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The maximal subsemigroups of the singular part of endomorphism
monoids of the star graphs
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Abstract. In this paper, we determine the maximal subsemigroups of the singular part of endomorphism
monoids of the star graphs S,, for a given positive integer 1, namely End(S,), wEnd(S,), and swEnd(S,),
respectively. The monoid wEnd(S,) of all weak endomorphisms on S, the monoid End(S,) of all endomor-
phisms on S, as well as the monoid swEnd(S,) of all strong weak endomorphisms on S, is regular. We also
determine the maximal regular submonoids of the singular part of wEnd(S,), End(S,), and swEnd(S,).

1. Introduction and preliminaries

A proper subsemigroup of a semigroup S is maximal if it is contained in no other proper subsemigroup
of S. An element a € S is called regular if there is an element b € S with aba = a. The semigroup S is called
regular semigroup if all elements in S are regular. A proper regular subsemigroup of a (regular) semigroup S
is maximal if it is not contained in any other proper regular subsemigroup of S. Maximal subsemigroups of
full transformations have been extensively studied. A transformation different from a permutation is called
singular transformation. In particular, semigroups of singular transformations have been investigated. We
would like to mention here only a few authors and some interesting semigroups (of transformations), for
which the maximal subsemigroups have been determined.

Graham, Graham, and Rhodes found out that every maximal subsemigroup of a finite semigroup must
be a type given in [8]. In [5], Donoven, Mitchell, and Wilson present an algorithm for the calculations of
the maximal subsemigroup of an arbitrary finite semigroup, starting on the results by Graham, Graham,
and Rhodes. East, Kumar, Mitchell, and Wilson determined the maximal subsemigroups of several finite
monoids of transformations in [6]. Yang described the maximal subsemigroups of semigroup of all singular
transformations on a finite set in [14]. The maximal subsemigroups of the ideals of the semigroup of all
transformations on a finite set were presented by Yang and Yang in [13]. Maximal subsemigroups of infinite
symmetric groups was given by Mendes-Goncalves and Sullivan in [11]. The maximal subsemigroups of
all transformations on a finite chain, preseving the order are determined in [1]. For the semigroup of all
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orientation-preserving or orientation-reversing transformations on a finite chain, the maximal subsemi-
groups were determined by Dimitrova, Fernandes, and the first author of the present paper in [3]. Also
maximal regular subsemigroups were studied, for example, for the ideals of the monoid of all transforma-
tions on a finite set by You in [15], for the ideals of the monoid of all monotone transformations on a finite
set by Dimitrova and the first author of the manusrcipt of the present paper in [2], and for particular other
semigroups of transformations by Yuan and Zhao in [16].

On the other hand, endomorphism semigroups of graphs were intensively studied, for example, for the
cycle graph in [4] or for the path with # vertices in [9]. In particular, regular endomorphism monoids were
studied by Wilkeit in [12] and Li in [10].

In the present paper, we study the maximal as well as the maximal regular subsemigroups of semigroups
of endomorphisms for the star graph. Let G = (V, E) be a simple graph (i.e., undirected, without loops, and
without multiple edges). Let a be a full transformation of V, i.e., a self-mapping on V. We say that « is:

e an endomorphism of G if {u, v} € E implies {ua,va} € E, forallu,v € V;

o a weak endomorphism of G if {u, v} € E and ua # va imply {ua,va} € E, forallu,v € V;

e a strong endomorphism of G if {u, v} € E if and only if {ua,va} € E, forall u,v € V;

e a strong weak endomorphism of G if {u, v} € E and ua # va if and only if {ua,va} € E, forallu,v € V.
Denote by:

e End(G) the set of all singular endomorphisms of G;

o wEnd(G) the set of all singular weak endomorphisms of G;

e sEnd(G) the set of all singular strong endomorphisms of G;

o swEnd(G) the set of all singular strong weak endomorphisms of G.

Note that we use here the same notation, that is often used in literature for the corresponding monoid
containing also permutations. Clearly, End(G), wEnd(G), sEnd(G), and swEnd(G) are semigroups under
composition of maps. It is also obvious that sEnd(G) € End(G) and sEnd(G) € swEnd(G) € wEnd(G).

We fix a positive integer n. Let T),_; be the set of all full transformations on the set X,,_.1 = {1,2,...,n-1},
let [n\r] = X,,_1\{r} for any r € X,,_1, and let Q),, = X,,_; U {0}.

Denote by S, the star graph (i.e., a tree with diameter two) with n vertices and fix

Sn = (Qu, {0, 1} : i € Xy a}).

Let 7,1 be the set of all full transformations on Q. Further, let 7 0_1 be the set of all « € 7,,_1 with
Oa = 0 and let T2—1 be the set of all o € Z 0_1 such that a restricted to X,,—; belongs to T,,—1 (in symbols:
alx,, € Ty-1). For a € 7,4, let Im(a) = {xa : x € Q,} be the image of a and let rank(a) = |Im(a)| be the
rank of «. Forr € {3,4,...,n—-1},let ], = {a € ﬂno_l crank(a) =1}, 1 = {a € J,1 : rank(a) = 1}, and
> ={a € J-1: 0a € Xy—1, Im(a) = {0,0a}}. It is easy to verify that

End(S,) = T0, Ufa € J, : Im(aly, ) = (0}),

swEnd(S,) = End(S,) U J1, and

wEnd(S,) = 7° Ula € J1 U], : 0a #0}.
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If o € End(S,) and {xa, ya} € E = {{0,1} : i € X,,—1}, then x = 0 and y € X,,_; (or conversely), i.e., {x, y} € E. So,
a € sEnd(S,). This shows that End(S,) and sEnd(S,) coincide, and we need not to consider the semigroup
SsEnd(S,).

This paper is devoted to studying the semigroups wEnd(S,), End(S,), and swEnd(S,). In Section 2, we
find the maximal subsemigroups of these structures. By [12], End(S,) is regular. Since [; consists entirely of
idempotents, we can conclude that End(S,) U ]; is also regular, i.e., swEnd(S,) is regular. In [7], it was shown
that wEnd(S,) is also regular. In the third section, we will determine the maximal regular subsemigroups
of the regular semigroups wEnd(S,), swEnd(S,), and End(S,).

2. Maximal subsemigroups

In this section, we determine the maximal subsemigroups of the semigroups wEnd(S,), swEnd(S,), and
End(S,). First, let us consider the semigroup wEnd(S,).
If n =1, then S; is a point and wEnd(S1) = 0
If n = 2, then S, is a two-element chain and wEnd(S,) consists of two constant mappings 19 and 7t;. So,
we have {rnp} and {1} as the both maximal subsemigroups of wEnd(S,) as well as of swEnd(S,). Moreover

End(S;) = 0. We consider now the case n = 3. Clearly, wEnd(S3) = {( O 1 2 ):il,iz, i3 € {0,1}} U

11 1 13
{( 0 1 2 ) : i1,i2,i3 [S {0,2}}
1 1 13

Lemma 2.1. Let T be a subsemigroup of wEnd(S3). Then T is maximal if and only if T is one of the following forms:
m=wenasn{( 3 5 7 )(9 i)(S )
T2=wEnd(S3)\{((1) 1 é)’(g ; g)(g (1) %)’(8 (1) 3)}’
T3=wEnd(S3)\{(8 } %)'(8 ; ;)((1) (1) 3)’(2 (1) 5)}'
re=wens\|{(§ 6 5171 M1 0 T2 0 o) {22 0 )(2 0 3)
T5=wEnd(Sg)\{((1) (1) é)((l) } S)(g (1) %)((1) (1) %)(8 } %)}/and
e[ 30 13)(0 1 2} 20 2 2

Proof. It is easy to verify that T1, T, ..., T are maximal subsemigroups of wEnd(Ss3).

Conversely, let T" be a maximal subsemigroup of wEnd(S3). Assume that there are a; € T'\T; for all
€ {1,2,...,6}. By straightforward calculations, one can show that wEnd(S3) =< a1,a2,...,a6 >C T, a

contradiction to T is a proper subsemigroup of wEnd(S3). [

So, we suppose that n > 4.
We put Up; = {@ € J, : 0o # 0} and Ag; = wEnd(S,)\Up1. We will obtain five types of maximal
subsemigroups of wEnd(S,).

Lemma 2.2. A is a maximal subsemigroup of wEnd(S,).

Proof. Let o, p € Agy. Then rank(a) # 2 or O = 0 and rank(B) # 2 or 08 = 0.

If rank(a) = 1 or rank() = 1 then rank(ap) = 1, i.e., af € Ag;. If rank(a) > 2 (rank(f) > 2) then O = 0
(0 = 0). So, in the remaining case, we have Oaf = 0 = 0, i.e.,, af € Ag1. This shows that Ay, is a
subsemigroup of wEnd(S,) and it remains to show that Ag; is maximal. For this let a, € Up; and we
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have to show that § €< Ag1,a >. There are j,i,,ipg € X,-1 such that ja = 0,0a = i,, and 0f = ig. Let
U=08"={x € X,_1 : x = 0}. Then we define y,6 € Z,_1 by

oy = j ifxel, and 16 = ig ifx =1,
V= 0 otherwise 10 otherwise.

It is easy to verify that y,6 € wEnd(S,) and, moreover, 0y = 06 = 0 implies y,0 ¢ Uy, ie., y,6 € Ap,. For
x € X;-1\U, we have xyad = 0ad = i,6 = ig = xf and, for x € U, we have xyad = jad = 06 = 0 = xp. This
shows yad = B,ie., p €< A, a> O

Forie X,_1,weputU; = {a € J,—1 : ia = 0} and A; = wEnd(S,)\U;.
Lemma 2.3. A; is a maximal subsemigroup of wEnd(S,) for all i € X,,—;.

Proof. Leti € X,,—1. Leta, € J,-1\U;. Thenia # 0. If (ia)p # 0 then af ¢ U;. If (i) = 0, then there are
k <1 € X, with ka = la or there is k € [n\i] with ko = 0. In both cases, we obtain that rank(af) <n-1,1i.e,
af € A;. This shows that A; is a subsemigroup of wEnd(S,).

We next show that A; is maximal. Let o, € U;. Then there is a € X,,—1\ Im(a) # 0 and let b € Im(«). Since
i = 0 and rank(a) = n — 1, we obtain that Im(a|p,\;) = [#\a]. We define y € 7,1 as follows: ay = b, 0y =0,
and zay = zf for all z € [n\i], i.e., ay = B. It is easy to verify that y € wEnd(S,) and Im(y|x, ,) € X,-1, i.e,,
y ¢ U;. Hence, p €< Aj,a>. [

n-1

Fori<je X,_1,weputU;; ={a € J,1 :ia = ja} and A;; = wEnd(S,)\U; ;. We put U;; = U; ; by technical
reasons.

Lemma 2.4. Leti < j€ X,1. Then A;j is a maximal subsemigroup of wEnd(S,,).

Proof. Leta,B € J,-1\U; ;. Wehaveia # ja. Then therearer < s € Q, withra = sa. Theni # rors # j, where
rap = saf. Then iaf # jaf or rank(af) < n — 1. Hence, af ¢ U; ;. This shows that A; ; is a subsemigroup of
wEnd(S,) and it remains to show that A; ; is maximal.

For this let a, € U;; and we have to show that § €< A;;,a >. We observe that there is k € X,,_1\ Im(a).
Since ia = jo and rank(a) = n — 1, we obtain that Im(a|j,;j) = [1\k]. We define y € 9,1 by xay = xp for all
x € [n\i] and Oy = ky = 0. It is easy to verify that y is well-defined and y € wEnd(S,) with y ¢ U; ; since
0 € Im(ylx,,). We have xay = xf for all x € [n\i] with Oy = 0 = 0 and iay = jay = jB = iB. This shows
thatay = g,ie,fe<A;ja> 0O

Forie X,_1,let]| | ={a€ J,_1:Qu\(i} = Im(a),ia # 0} and let B; = wEnd(S,)\] .
Lemma 2.5. Let i € X,,_1. Then B; is a maximal subsemigroup of wEnd(S,).

Proof. Let a,p € ]n_l\]il_l. Then Q,\{i} € Im(B) or if = 0. If Q,\{i} € Im(B) then Q,\{i} € Im(ap), i.e,
ap ¢ J'_,. Suppose that i = 0 and Q,\{i} = Im(B). Then Bl is injective. If ia = 0 then iaf = 0, i.e.,
ap ¢ ];71. If i # 0 and Q,\{i} ¢ Im(a) then i € Im(a) and there is a € ia™*. Clearly, a # 0 and aaf = if = 0.
If there is b € [n\a] with ba = 0 then rank(af) <n—-T1and af ¢ ]| ;. If xa # O for all x € X,,_; then there
is k € [n\i] with k ¢ Im(a) and kg ¢ Im(ap), i.e., i, kB ¢ Im(ap), where i # kB. Thus, rank(ap) < n -1 and
apf ¢ J,_,- This shows that B; is a subsemigroup of wEnd(S).

Let now «, B € ]| ;| and we will show that f €< B;, @ >. For each x € X,,-; with xf # 0, there is x € X;,_;
with xa = xB. We choose x =i if ia = xB. Then we define y € 7,1 by

oy = x ifxp#0,
Y=o ifxp=0,

for all x € Q. Itis easy to verify that y € wEnd(S,). Since ia # 0,ia € Im(B), we can conclude that i € Im(y)
and y ¢ J,_,, 1€,y € Bi. For all x € X;,_1, it holds xya = xa = xf8, whenever x # 0 and xya = 0a = 0 = 0B,
whenever x§ = 0. Therefore, ya = f8, i.e., p €< B;,a >. This shows that B; is a maximal subsemigroup. O
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For § # Z C X,—1 with |Z| < n -3, we put ROZ ={a € Jy1:za=02z¢€Z\Im@)U{a € J,_1\Lz : za =
0 for some z € X,,_1\Z},
Ry = U{u,'/]‘ 1i< ] S Xn,l\Z}, and

Ly=UlJ_ i€z

Lemma 2.6. Let ) # Z C X, with |Z| <n—3. Then Az = {a € wEnd(S,) : rank(a) <n—1} ULz URz U Rg is
a maximal subsemigroup of wEnd(S,).

Proof. Let , B € J,-1 N Az then one of the cases (1)-(4) and (5)-(8), respectively, is satisfied.

(1) ia =0 for somei € X,,_1\Zand a ¢ Ly or

(2) ia = 0 for some i € Z\ Im(a), or

(3) a € U; for some i < j € X,,-1\Z, or

(4)a €], forsomeie€ Zand

(5) kB = 0 for some k € Z\ Im(B), or

6)p € ]’;71 for some k € Z, or

(7) B € Uy, for some k <1 € X,,_1\Z, or

(8) kB = 0 for some k € X,_1\Z and 8 ¢ L.

If (6) holds then Im(ap) € X,—1\{k}. Then rank(af) <n—1orap € ]ﬁ_l C Lz (whenever kaf # 0) or af € Rg
(whenever kap = 0). Thus, aff € Az.

If (1) holds then i ¢ Im(«). If (8) is satisfied and k = i then iaf = 0 with af ¢ Lz. In the remaining cases, we
have rank(af) <n—1,ie., ap € Az.

If (8) is satisfied then rank(af) < n — 1, whenever (2) or (4) with k € Im(a) holds. If (4) holds with k ¢ Im(«)
then (8) implies af € ' _,. Hence ap € Az.

Suppose now that (3) holds. Then af € U;; or rank(af) < n — 1. Hence, aff € Az. Suppose that (2) and (5)
are satisfied. Then iaf = 0. If k = i then i ¢ Im(ap), i.e, ap € Ry. If k # i then rank(af) <n—1,ie., af € Az.
Suppose that (2) and (7) hold. Then ia = 0. Since i € Z\ Im(«a) and k, ! € Z, there are p, g € [n\i] with pa = k
and ga = [. Hence, rank(af) <n—1and aff € Az.

Suppose that (4) and (7) hold. Then it is easy to verify that Im(af) € Im(B)\{if}, Since i # k,I, we get
rank(af) < n—1land af € Az. If (4) and (5) are satisfied. Then af € ];_1, whenever k = iand rank(af) < n-1,
whenever k # i. This gives af € Az. This shows that Az is a subsemigroup of wEnd(S,,).

It remains to show that Az is maximal. For this let a, § € wEnd(S,)\Az. Then af € wEnd(S,) and there
are k,I,m € X,,_1 such that a € ]ﬁ_l U, withk ¢ Zand [l € Zorm € Z or thereare k € X, _1\Zand l € Z
with @ € J*  and la = 0. Then it is easy to verify that there are y,6 € Az such that B = yad. So, we have
shownthatpe< Az, a> O

Theorem 2.7. Let T be a subsemigroup of wEnd(S,,). Then T is maximal if and only if T is one of the following types:
(1) T = A(),l or
(2) T = A for some i € X1 or
(3) T = A for somei < j€ X,_1or
(4) T = B for some i € X1 or
(5) T = {o € wEnd(S,) : rank(a) < n — 1} URz U Lz URE for some ) # Z C X,y with |Z| <n —3.

Proof. If T is one of the given forms, then T is a maximal by Lemmas 2.1 - 2.5. Now suppose that T is a
maximal subsemigroup of wEnd(S,). Let T=Tn Tg_l and T = {alx,, ra € T} € Tp_q. Then it is easy to
verify that T is a maximal subsemigroup of the singular part of T,,_; or T is the singular part of T,_1. We
denote the s'mgular part of T,,_; also by T),—1. A
Suppose that T is a maximal subsemigroup of T,,_1. Then by [14], the semigroup T has one of the following
forms:

(@) T = T,.1\{a € T,_1 : rank(a) = n — 2 and i ¢ Im(a)} for some i € X,,_1. So, ;1_1 N Tg_l NT =0. Let
a e ];—1\T2—1' Then there is p € [n\i] with pa = 0. A straightforward calculation provides ( ]Z 4N Tg_l)a =
LNTY . Since | NT°  NT =0, we can conclude that a ¢ T. So, (J)_\T°_ )N T = 0 and with

n—-1

I NT° NT=0,weobtain]  NT=0. By Lemma 2.5, we can conclude that T = wEnd(S,)\]’ _,.
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()T = T,_1\{a € T,y : rank(a) = n—-2, ia = ja}forsomei < j € X,,-1. So, U;jNT = (. Since wEnd(S,)\U;
is a maximal subsemigroup of wEnd(S,), by Lemma 2.4, we can conclude that T = wEnd(S,)\U, ;.

(c)LetT ={a € T,_; : rank(a) < n -2} U U{RZ],‘1 21, € Xu1\ZY U UILI! 1 i € Z} for some non-empty set
Z C X,,_1, with |Z] < n — 3, where

ij].‘l ={a € Ty—1 : rank(e) = n — 2,ia = ja} fori < j € X,_1 and

L}?‘l ={a € T—1 : rank(a) =n —2: j ¢ Im(a)} for some j € X,,_1.

Then (RzULz)NT? | C T. Assume that thereisa € T N J,_1 withalx, , ¢ T. Then T = T,,_; since T'is a
maximal subsemigroup of T,,_1, a contradiction. Hence, {a& € wEnd(S,) : rank(a) < n—l}URZU(LzﬁTS_l) cT.

Assume that foralli € X,,_y, thereis f; € TNJ,_1 withif; = 0and thereis @ € T\Az. Let g € (Lz\T?_)URZ.
Then there is k € X,,_1 with kB = 0. We consider y € T. If Z C Im(fx). Then there are p,q € X,.1\Z and
p & Im(By). It is easy to verify that there is By € U, C T with = fifo. Suppose that Z ¢ Im(fx). Then we
consider a. There is m € Z such that ma = 0 or a € Uy, for some | € X,_1, where Z C Im(a). Then it is
easy to verify that thereis y € Lz N Tg_l such that [n\t] € Im(Brya) for some t € X,_1\Z and k(Brya) = 0.
As above, there is fy € T with = Bryapo. This shows that LZ\TS_1 U ROZ CT,ie.,, Az C T. This contradicts
to T\Az # 0. Hence Az C T or thereisi € X,,_1 such that TN U; = 0. This showsthat T = Az or T = A;,
respectively.

Now suppose that T = T,_1. We have already shown that T="T, implies that there is i € X,,_; with
TNnU;=0,ie, T=A;or],_1 CT. So, we consider the case [,_1 C T. Then ﬂno_l C T. Assume that there
is @ € T with Oa # 0, rank(a) = 2. Let y € J, with Oy =i € X,,_1. Then there is a non-empty set Y C X,
with xy = 0 for all x € Y and xy = i, otherwise. Let 6; € 7,1 with 06; = 0 and x6; = i for all x € X,,_;.
Further, let yy € 7,1 with xyy = 1 for all x € Y and xyy = 0, otherwise. Clearly 0;, 7y € Zq 0_1 C T with
yyay: = y. This shows that < .7 O_l,a >= wEnd(S,), a contradiction. Thus Up; N T = @ and by Lemma 2.2,
wegetT =Ap;. O

We have one maximal subsemigroup of type (1), (n — 1) maximal subsemigroups of type (2) as well as
(n-1)(n-2)
2
type (5). Altogether, we have

maximal subsemigroups of type (3) and 2! — n — 1 maximal subsemigroups of
(n-2)(n+1)

of type (4),

+ 2"~ maximal subsemigroups of wEnd(S,).

Next, we determine the maximal subsemigroups of End(S,). If n = 3 then End(S3) consists of four
elements:

01 2)(012\({012)(01?2
E”d(53)={(0 1 1)'(0 2 2)'(1 0 0)'(2 0 0)}'

Lemma 2.8. Let T be a subsemigroup of End(Ss). Then T is maximal if and only if T is one of the following forms:

or={(3 134033
on-{(013)(5 43 )}
on-{5 1350 3)

Proof. It is easy to see that if T is of the form (1) or (2) or (3), then T is maximal.

Conversely, let T’ be a maximal subsemigroup of End(S3) with T" € T1,T" € T, and T” € T5. Then there
exist iy € T'\T1, ap € T'\T,, and a3 € T'\T3. It is straightforward to check (by all possibilities for a1, a2, and
az) that < a1, ap, a3 >= End(S3). O

—_
N

O =
oN

—_

Letn>4and JE" =], 1 nT0 .
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Theorem 2.9. Let T be a subsemigroup of End(S,). Then T is maximal if and only if T is one of the following four
forms:

(1) T = End(S,)\Jy, with J§ ={a € ]2 : 0 # 0 and Im(alx,_,) = {O}};
(2) T= End(Sn)\Rf;’d, with RE}WI ={a e JF - ia = ja) for some i < j € X,y
(3) T = End(S,)\LF", with LE" = {o € JE" - i ¢ Im(av)} for some i € X,,_1;
(4) T = {a € End(S,) : rank(a) < n — 1} URE™ U LE™ = A7, where

REM = U(REM 1, € X,-1\Z),

L = UILE" - i € Z} for some 0 # Z C X, with|Z| < n = 3.

Proof. Note that End(S,) = T° , U J¥, where T = T,_1. Let T be a maximal subsemigroup of End(S,).
Then T = lalx,, : @ € T\J{} is a maximal subsemigroup of T, or T271 C T since rank(a) < 2 for all
a € End(Sn)\Tgfl. Suppose now that {a € End(S,) : rank(a) > 2} £ T. Then by [14], we have

T=T,1\lae Z:; :xa #iforall x € X,,_1} for somei € X,,_1 or

T=T,i\lae ;‘:; tia = ja} for somei < j € X,,_1 or

T ={a €Ty :rank(a) <n—-3}U{a € J") : xa # zforallx € X,y and somez € Z} U{a € J'"} :ia =
jo for some i < j € X,,-1\Z} for some non-empty set Z C X,,_; with |Z] < 3, where ]Z:% ={a € T,_1 : rank(a) =
n—2}.

Lit T={aeT  :alx,, €T} Since T? | = T, and T is a maximal subsemigroup of T,_;, we get that T
is a maximal subsemigroup of T? .. Note that T = End(S,)\] for some | € J". So, TC TUJ¢¥ and T U J¥
is a maximal subsemigroup of T | U J¥ = End(S,), ie., T = TUJY = End(Sy)\{a € T :alx,, ¢ T}. By the
three possibilities for T, we obtain the cases (2), (3), or (4).

Suppose now that T | C T. Leta, € J¥. We define y € Z,_1 by 0y = 0 and xy = 0B # 0 for all x € X,,_1.
It is clear that y € T | and Oary = 0B as well as xay = 0y = 0 = xp for all x € X,,_1. This shows that g = ya,
ie,Be< T’ ,a > Hence TV | is a maximal subsemigroup of T U J¥ = End(S,) with T, C T. Hence
T= T2—1 = End(S,)\J5. O

Similar as for the semigroup wEnd(S,), we obtain that there is one maximal subsemigroup of type (1),
n—-1mn-2)

2
maximal subsemigroups of type (4). So, we have

maximal subsemigroups of type (2), (1 — 1) maximal subsemigroups of type (3) and 2" ! —n—1

(n - 3)
2

" 42" maximal subsemigroups of End(S,).

Lemma 2.10. End(S,) is a maximal subsemigroup of swEnd(Sy,).

Proof. Since End(S,) is a semigroup, it is enough to show that End(S,) is a maximal subsemigroup of
swEnd(Sy). Let a, B € [1. Then there are i, j € ), such that Im(a) = {i} and Im(B) = {j}. Let y € .%,_; with

0 ifx=0,

yy =i ifx=j,

j otherwise.
Then it is easy to verify that y € End(S,) and p = ay, i.e, p €< End(S,),a >. Consequently, End(S,) is a
maximal subsemigroup of swEnd(S,). O

Since [; C swEnd(S,), we can conclude that [; is an ideal of swEnd(S,,).

Lemma 2.11. Let T be a maximal subsemigroup of End(S,). Then T U J; is a maximal subsemigroup of swEnd(S,).

Proof. T U J; is the disjoint union of a subsemigroup and an ideal of swEnd(S,). This provides that T U J;
is a semigroup itself. We will show that T U |; is maximal. For this, let @ € swEnd(S,)\(T U J1). Then
<TUJij,a>=<T,a>UJ; = End(S,) U J1 = swEnd(S,) since T is a maximal subsemigroup of End(S,). This
shows that T U J; is a maximal subsemigroup of swEnd(S,). O
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Theorem 2.12. Let T be a subsemigroup of swEnd(S,). Then T is maximal if and only if T = End(S,) or T = TU J;
for some maximal subsemigroup T of End(S,,).

Proof. End(S,) is a maximal subsemigroup of swEnd(S,) by Lemma 2.10. On the other hand, TUJis
maximal subsemigroup of swEnd(S,) for all maximal subsemigroups T of End(S,) by Lemma 2.11.

Let now T be a maximal subsemigroup of swEnd(S,). Since swEnd(S,) is the disjoint union of End(S,) and
J1, there are sets T C End(S,) and G C Jy such that T = TUG. If G = 0 then T = T and by Lemma 2.10,
we have T = End(S,). Suppose now that G # 0. Assume that T does not be a maximal subsemigroup of
End(S,). We can conclude that T c T for some maximal subsemigroup T of End(S,). Let a € T\T # 0.
Then swEnd(S,) =< T,a >=< T,G,a >C< T,a > U J; = T U J; since J; is an ideal of swEnd(S,) and T is a
subsemigroup of swEnd(S,). Thus, End(S,)U |1 = swEnd(S,) C TUJ4, a contradiction to T End(S,). Hence,
T=TUGCTUJ. Asin the proof of Lemma 2.11, we can conclude that G = [;,ie., T = Tun. O

The number of maximal subsemigroups of swEnd(S,) is the number of maximal subsemigroups of

(n-3)n
2

End(S,,) plus one. So, we have + 2" + 1 maximal subsemigroups of swEnd(S,).

3. Maximal regular subsemigroups

This section is devoted to the maximal regular subsemigroups. In Section 2, we have determined the
maximal subsemigroups of wEnd(S,) and End(S,), respectively. The maximal regular subsemigroups of
wEnd(S,) and End(S,), respectively, are the maximal regular subsemigroups of their maximal subsemi-
groups.

Lemma 3.1. Fori < j€ X,1,A;; is regular.

Proof. Leti < j € X,-1 and let @ € A;;. Then it is sufficient to consider the case a € J;,-1. We can write
= ( ‘?0{0 ”Zl ?";2 ) and put g, = min Ay fork € {1,2,...,n - 2}. Let B € J,_1 be defined by
cee e
B = ap ifx =i forsomeke{l,2,...,n—-2},
10 otherwise.

It is easy to verify that g € wEnd(S,)\U;;jand a = afa. O
Lemma 3.2. Fori € X,_1,A; is reqular.

Proof. Let i € X,—1 and let @ € A;. Then we have only to consider the case @ € J,_1. We can write

5"0{0 ?ih “?”_2)andputak=minﬂkifi¢ﬂkandak=iifieﬂk,forallke{1,2,...,n—2}.We
1 .- n-2

define now 8 € 7,_1 by

a =

a, ifx =i forsomeke{1,2,...,n-2},
xp=40 ifx=0,
i  otherwise.

It is easy to verify that § € wEnd(S,), rank(a) = rank(f) = n — 1, and a = afa. Since Oa = 0 implies 0 € A,
we can conclude that if # 0. Hence, ¢ U;. [

Lemma 3.3. A is regular.

Proof. Let a € Ag1. Then a ¢ Up ;. If O # 0 then rank(a) < 2. Since a ¢ Uy 1, we have rank(a) = 1. Then
a is idempotent and this implies that « is regular. If O = 0, then there is f € wEnd(S,) with @ = afa since
wEnd(S,) is regular. Then it is easy to verify that 08 = 0,1i.e., f ¢ Ug1. So, f € Ap1. O
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Forie X,—1,letCi={a € BiN J,-1 1 ia = 0,7 € Im(a)}. It is easy to verify that C; # 0.
Lemma 3.4. Leti € X,,_1 and let a € C;. Then a is not reqular in B;.

Proof. Assume that « is regular in B;. Then there is § € B; with a = afa. Let A = [n\i]. Since rank(a) =n -1
and i = 0, we have al4 is injective. Then fa, is injective with Im(Bla) = A, i.e., Im(B) = Q,\{i}. Sinceia =0
and i € Im(a), we can conclude that i € Aa. So, Im(B|a,) = A implies if € A, i.e., if # 0. Thus § € ];_1, ie.,
B ¢ Bi, a contradiction. [J

Corollary 3.5. Fori € X,,_1, B; is not regqular.
Forie€ X,_1,let Vi ={a € B; N J,—1 : liaa~!| = 2 and i # 0} and let B:elg = B\(C; U V)).
Lemma 3.6. Let i € X,,-1. Then B} is a regular subsemigroup of B;.

Proof. Let o, p € B N J,.1. Then |iyy™!| = 1 oriy = 0 (and i ¢ Im(y)) for y € {a, B}. It is routine to verify
that rank(ag) < n — 1 or liap(ap)~}| = 1 or iap = 0 (and i ¢ Im(ap)). This shows that B:.elg is a semigroup.

reg

Next, we show that Bzef is regular. Leta € B} Itis enough to consider the case a € [,_1. So, we can write

ﬂ() ﬂl e ﬂn72
0 i1 ... iy
lica™'| = 1. Theni € Im(a),ia # 0,and i € {ay,az, ...,a,-2}. Let B € Z,_1 be defined by

a = ) For each k € {1,2,...,n — 2}, there is a, € Ay with axa = i;. Suppose that

B = a, ifx=1iforsomeke{1,2,...,n—-2},
~ 10 otherwise.

Since i € Im(B), we verify that § € B;. Since [ifp~| = 1, we get that B € B}Y. Moreover, we have apa = a.
Suppose that io = 0. Then i ¢ Im(«) and « restricted to [n\i] is bijective. We define € 7,_1 by

o {ga‘l if x € [n\],

otherwise.

reg

Then it is easy to verify that g € B,

regular. []

and apa = a. This shows that « is regular. Consequently, B:elg is

Forie X,1,let W;={a € J,_1NB;:ia =0,i ¢ Im(a)} and let B:Ezg = B\(C; UW,).
Lemma 3.7. Let i € X,1. Then B} is a regular subsemigroup of B;.

Proof. Let a,p € B:ezg N Ju-1. Then ia # 0 and if # 0. It is a routine matter to verify that iaf = 0 implies
rank(af) < n—1. Hence af € B:‘;g . This shows that B:ezg is a semigroup. Next, we show that B:Zg is regular.
«7‘0 ﬂ] cee \?{n72

0 i1 ... ino
axa = iy, where i € {aq,ay,...,a,-2}. We define § € 7,1 by

Leta € B;ezg N Ju-1 with a = ) For each k € {1,2,...,n — 2}, there is a;, € A, with

8 = a, ifx =i, forsomeke{l,2,...,n-2},
p= 0 otherwise.

Since i € {a1,ay,...,a,—2}, we have i € Im(B). Since a € B;\W;, we have i € {i1,1,...,i,—2} and i # 0. This
provides € B:Bg , where afa =a. O

Lemma 3.8. Leti€ X,_1, let o € V;, and let p € W;. Then Ba is not regular in B;.
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Proof. Since Im(Bln\i) = [#\i] and Im(alx, ,) = Im(a|m i), we can conclude that Im(Balng) = Im(apmg) =
Im(Balx, ). This shows that fa € J,-1 and i € Im(fa) since i € Im(a). Hence i € Im(fa). Moreover,
0pa = iBa = 0. This shows that fa € C; and Ba is not regular in B; by Lemma 2.4. [

Proposition 3.9. Let i € X,,_1 and let T be a maximal regular subsemigroup of B;. Then there is k € {1,2} such that
T =8B
ik

Proof. Let k € {1,2}. Then Bmg is regular by Lemmas 3.6 and 3.7, respectively. Since V; N W; = 0, we can
conclude that B;;is a max1ma1 regular subsemigroup of B; by Lemma 3.8. Assume that T # Breg and T # B“’g

Since T C B;\C; by Lemma 3.4, thereisa € V;NT and p € W;NT. Then pa € T is not regular by Lemma 3 8
a contradiction. O

—z
We put R, ={a € Lz : za = 0 for some z € X,,_1\Z}.

—z
Lemma 3.10. Let Z be a non-empty subset of X,,—1 with |Z] <n —3. If o € (Lz N Rz) U Ry then a is not regular in
Az.

Proof. Leta € (Lzy N Rz) U Ef. Then there is a € Z with a ¢ Im(a). Assume that « is regular in Az. Then
there is § € Az with apa = a. In particular, we can conclude that flj,\q is injective, i.e., ap = 0 or there is
k € [n\a] with B € Uy,. It is easy to verify that Z ¢ Im(B). But we have Z C Im(p) since there is z € X,,_1\Z
with | Im(aljz)l = n — 2. This is a contradiction. [J

Corollary 3.11. Let Z be a non-empty subset of X,,—1 with |Z| < n — 3. Then Ay is not regular.
Lemma 3.12. All elements in Az\[(Lz N Rz) U Eﬁ] are regular in Az\[(Lz N Rz) U ﬁoz].

Proof. Letar € Az\[(LzNRz) U EOZ]. Then there are the following four cases are possible:
a) a € Rz. Then Im(a) = X,,-1\{a} for some a € X,,_1\Z. Then there is b € X,,_1\(Z U {a}). Further, there is
p € Xu-1\Z with pa = qa for some g € [n\p]. We define g € 7°, by ap = bp and xf = y with y € [n\p] and

ya = x for all x € [n\a]. It is easy to verify that g € Az\[(Lz "Rz) U EOZ] and afa = a.
b) There is a € X,-1\Z such that Im(a) = Q,\{a}. We define g € .7°, by ap = 0 and xp = y with ya = x

for all x € [n\a]. It is easy to verify that f € Az\[(Lz N Rz) U EOZ] and afa = a.
c)a€Llzand a € Ry, for some p € X1 and g € Z. Similar as in the proof of a), we can show that there

is p € Az\[(Lz N Rz) UR,] with afa = a.
d) There is a € Z such that Im(a) = Q,\{a}. Similar as in the proof of b), we can show that there is

B e A\[(Lz N Rz) UR: ] with apa = a. [

We have shown that Az\[(Lz N Rz) U EOZ] is the set of regular elements in Az, but it is easy to see
01 2 ... n— 2

that this set does not form a subsemigroup of Az. In fact, let f; = 00 2

and let 5, =

01 ... n-3 n-2

0 1 n-3 1 I Z =1{3,4,...,n -1}, then it is easy to verify that 1, > € Az\[(Lz ﬂRZ)UEO]

and 1, B2 € Lz N Rz. So, the maximal regular subsemigroups of Az are within the set Az\[(Lz N Rz) U Ef].
A "nice” description of the maximal regular subsemigroups of Az seems almost impossible. Therefore, we
skip the description of the maximal regular subsemigroups of Az in this paper.

Theorem 3.13. Let T be a reqular subsemigroup of wEnd(S,). Then T is maximal if and only if T is one of the
following types:

(1) T = A(),l or

(2) T = A for some i € X1 or
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(38)T = A for somei < je€ X,_1or
4)T= Bxffor some i € X,_1 and some k € {1,2} or
(5) T is a maximal reqular subsemigroup of Az for some O # Z C X,,q with |Z| <n - 3.

Proof. Let T be a maximal regular subsemigroup of wEnd(S,). Then T needs to be a maximal regular
subsemigroup of one of the maximal subsemigroups of wEnd(S,). Soby Lemmas3.1-3.3, T = Ag or T = A;
for somei € X,y or T = A;; for some i < j € X;,_1 or T is a maximal regular subsemigroup of Az for some
non-empty subset Z of X,,_; with |Z| < n—3 or T is a maximal regular subsemigroup of B; for some i € X,,_;.
In the latter case, we obtain T = B;elg orT = Bzezg by Proposition 3.9. [

We consider now the regular subsemigroups of End(S,). Note that End(S,)\J; = T2_1
Lemma 3.14. End(S,)\J5 is regular.

Proof. Since End(S,) is regular and since non of the elements in 5’ can be the inverse of any a € End(S,)\J3,
we can conclude that End(S,)\JY is regular. O

In [15], all maximal regular subsemigroups of T,,_; are characterized. We will use it for a description of
the maximal regular subsemigroups of End(S,,).

Theorem 3.15. Let T be a regular subsemigroup of End(S,). Then T is a maximal regular subsemigroup of End(S,) if
and only if T = T _, or there is a maximal regular subsemigroup T of -1 such that T = JyUlaeT?  :alx,, € T}

Proof. Suppose that T is a maximal regular subsemigroup of End(S,). Then there are sets G C |3 and
TCT®  suchthatT=GUT.

Suppose that T # Tg_l. Thenitis easy to verify that T = {aly, , : @ € T} isa maximal regular subsemigroup
of Tyq,ie, T={ae T2—1 talx,, € T}. Note that T contains all a € End(S,)\J; with rank(a) < 2, where
rank(f) = 2 for each § € |7, we can conclude that G = JJ. Hence, T = J¥ U {a € Tg_l talx, , € T).

Suppose that T = T? . Then by Lemma 3.14, we get that T = End(S,)\J{ = T°_,

Conversely, since T, is regular with T),_; = Tg_l, we can conclude that Tg_l is regular. Let T be a maximal
regular subsemigroup of T,_1. Then T = {a € T  :al,, € T} is a maximal regular subsemigroup of T,
since T = Tgfl. Note that a® = a for all & € J¥. Hence, J¥' consists entirely of regular elements. Since T

contains all & € End(S,) with rank(«) < 2 and End(S,) = T2-1 U J¥, we can conclude that TU J§ is a maximal
regular subsemigroup of End(S,). 0O

Theorem 3.16. Let T be a reqular subsemigroup of swEnd(S,). Then T is a maximal regular subsemigroup of
swEnd(S,) ifand only if T = End(S,) or T = T U ], for some maximal regular subsemigroup T of End(S,,).

Proof. Note that J; consists entirely of idempotents and swEnd(S,) = End(S,) U J1, where J; is an ideal
of swEnd(S,). These observations prove that if T is a maximal regular subsemigroup of End(S,), then
T U J; is a maximal regular subsemigroup of End(S,) U |1 = swEnd(S,). Moreover, End(S,) is regular as
well as a maximal subsemigroup of swEnd(S,) by Theorem 2.12. Therefore, End(S,) is a maximal regular
subsemigroup of swEnd(S,).

Conversely, let T be a maximal regular subsemigroup of swEnd(S,). If J N T = @ then T C End(S,), i.e.,
T = End(S,,). Suppose now that J; N T # 0. Since End(S,) is a maximal regular subsemigroup of swEnd(S,),
we get T\J; # End(S,). Because [ is an ideal, we can conclude that T\J; € End(S,) is a maximal regular
subsemigroup of End(S,) and T C (T\];) U J1. Thisimplies T = (T\]1) U J;, where (T\]1) is a maximal regular
subsemigroup of End(S,). O
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