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Analytic solutions for third-order partial differential equation using a
modified double Laplace transform method
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Abstract. This paper presents analytical solutions for third-order partial differential equations with integer-
order derivatives derived using a third-order formulation with constant coefficients. The study provides
analytical expressions that satisfy these partial differential equations by applying the modified double
Laplace decomposition method under specific initial and boundary conditions. Then we found the error
values and figured them out using the MATLAB program.

1. Introduction

Partial differential equations (PDEs) generalize classical integer-order PDEs and are extensively used
in applied mathematics and the physical sciences to model complex phenomena. Over the past decades,
numerous analytical and approximate techniques have been developed to address solutions for these
equations. Among these, the Laplace transform (LT) has garnered significant attention due to its wide
applications in modern science and engineering. While the LT is conventionally applied to single-variable
functions u(t), the double Laplace transform (DLT) has proven more suitable for handling tasks of two
variables u(t, x).

Exact solutions for PDEs with constant coefficients have been successfully derived using methods such as
the Elzaki decomposition. Techniques including the Laplace decomposition and Adomian decomposition
methods have also been applied effectively to the non-homogeneous Benney-Luke equation, together with
specified initial conditions.

In [1], the authors examined the pseudo-hyperbolic telegraph PDE using the Caputo-Fabrizio derivative
(CFD), introducing a modified DLT method specifically adapted to this model. Another novel approach, a
variant of the fixed variational iteration method, was proposed in [10] to develop an advanced technique to
solve non-linear fractional PDEs. This method integrates the modified variational iteration approach with

the Laplace-Adomian decomposition method, providing a comparative analysis of its performance relative
to the LT method.
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In [4], key properties and the convolution theorem related to the DLT are detailed, while in [5], DLT-based
techniques were applied to solve partial integro-differential equations, demonstrating the effectiveness of
this method for obtaining solutions of real-valued functions. Additionally, in [9], semi-analytical and
numerical solutions for the time fractional Schrédinger pseudo-parabolic PDE were derived using the DL
decomposition method. In [11], the authors implemented a numerical algorithm to address a third-order
PDE with a problem of boundary value of three points.

Further advancements include the work in [6], where Elzaki employed a combination of DLT and the
modified variational iteration technique to solve non-linear convolution PDEs.

In the present study, we explore the initial boundary value problem for three-dimensional PDEs with
integer-order derivatives, based on these established methodologies to extend solutions in complex systems.

uy(t, x) + Aug(t, x) + ue(t, x) + u(t, x) = Sup(t, x)
Fuu(t, x) + f(t,x),0<x <, t>0

M(O, .X) = Llo(X), ut(ol X) =m (X) ’ Mtt(ol .X) = ﬂ2(X), 0<x<!

ut,0)=u(t,l)=0,t>0.

Here, the positive constant coefficients A, , 6 and ao, a1, ap, f are recognized functions, u(t, x) is a function
whose value is not known.

2. A brief introduction to the DLT

Definition 2.1. ([7]) The DLT of a function u(t, x) is defined by the following double integral:

L Liu(t,x)] = UGs, p) = f f =PI, X)dxdt, 2)
0o Jo
whenever this integral exists. Here t,x > 0 and s,p are complex numbers.

Definition 2.2. ([4]) Let cand d be sufficiently real constants. The inverse of DLT is .L;l.ﬁ;l[U(s, p)] = u(t, x),
defined by:

) ) 1 +ico 1 d+ico
u(t,x) = L7 L [U(s,p)] = 7 f e“dsz—m. fd e U(s, p)dp, (3)

c—ico —ico

here i = V-1 is an imaginary number, U(s, p) must be an analytical function for each s and p in the area
denoted by the inequalities Re(s) > ¢ and Re(p) > d.

Next, we obtain by transforming the initial value condition using a Laplace transform as follows [4]:

L Lifu(t, )] = Us, p),

LiL]ZH9) = (s, p) - X0 LI ZLD ] g £ F( 2] = FGs,p), LiLalao)] = Go(p), (4
Li L [m(x)] = Gi(p), LiLilax(x)] = Ga(p).
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3. Exact solution of the integer order derivative (IOD) and its stability estimates

In this section, we will identify the exact solution to the problem (1). The stability estimations for the
problem (5) will then be displayed. The ordinary differential equation is used to represent the PDE to
accomplish this. Using this transform by [3], the exact solutions and stability of the differential equations
can be readily calculated. However, this utilizes the norm in Hilbert space. The problem (1) can be
represented in an abstract form as follows:

u” (1) + A (f) + 1 () + Ru(t) = f(B),(0<t<T)

5)
u(0) = ay, M,(O) =a, u”(O) =a,,0<p<1.

In the Hilbert space H = L, [0, L], where f(t) = f(t, x) represents an abstract function defined in [0, T] with
values in H = L, [0,L]. Here, ag = ag(x), a1 = a1(x), and a, = a,(x) are elements of H = L, [0, L]. The function
u(t) = u(t, x) is the unknown abstract function defined in [0, T] with values in H = L, [0,L]. The operator
R : D(R) — H represents the differential operator defined:

Ru(x)= —6u () + 1) u” (x) + u(x),
on the domain

D) ={u:u, v ,u" €Ly[0,L], u(0) = u(L) = 0},

and within a Hilbert space L,[0, L], comprising square-integrable functions defined in the interval [0, L],
characterized by a norm

1
2 2
il = (o, [FOf )"
Here, we have (Ru,v) = (u, Rv) (u,v € D(R)) and (Ru, u) > alu,u), « >0, a > 0. Next, we will derive
the ES from the problem (5). To do this, we define A(t) = f(f) —u'(t) — Au” (), allowing us to rewrite formula
(5) as:

{ u” () + Ru(t) = A(t), 0 <t < T) ©)

u(0) = ap, u'(0)=ay, u"(0)=a,,0<B< 1.

Subsequently, we can express (6) as the following system of first-order differential equations to achieve
the exact response.

W (1)~ b u(t) = m(o),

m ’(t) —q pm(t) =s(t), (7)
§'(1) + s(t) = A(D),

here, u = R3. here, b = j+ivandg=1-i %5, by substituting the values of b and g into the above formula,

we obtain:

{ m(0) = u' (0) = by u(0), ®)
s(0) = u"(0) — p u'(0) + p?u(0),

integrating the formula (7), using the initial conditions, and in the study of differentiation and integration
steps were given one by one for the formula (8) and we obtain

t t t
u(t) = Liu(0) + Lou' (0) + Lau” (0) + f Lyf(r)dr — f Ly u' (r)dr—A f Ly (r)dr,
0 0 0



Sh. Omer Abdulla, M. Modanli / Filomat 39:20 (2025), 7007-7016 7010

then u(t) is
t
u(t) = Liu(0) + Lo (0) + Lau” (0) + f Ly f(r)dr — La(u(t) — u(0)) — AL4(u () — 1 (0)). 9)
0

Based on that, we express

, (1 + L4)
u (t) + L

t
u(t) = ALM ((L1 + Ly)u(0) + (Ly + ALg)u (0) + Lyu” (0) + fo Ly f(r)dr), (10)

by an interchange of the order integration of the last two formulas of the (10), we obtain

(1+Ly) (1+Ly)

(1+Ly) (1+Ly) , )
ut) = (" " '+ (L + L)1 —e T ) u0)+ (1 —e M YLy + ALu'(0)+ (1 —e 7 ')Lg

(11)
(1+Ly)
+Ls (1 —e ) f(rdr.
Lemma 3.1. The following inequalities hold:
_Mt —Mt
1) e Ms 4 (L1 + L4)(1 —e M ) <K,
H—->H
_Gey,
2) H(l —e i ')(Lp R'3 + ALy RY3) <K,
H—-H
(12)
_ly,
3)||ILs R¥3(1—e ™) <K,
H—-H
sy,
4)||ILa R*B3(1—e ™) <K

H—->H

Theorem 3.2. ([3]) Suppose ag € D(R), a1 € D(R?3), a; € D(RY3), and f(t) are continuously differentiable on
[0, T]. In that case, there is a unique solution to problem (11) along with the subsequent stability inequalities.

s IOl < K {laolls + or R, + ook 2] + ma [R5 0 ) (13)

these are valid, where K is independent of f(t), t € [0, T1, ao, a1, and a,.

Proof. From the formulas (11) and (12), we are able to write

(1+Ly) (1+Ly)

(o)l = e‘w*+<L1+L4>(1—e‘W>HH Ol

G
+ "(1 —e M )(L2 + /\L4)

ol
(14)
(1+L4)t

+la-e YL,

+f0t

Using triangle inequality, the formula (14) and given initial conditions, we invest

ol

ey
a-e O] ol

lu(t)lly < K {IIaOIIH +[Ja R, + [[a2R 72|, + max ||R723 f(t)HH}.

0< t<T
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4. Modified double Laplace decomposition method
Utilizing the DLT with relation to t and x for an IOD problem(1), and using (4) , we obtain,

$*U(s, p) = 5*Go(p) = sGi1(p) — Ga(p) = —A Ly Lilun(t, 1)
—Li Lifur(t, )] = LeLi[u(t, )] + Lo L1 (£, %)
Hi (t, %)) + L L[ f(E )]
L Li[u(o, x)] = Go(p), LiLilurt, )] = Gi(p) , LiLilun(t, )] = Ga(p),

by simplifying equation (15), we derive
UGs,p) = 22 + S0 1 2O 42 £ u(t, )] - 3L Lol 2)]
— S L Lfult, )] + 5L LSt x) + ur(t, x)] + $F(s, p)
LiLolu(0, 0] = Go(p), LiLalui(t, )] = Gu(p) , L Lulun(t, 0] = Galp).
The solution to the problem (16) obtained by applying the decomposition series for u(t, x) is,
u(t, x) = Lo talt, ¥) = ao(x) + )t +a2(0)F + L71L71 22
L LM AL LS T un 0]} - L7 L (3L L [2 Tt 0))
— L LML LL (B w01+ L7 LS L L[ £ 2 Tiouat, 0)])
+ L7 LML L[S T u(t 0]}

From (15), especially, we shall take the following recursive relationship,

o(t, %) = ap(x) + @)t + mEE + L7 L5 [S%F(s, p)] ,
in this instance, we can express the remaining terms as follows.
wya(t, ) = — L7 LA LL & o ualt, )]} - £7£7 {4
LiL (3T out 0]} - £ L L L Ly
[Tl 01} + L7 LB LiLe| &5 Tiotia(t, 0)])
+ L LML L % T un(t )},

7011

(15)

(16)

(17)

(18)

(19)

here n > 0. Formulas (18) and (19) represent the modified DL decomposition method for integer order

derivatives of the Problem (1). Below are the inverse LT of  and x, each with the order of £;1 L.

5. Applications example

Example 5.1. The 3"- order PD equation that follows makes sense in terms of IOD:
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{tee(t, x) + Aug(f, x) + up(t, x) + u(t, x) = Othpn (£, X) + Ui (8, X) + f(£,x), 0 <x<m,t>0,8€(0,1],
where

f(t, %) = (26> + (1 + 36) + (61 — 20)t =24 + 6 + 5) sinx,
conditioned upon the initial state

u(0,x) = —sinx, u;(0,x) = sinx, uy(0,x) = —2sinx, 0 < x < 7,
and conditions specified at the boundaries

u(t,0) =u(t,m)=0, t > 0.

Solution:
Applying the DLT with respect to t and x to a f(t, x) , we get

LiLAf( 0] = LL (268 + (1 +35)2 + (61 — 20)t = 24 + 5+ 5) sinx],

12 2(1+38) (6A—-25) (=2A+86+5)\( 1
Fio =[5+ 257 12 BRI ()

The result of solving both sides of the problem with the inverse DLT, after multiply %, we obtain

(1 5 (1+30) 5 (6A=20) , (2A+06+5) 5\ .
f(t,x)—(60t+ 0 P+ 7  + G > sin x.

Thus, by the technique (18), we get 1

1, (1+430). (61-206), (-20+06+5)
0 TTe T U7 6

1o = up(t, x) = ( 221+t - 1)sinx,

using the decomposition series (17) and 19, we obtain u;

m =t = — L LA L L St )| - £ L S LL
[Guot, )]} = L7 L {ELLelnolt, ) + L7 LS LL [ 2 Guott, )]
+ L LS L L[ Suo(t, 0]},
find all terms of formula (28), we obtain 1

= — (it + (4 + 30) g t® + (247 + 46 + 667 + 2) it

+HAA + 1216 = 26 +10) L5 + (612 — 416 = 24 + 60 — 3 + 6%) 155

+(=2A% + A8 + 54 = 2 = 40) 4 t4 + (—4A + 5 — 1)1 sinx.

7012

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)



Sh. Omer Abdulla, M. Modanli / Filomat 39:20 (2025), 7007-7016 7013

Now you can find the value of u; in terms u#; by the same idea (28).

+ 5130 Ta1 (727 + 1206 + 606>

— — 1412 (1+6)
up = up(t, x) = ( E2+ 2493800

9979200 1663200

+68) 5355110 + (96 + 60 + 857 + 9616 + 60° + 22) 55t

+(24A + 260 + 602 + 815 + 12A% + 12487 — 26° + 6) g5 t°
(30)

H(61% = 6AG? + 181 — 45 — 55 + 767 + 18125 + 8 — V)i’

+(6A3 — 6125 — 412 + 1216 — 6] + 2167 — 45 + 467 — 4) =16

+(=3A = 405 + & = 1)t + (—4A2 + A5 — 1) 4+*) sinx.

And further on. It is feasible to write the final series respond to such as that:

Upir = uo(t, X) + M1(t, X) + Mz(t, X) + ... (31)

Here other terms vanish in the limit and hence the required exact solution to (31) that, we get

u(t,x) = (£ = 2+t = 1) sin(x). (32)

EXACT SOLUTION

Figure 1: Explain the exact solution of (32), when N = M = 10

In our process, we used a modified Gauss elimination technique. We have used the following procedure
to calculate the error estimates:

error = max lu(t, x) — Uprrl . (33)

Here, Upyr represents the analytical solution. The solution presented in the following graph illustrates
some physical properties of the analytical solution for equation (31) concerning IOD,
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ANALYTICAL SOLUTION

Figure 2: The analytical solution of (31) for N = M = 10, A = 1 and 6 = 0.75, for IOD

Figure 2, which represent the analytical solutions to (31) solved by DLT. Include clearer axis labels and
specified the units where applicable. The horizontal axis labeled (x) represents the spatial coordinate, while
the axis labeled § corresponds to the fractional parameter that influences the behavior of the solution. The
vertical axis (u) denotes the analytical solution of the governing equation (31), which represents the physical
quantity of interest (displacement, temperature, or concentration, depending on the context of the model).
Furthermore, we have added a more detailed explanation in the caption and the main text to interpret the
physical meaning of the solution. Specifically, the surface plot illustrates how the analytical solution varies
concerning the spatial variable and the fractional parameter § under the given conditions N = M = 10,
A =1,and 6 = 0.75. This behavior provides insights into the influence of fractional-order derivatives on the
solution’s profile, demonstrating, for instance, that higher values of 8 lead to [insert specific observation
from the figure, such as smoothing or steepening of the profile].

For finite difference method(FDM): We obtained an approximate solution for IOD using the explicit
finite difference method(EFDM). The error is determined similarly (33). To find f(f, x,) as follows:

fte, xn) = (2(1«)3 + (1 +38)(kT)* + (6A — 20)kT — 24 + 6 + 5) sin(nh), (34)

APPROXIMATION SOLUTION

il
i

Figure 3: Explain the approximate solution of (34), where N = M = 10, A = 1 and 6 = 0.75, for the integer order derivative using the
explicit finite difference method
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Figure 3, which represents the approximate solution to (34) solved by the explicit finite difference
method (EFDM). For various values, these figures were seen to be relatively close to one another. Physical
characteristic of the numerical solution for the interval N = M = 10 can be seen when they are compared
along the x-axis and t-axis for (f = 1) respectively, A = 1 of the IOD in figure 3. When the x-axis values
increase between 0 and 1.99, we see decreasing values on the t-axis. At x = 2, there is no change. When the
x-axis values increase, the t-axis values also increase. This means that the figure has a minimum value at x
=2.

When the x-axis values increase between 0 and 1.99, we see decreasing values on the t-axis. At the value
x = 2, there are changes of increase and decrease. When the x-axis values increase, the t-axis values also
increase.

The numerical and analytical results for Example 1, are displayed in a table (1).

Table 1: Numerical and analytical error results of the integer order derivative, using the finite difference technique and DLT for (31),
when A =1, and 6 = 0.75.

N =M |Finite Difference Method | Double Laplace Transformation
N=M=10 0.1725 0.1969
N=M=50 0.0054 0.0400
N =M =100 0.0011 0.0200
N =M =200 0.0002 0.0100

Table 1, illustrates that the obtained error results for both analytical and approximate solutions are closer
to one another and the error valueissmall if d = 0.75, A = 1and N = M = 200. Furthermore, for N = M = 10,
the error is 0.1725, as N = M = 200 the error are decreases to the value 0.0002 for the approximate solution
defined by EFDM. Results from DLT exhibit similar trends: for A =1, 6 = 0.75, the error starts at 0.1969 for
N = M = 10, decreasing to 0.0100 for N = M = 200 for the analytical solution, in both error results there are
reflexive relations between N = M and values.

6. Conclusion

This study presents an exact analytical solution for a third-order partial differential equation involving
integer order derivatives (IOD), derived using the modified double Laplace decomposition method. The
validity of the solution is supported by a finite difference scheme and error analysis conducted in MATLAB,
which shows a marked decrease in error from 0.1969 to 0.0100 as the discretizations increase from N=M=10
to N=M=200. The work contributes a validated analytical framework for IOD-based models. Limitations
include focusing on the form of a specific equation and the numerical method. Future work may extend this
approach to more general systems, explore alternative solution techniques, and compare results between
hybrid methods to enhance accuracy and applicability.
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