαα−1
| = 1. Then i ∈ Im(α), iα , 0, and i ∈ {a1, a2, . . . , an−2}. Let β ∈ Tn−1 be defined by

xβ =

ak if x = ik for some k ∈ {1, 2, . . . ,n − 2},
0 otherwise.

Since i ∈ Im(β), we verify that β ∈ Bi. Since |iββ−1
| = 1, we get that β ∈ Bre1

i,1 . Moreover, we have αβα = α.
Suppose that iα = 0. Then i < Im(α) and α restricted to [n\i] is bijective. We define β ∈ Tn−1 by

xβ =

xα−1 if x ∈ [n\i],
0 otherwise.

Then it is easy to verify that β ∈ Bre1
i,1 and αβα = α. This shows that α is regular. Consequently, Bre1

i,1 is
regular.

For i ∈ Xn−1, let Wi = {α ∈ Jn−1 ∩ Bi : iα = 0, i < Im(α)} and let Bre1
i,2 = Bi\(Ci ∪Wi).

Lemma 3.7. Let i ∈ Xn−1. Then Bre1
i,2 is a regular subsemigroup of Bi.

Proof. Let α, β ∈ Bre1
i,2 ∩ Jn−1. Then iα , 0 and iβ , 0. It is a routine matter to verify that iαβ = 0 implies

rank(αβ) < n − 1. Hence αβ ∈ Bre1
i,2 . This shows that Bre1

i,2 is a semigroup. Next, we show that Bre1
i,2 is regular.

Let α ∈ Bre1
i,2 ∩ Jn−1 with α =

(
A0 A1 . . . An−2
0 i1 . . . in−2

)
. For each k ∈ {1, 2, . . . ,n − 2}, there is ak ∈ Ak with

akα = ik, where i ∈ {a1, a2, . . . , an−2}. We define β ∈ Tn−1 by

xβ =

ak if x = ik for some k ∈ {1, 2, . . . ,n − 2},
0 otherwise.

Since i ∈ {a1, a2, . . . , an−2}, we have i ∈ Im(β). Since α ∈ Bi\Wi, we have i ∈ {i1, i2, . . . , in−2} and iβ , 0. This
provides β ∈ Bre1

i,2 , where αβα = α.

Lemma 3.8. Let i ∈ Xn−1, let α ∈ Vi, and let β ∈Wi. Then βα is not regular in Bi.
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Proof. Since Im(β|[n\i]) = [n\i] and Im(α|Xn−1 ) = Im(α|[n\i]), we can conclude that Im(βα|[n\i]) = Im(α|[n\i]) =
Im(βα|Xn−1 ). This shows that βα ∈ Jn−1 and i ∈ Im(βα) since i ∈ Im(α). Hence i ∈ Im(βα). Moreover,
0βα = iβα = 0. This shows that βα ∈ Ci and βα is not regular in Bi by Lemma 2.4.

Proposition 3.9. Let i ∈ Xn−1 and let T be a maximal regular subsemigroup of Bi. Then there is k ∈ {1, 2} such that
T = Bre1

i,k .

Proof. Let k ∈ {1, 2}. Then Bre1
i,k is regular by Lemmas 3.6 and 3.7, respectively. Since Vi ∩Wi = ∅, we can

conclude that Bi,k is a maximal regular subsemigroup of Bi by Lemma 3.8. Assume that T , Bre1
i,1 and T , Bre1

i,2 .
Since T ⊆ Bi\Ci by Lemma 3.4, there is α ∈ Vi ∩ T and β ∈Wi ∩ T. Then βα ∈ T is not regular by Lemma 3.8,
a contradiction.

We put R
Z
0 = {α ∈ LZ : zα = 0 for some z ∈ Xn−1\Z}.

Lemma 3.10. Let Z be a non-empty subset of Xn−1 with |Z| ≤ n − 3. If α ∈ (LZ ∩ RZ) ∪ R
Z
0 then α is not regular in

AZ.

Proof. Let α ∈ (LZ ∩ RZ) ∪ R
Z
0 . Then there is a ∈ Z with a < Im(α). Assume that α is regular in AZ. Then

there is β ∈ AZ with αβα = α. In particular, we can conclude that β|[n\a] is injective, i.e., aβ = 0 or there is
k ∈ [n\a] with β ∈ Uk,a. It is easy to verify that Z ⊈ Im(β). But we have Z ⊆ Im(β) since there is z ∈ Xn−1\Z
with | Im(α|[n\z])| = n − 2. This is a contradiction.

Corollary 3.11. Let Z be a non-empty subset of Xn−1 with |Z| ≤ n − 3. Then AZ is not regular.

Lemma 3.12. All elements in AZ\[(LZ ∩ RZ) ∪ R
Z
0 ] are regular in AZ\[(LZ ∩ RZ) ∪ R

Z
0 ].

Proof. Let α ∈ AZ\[(LZ ∩ RZ) ∪ R
Z
0 ]. Then there are the following four cases are possible:

a) α ∈ RZ. Then Im(α) = Xn−1\{a} for some a ∈ Xn−1\Z. Then there is b ∈ Xn−1\(Z ∪ {a}). Further, there is
p ∈ Xn−1\Z with pα = qα for some q ∈ [n\p]. We define β ∈ T 0

n−1 by aβ = bβ and xβ = y with y ∈ [n\p] and

yα = x for all x ∈ [n\a]. It is easy to verify that β ∈ AZ\[(LZ ∩ RZ) ∪ R
Z
0 ] and αβα = α.

b) There is a ∈ Xn−1\Z such that Im(α) = Ωn\{a}. We define β ∈ T 0
n−1 by aβ = 0 and xβ = y with yα = x

for all x ∈ [n\a]. It is easy to verify that β ∈ AZ\[(LZ ∩ RZ) ∪ R
Z
0 ] and αβα = α.

c) α ∈ LZ and α ∈ Rp,q for some p ∈ Xn−1 and q ∈ Z. Similar as in the proof of a), we can show that there

is β ∈ AZ\[(LZ ∩ RZ) ∪ R
Z
0 ] with αβα = α.

d) There is a ∈ Z such that Im(α) = Ωn\{a}. Similar as in the proof of b), we can show that there is

β ∈ AZ\[(LZ ∩ RZ) ∪ R
Z
0 ] with αβα = α.

We have shown that AZ\[(LZ ∩ RZ) ∪ R
Z
0 ] is the set of regular elements in AZ, but it is easy to see

that this set does not form a subsemigroup of AZ. In fact, let β1 =

(
0 1 2 . . . n − 2
0 0 2 . . . n − 2

)
and let β2 =(

0 1 . . . n − 3 n − 2
0 1 . . . n − 3 1

)
. If Z = {3, 4, . . . ,n − 1}, then it is easy to verify that β1, β2 ∈ AZ\[(LZ ∩ RZ) ∪ R

Z
0 ]

and β1, β2 ∈ LZ ∩ RZ. So, the maximal regular subsemigroups of AZ are within the set AZ\[(LZ ∩ RZ) ∪ R
Z
0 ].

A ”nice” description of the maximal regular subsemigroups of AZ seems almost impossible. Therefore, we
skip the description of the maximal regular subsemigroups of AZ in this paper.

Theorem 3.13. Let T be a regular subsemigroup of wEnd(Sn). Then T is maximal if and only if T is one of the
following types:

(1) T = A0,1 or
(2) T = Ai for some i ∈ Xn−1 or
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(3) T = Ai, j for some i < j ∈ Xn−1 or
(4) T = Bre1

i,k for some i ∈ Xn−1 and some k ∈ {1, 2} or
(5) T is a maximal regular subsemigroup of AZ for some ∅ , Z ⊆ Xn−1 with |Z| ≤ n − 3.

Proof. Let T be a maximal regular subsemigroup of wEnd(Sn). Then T needs to be a maximal regular
subsemigroup of one of the maximal subsemigroups of wEnd(Sn). So by Lemmas 3.1 - 3.3, T = A0,1 or T = Ai
for some i ∈ Xn−1 or T = Ai, j for some i < j ∈ Xn−1 or T is a maximal regular subsemigroup of AZ for some
non-empty subset Z of Xn−1 with |Z| ≤ n− 3 or T is a maximal regular subsemigroup of Bi for some i ∈ Xn−1.
In the latter case, we obtain T = Bre1

i,1 or T = Bre1
i,2 by Proposition 3.9.

We consider now the regular subsemigroups of End(Sn). Note that End(Sn)\Jw
2 = T0

n−1.

Lemma 3.14. End(Sn)\Jw
2 is regular.

Proof. Since End(Sn) is regular and since non of the elements in Jw
2 can be the inverse of any α ∈ End(Sn)\Jw

2 ,
we can conclude that End(Sn)\Jw

2 is regular.

In [15], all maximal regular subsemigroups of Tn−1 are characterized. We will use it for a description of
the maximal regular subsemigroups of End(Sn).

Theorem 3.15. Let T be a regular subsemigroup of End(Sn). Then T is a maximal regular subsemigroup of End(Sn) if
and only if T = T0

n−1 or there is a maximal regular subsemigroup T̂ of Tn−1 such that T = Jw
2 ∪{α ∈ T0

n−1 : α|Xn−1 ∈ T̂}.

Proof. Suppose that T is a maximal regular subsemigroup of End(Sn). Then there are sets G ⊆ Jw
2 and

T ⊆ T0
n−1 such that T = G ∪ T.

Suppose that T , T0
n−1. Then it is easy to verify that T̂ = {α|Xn−1 : α ∈ T} is a maximal regular subsemigroup

of Tn−1, i.e., T = {α ∈ T0
n−1 : α|Xn−1 ∈ T̂}. Note that T contains all α ∈ End(Sn)\Jw

2 with rank(α) ≤ 2, where
rank(β) = 2 for each β ∈ Jw

2 , we can conclude that G = Jw
2 . Hence, T = Jw

2 ∪ {α ∈ T0
n−1 : α|Xn−1 ∈ T̂}.

Suppose that T = T0
n−1. Then by Lemma 3.14, we get that T = End(Sn)\Jw

2 = T0
n−1.

Conversely, since Tn−1 is regular with Tn−1 � T0
n−1, we can conclude that T0

n−1 is regular. Let T be a maximal
regular subsemigroup of Tn−1. Then T = {α ∈ T0

n−1 : α|xn−1 ∈ T̂} is a maximal regular subsemigroup of T0
n−1

since T � T0
n−1. Note that α3 = α for all α ∈ Jw

2 . Hence, Jw
2 consists entirely of regular elements. Since T

contains all α ∈ End(Sn) with rank(α) ≤ 2 and End(Sn) = T0
n−1 ∪ Jw

2 , we can conclude that T∪ Jw
2 is a maximal

regular subsemigroup of End(Sn).

Theorem 3.16. Let T be a regular subsemigroup of swEnd(Sn). Then T is a maximal regular subsemigroup of
swEnd(Sn) if and only if T = End(Sn) or T = T ∪ J1 for some maximal regular subsemigroup T of End(Sn).

Proof. Note that J1 consists entirely of idempotents and swEnd(Sn) = End(Sn) ∪ J1, where J1 is an ideal
of swEnd(Sn). These observations prove that if T is a maximal regular subsemigroup of End(Sn), then
T ∪ J1 is a maximal regular subsemigroup of End(Sn) ∪ J1 = swEnd(Sn). Moreover, End(Sn) is regular as
well as a maximal subsemigroup of swEnd(Sn) by Theorem 2.12. Therefore, End(Sn) is a maximal regular
subsemigroup of swEnd(Sn).

Conversely, let T be a maximal regular subsemigroup of swEnd(Sn). If J1 ∩ T = ∅ then T ⊆ End(Sn), i.e.,
T = End(Sn). Suppose now that J1 ∩ T , ∅. Since End(Sn) is a maximal regular subsemigroup of swEnd(Sn),
we get T\J1 , End(Sn). Because J1 is an ideal, we can conclude that T\J1 ⊂ End(Sn) is a maximal regular
subsemigroup of End(Sn) and T ⊆ (T\J1)∪ J1. This implies T = (T\J1)∪ J1, where (T\J1) is a maximal regular
subsemigroup of End(Sn).
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