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Center and radius of a subset of a metric space
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Abstract. In this paper, we introduce a notion of the center and radius of a subset A of metric space X. In
the Euclidean spaces, this notion can be seen as the extension of the center and radius of open/closed balls.
The center and radius of a finite product of subsets of metric spaces, and a finite union of subsets of a metric
space are also determined.

For any subset A of metric space X, there is a natural question to identify the open balls of X with
the largest radius that are entirely contained in A. To answer this question, we introduce a notion of
quasi-center and quasi-radius of a subset A of metric space X. We prove that the center of the largest open
balls contained in A belongs to the quasi-center of A, and its radius is equal to the quasi-radius of A. In
particular, for the Euclidean spaces, we see that centers of the largest open balls contained in A belong to
the center of A, and their radius is equal to the radius of A.

1. Introduction

To extend classical geometric ideas beyond the Euclidean spaces, Maurice Fréchet introduced a notion
of distance to more abstract setting in 1906. In his doctoral dissertation (Ref. [2]), he defined the distance
between any two points within a given set. A set along with this distance notion is called metric space, and
this name was given by Hausdorff in 1914. In a metric space, the concept of distance is axiomatized, and
allowing us to study convergence, continuity, compactness etc. which are essential in many areas of pure
and applied mathematics.

Understanding the geometric properties of subsets within metric spaces is a fundamental aspect of
mathematical analysis and topology. The notion of open/closed balls provides essential tools for analyzing
properties of metric spaces. Every ball is defined by its center and radius. The center of ball is in the middle
of ball, from which the radius is measured. The purpose of the center of a ball is to act as the fixed reference
from which all other points on the boundary of the ball are equidistant. It is natural to question whether
this concept can be extended to any arbitrary subset of a metric space. Are there any points within a subset
of a metric space that are equidistant from its boundary? However, extending this notion of center and
radius to a subset of metric spaces has significant challenges and opens new avenues for exploration.
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This paper addresses these questions by introducing a novel framework for defining the center and
radius of subsets within arbitrary metric spaces, in a way that parallels to the idea of center and radius of
balls in the Euclidean spaces. This definition not only preserves the intuitive geometric interpretation but
also extends it to abstract settings. We further explore the properties of the center and radius in the context
of finite products of subsets of metric spaces and a finite union of subsets within a metric space.

A central question addressed in this paper is the identification of the largest open balls that are entirely
contained within a given subset A of metric space X. To tackle this, we introduce a notion of quasi-center
and quasi-radius. These concepts serve as pivotal tools in characterizing the maximal open balls contained
in A, and we demonstrate that the center of these balls is located within the quasi-center of A, with their
radius equating to the quasi-radius of A. Notably, when applied to the Euclidean spaces, our results show
that the center and radius of the largest open balls contained in A correspond directly to the center and
radius of A itself.

This paper is structured as follows: Section 2 consists of notations, terminology and basics of metric
spaces that are used in this paper. Section 3 provides a detailed definition of the center and radius of a
subset within a metric space, along with key properties and examples. Section 4 and Section 5 extend these
concepts to finite products and finite unions of subsets of metric space, respectively. Finally, in Section 6, we
introduce the notions of quasi-center and quasi-radius, leading to a key result that connects these concepts
to largest open balls contained within a subset.

2. Notations, terminology and basics

Let (X, dX) be a metric space. The distance between two subsets A and B of X is dX(A,B) = inf{dX(a, b) | a ∈
A, b ∈ B}. In many results of this paper, a subset is required to be nonclopen, which means that the subset
is not both open and closed. The interior, closure and boundary of A are denoted by A◦,A and ∂X(A),
respectively. For details about metric spaces, we refer to [3].

Now, we recall some basic results and properties of metric spaces.

• Let f : X −→ Y be an isometry between two metric spaces X and Y. For a subset A of X, f (∂X(A)) =
∂Y( f (A)).

• For a subset A of metric space X, ∂X(A◦) ⊆ ∂X(A) and ∂X(A) ⊆ ∂X(A).

• If A ⊆ B ⊆ X then dX(a,B) ≤ dX(a,A),∀a ∈ X.

• Let A and B be subsets of metric spaces X and Y, respectively. Then∂X×Y(A×B) = (A×∂Y(B)∪(∂X(A)×B).

Similarly, for subsets Ai of metric spaces Xi, we have ∂ n∏
1

Xi
(

n∏
1

Ai) =
n⋃
1

(A1 ×A2 × ... × ∂Xi (Ai) × ... ×Ak).

• For separated subsets A and B of a metric space X, we have ∂X(A ∪ B) = ∂X(A) ∪ ∂X(B).

• Let (X, dX) be a path metric space (Ref. [1]). For a proper subset A of X, dX(a, ∂X(A)) = dX(a,Ac),∀a ∈ A.

3. The definition of center and radius

Let (X, dX) be a metric space and A be a subset of X. We introduce the notion of center and radius of A
in X:

Definition 3.1. [Center of a subset] The center of subset A of a metric space X is the set {a ∈ A | dX(a, ∂X(A)) ≥
dX(b, ∂X(A)),∀ b ∈ A}, where ∂X(A) is the boundary of A in X. We denote the center of A in X by CentX(A).

Thus the center of A is the set of all those elements of A which are at the maximum distance from the
boundary of A.
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Definition 3.2. [Radius of a subset] The radius of subset A of a metric space X is the distance between the
center of A and the boundary of A. We denote the radius of A in X by radX(A).

It is clear that for every point in CentX(A) has the same distance from ∂X(A). Thus radX(A) =
dX(CentX(A), ∂X(A)) = dX(a, ∂X(A)),∀a ∈ CentX(A).

Example 3.3. Let R be the set of real numbers with usual metric. For subsets A = [0, 1] ,B = [0, 1] ∪ [2, 3]
and C = [0, 1] ∪ [5, 10], we get CentR(A)= {0.5} & radR(A) = 0.5, CentR(B)= {0.5, 2.5} & radR(B) = 0.5 and
CentR(C)= {7.5} & radR(C) = 2.5.

Example 3.4. Let R2 be the real plane with the Euclidean metric. For the unit disc D2
⊆ R2, CentR2 (D2) =

{(0, 0)}& radR2 (D2) = 1, and for a punctured unit disc A = D2
\{(0, 0)} ⊆ R2, CentR2 (A) = {

(
x, y
)
∈ A | x2+ y2 =

( 1
2 )2
} & radR2 (A) = 1

2 .

Example 3.5. The n+ 1 vertices of the standard n-simplex ∆n are the points ei, 1 ≤ i ≤ n+ 1, in the Euclidean
space Rn+1 whose i-th coordinate is 1 and all other coordinates are 0. The simplex ∆n lies in the affine
hyperplane Hn

⊆ Rn+1 spanned by its vertices ei. The center of CentHn (∆n) is the barycenter 1
n+1 (1, 1, ..., 1) of

∆n.

As the center of A consists of all those points of A which are at the maximum distance from its boundary,
radX(A) is the maximum distance of any point a ∈ A from its boundary. It is clear that if CentX(A) , ∅ then
radX(A) = supa∈A dX(a, ∂X(A)). And, if CentX(A) = ∅ then radX(A) = ∞ but supa∈A dX(a, ∂X(A)) could be finite.

It leads us to introduce the concept of the Semi-radius of a subset A in the metric space X.

Definition 3.6. [Semi-radius of a subset] The semi-radius of subset A of a metric space X is the supremum
of the set that consists of distance of any point a ∈ A from the boundary of A. We denote the Semi-radius
of A in X by SradX(A).

That is, SradX(A) = supa∈A dX(a, ∂X(A)).

Note that radX(A) ≥ SradX(A). We can notice it from the following examples.

Example 3.7. Let X = R\{1} be the metric subspace of the Euclidean line R. Let A = [0, 2]\{1} be a subset of
X. Then ∂X(A) = {0, 2}. If CentX(A) , ∅, then ∃ a ∈ A such that dX(a, ∂X(A)) ≥ dX(x, ∂X(A)),∀x ∈ A, which is
not true. So, CentR(A) = ∅ and radR(A) = ∞, whereas SradX(A) = 1 < radX(A).

Example 3.8. LetR be the set of real numbers with the usual metric. For A =
⋃

n∈N
[n+ 1

n ,n+ 1] ⊆ R, we have

CentR(A) = ∅ and radR(A) = ∞ but SradR(A) = 1
2 .

Example 3.9. Let X = (−∞, 0) ∪ (Q ∩ [0, π]) ∪ [π,∞) be a metric subspace of the Euclidean line R. For
A = (Q ∩ [0, π]) ⊆ X,we have ∂X(A) = {0, π}, CentX(A) = ∅ and radX(A) = ∞ but SradX(A) = π2 < radX(A).

Example 3.10. Let In = [0, 1],n ∈ N be intervals. Take a disjoint union X = ⊔n∈NIn and define dX(ai, b j) =
1
2 (1 − δ j

i ) + (2 − δ j
i )|a − b|, where ai ∈ Ii, b j ∈ I j, ∀i, j ∈ N and δ j

i denote the kronecker delta. Then (X, dX) is a
metric space. For A = ⊔∞n=3

[
1
n , 1 −

1
n

]
⊆ X, we have ∂X(A) = ⊔∞n=3{

1
n , 1 −

1
n }, CentX(A) = ∅, radX(A) = ∞ but

SradX(A) = 1
2 < radX(A).

Notice that if the boundary of a subset A of a metric space X is empty then every point of A is at infinite
distance from ∂X(A). As the boundary of any metric space X is empty in itself, we have CentX(X) = X &
radX(X) = ∞. Similarly, for the empty set ∅, CentX(∅) = ∅ & radX(∅) = ∞.

Lemma 3.11. For any clopen subset A of a metric space X, CentX(A) = A and radX(A) = ∞.

But if a subset A of a metric space X has infinite radius then it does not mean that A is clopen in X.
Consider a subset A = [0,∞) of the set R of real numbers with the usual metric. Then, ∂R(A) = {0}. Here,
CentR(A) = ∅ and radR(A) = SradR(A) = ∞.

The following result is for nonclopen subsets of a metric space.



A. Badra, H. K. Singh / Filomat 39:20 (2025), 7017–7031 7020

Theorem 3.12. Let A be a nonclopen subset of a metric space X. Then CentX(A) is nonempty if and only if radX(A)
is finite.

Proof. As A ⊆ X is nonclopen, ∂X(A) , ∅. If CentX(A) is nonempty then radX(A) = dX(CentX(A), ∂X(A)) =
infb∈∂X(A) dX(a, b) ≤ dX(a, b),∀a ∈ CentX(A),∀b ∈ ∂X(A), which is finite.

Conversely, if radX(A) is finite then by the definition of radius, the center of A is nonempty.

Next, we discuss examples of subsets of a metric space with zero radius. Consider N ⊆ R, the set
of real numbers with the usual metric. Then CentR(N) = N and radR(N) = 0. In fact, for any totally
disconnected subset A of R, we get CentR(A) = A and radR(A) = 0. For the unit circle S1 in the Euclidean
plane R2, CentR2 (S1) = S1 & radR2 (S1) = 0.We know that topological manifolds are metrizable spaces. Let
N be an n-dimensional submanifold of a topological manifold M of dimension m where n < m. Note that
N ⊆ ∂M(N), and hence CentM(N) = N and radM(N) = 0. Also notice that in Example 3.5, CentRn+1 (∆n) = ∆n

and radRn+1 (∆n) = 0.
In general, for any subset A of a metric space X contained in its boundary, it means for A having empty

interior, we have

Lemma 3.13. Let A be a nonempty subset of a metric space X such that A has empty interior. Then, CentX(A) = A
and radX(A) = 0.

The following result is for subsets of metric spaces having nonempty interior.

Lemma 3.14. Let X be a metric space and A ⊆ X such that A has nonempty interior. Then, CentX(A) ⊆ A◦.

Proof. If A is clopen then it is true by Lemma 3.11. And, if A is nonclopen then for any a ∈ A, either
a ∈ ∂X(A) or a ∈ A◦. If a ∈ ∂X(A) then dX(a, ∂X(A)) = 0. If a ∈ A◦ then ∃ ϵ > 0 such that BdX (a, ϵ) ⊆ A◦. As
BdX (a, ϵ) ∩ ∂X(A) = ∅, we have dX(a, ∂X(A)) ≥ ϵ > 0,∀a ∈ A◦. So, by definition of center of A in X, we get
CentX(A) ⊆ A◦.

Theorem 3.15. Let X be a metric space and A be a nonempty subset of X. Then, A◦ = ∅ if and only if radX(A) = 0.

Proof. If A◦ = ∅ then by Lemma 3.13, radX(A) = 0. Conversely, assume that radX(A) = 0 then by Lemma
3.11, A is nonclopen and by Theorem 3.12, CentX(A) is nonempty. So, for x ∈ CentX(A),we get dX(x, ∂X(A)) =
0 =⇒ x ∈ ∂X(A) = ∂X(A), and hence we get CentX(A) ⊆ ∂X(A). If A◦ , ∅ then by Lemma 3.14 CentX(A) ⊆ A◦.
As ∂X(A) ∩ A◦ = ∅,we get CentX(A) = ∅, a contradiction. Thus, A◦ = ∅.

Theorem 3.16. The center of a subset A of a metric space X is closed in A.

Proof. Let b ∈ A be a limit point of CentX(A) in A. Then, ∃ a sequence (an) in CentX(A) such that (an) −→ b.
Consider a map p : A −→ R such that p(x) = dX(x, ∂X(A)),∀x ∈ A. It is easy to observe that p is a
continuous map. By the continuity of p, we have p(an) −→ p(b). As an ∈ CentX(A), which means p(an) =
dX(an, ∂X(A)) = radX(A),∀n ∈ N. So, p(an) is a constant sequence, and hence it converges to radX(A). Thus,
p(b) = dX(b, ∂X(A)) = radX(A). This implies that b ∈ CentX(A). Hence, CentX(A) is a closed subset of A.

It is not necessary that CentX(A) is a closed subset of X. For example: Consider a subset A = (0, 1) × {0}
of the Euclidean plane R2. Then CentR2 (A) = A which is not closed in R2.

Now for any subset A of a metric space X, we establish a relationship between the radii of A and A◦

with the radius of A.

Theorem 3.17. Let X be a metric space and A ⊆ X such that CentX(A) , ∅. Then radX(A) ≤ radX(A◦) and
radX(A) ≤ radX(A).

Proof. If CentX(A◦) is empty then radX(A◦) = ∞, which implies radX(A) ≤ radX(A◦). If CentX(A◦) , ∅ then for
b ∈ CentX(A◦), we have dX(b, ∂X(A◦)) ≥ dX(b′, ∂X(A◦)),∀b′ ∈ A◦. As ∂X(A◦) ⊆ ∂X(A), we get dX(b′, ∂X(A◦)) ≥
dX(b′, ∂X(A)), ∀b′ ∈ A◦ ⊆ A. Hence, dX(b, ∂X(A◦)) ≥ dX(b′, ∂X(A)),∀b′ ∈ A◦. This implies that radX(A◦) ≥
supb′∈A◦ dX(b′, ∂X(A)) and for any b′ ∈ ∂X(A),we have dX(b′, ∂X(A)) = 0. So, radX(A◦) ≥ supb′∈A dX(b′, ∂X(A)) =
radX(A). Thus, radX(A) ≤ radX(A◦).

Similarly, as ∂X(A) ⊆ ∂X(A), we get radX(A) ≤ radX(A).
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Example 3.18. Consider the set R of real numbers with the usual metric.
Let A = { 1

n | n ∈ N} ⊆ R. Then A = {0} ∪ { 1
n | n ∈ N} and A◦ = ∅. We get CentR(A◦) = ∅ & CentR(A) = A,

CentR(A) = A and radR(A◦) = ∞ & radR(A) = radR(A) = 0.
Let B = (Q ∩ [0,∞)) ⊆ R. Then B◦ = ∅ and B = [0,∞). We get CentR(B◦) = ∅ & CentR(B) = B, CentR(B) = ∅
and radR(B) = 0 & radR(B◦) = radR(B) = ∞.
Let C = [0, 1) ⊆ R then radR(C) = radR(C◦) = radR(C) = 1

2 .

In the Euclidean planeR2, let Y = R× {0} and A = (0, 1)× {0}.Here A ⊆ Y ⊆ R2 and CentX(A) , ∅. Notice
that radR2 (A) = 0 ≤ radY(A) = 1

2 . In general, we have the following result.

Theorem 3.19. Let X be a metric space and Y be a subspace of X. If A ⊆ Y ⊆ X such that CentX(A) is nonempty,
then radX(A) ≤ radY(A).

Proof. We know that ∂Y(A) ⊆ ∂X(A) ⊆ X. So, dX(a, ∂X(A)) ≤ dX(a, ∂Y(A)),∀ a ∈ A =⇒ dX(a, ∂X(A)) ≤
dY(a, ∂Y(A)),∀ a ∈ A. And, if CentX(A) , ∅ , we have radX(A) = supa∈A dX(a, ∂X(A)) ≤ supa∈A dY(a, ∂Y(A)) ≤
radY(A).

Remark 3.20. In the above result, CentX(A) , ∅ is necessary. In Example 3.9, let Y = (Q ∩ [0, π]) ∪ [π,∞).
Then A ⊆ Y ⊆ X. Here ∂Y(A) = {π}, CentY(A) = {0} and CentX(A) = ∅. But radY(A) = πwhereas radX(A) = ∞.

Let f : X −→ Y be an isometry between two metric spaces X and Y (Ref. [3]). We know that isometry
preserves the boundary of a subset. Here, we observe that isometry also preserves the center and radius of
a subset.

First, we prove the following lemma.

Lemma 3.21. Let f : X −→ Y be an isometry between two metric spaces X and Y. For a subset A of X, CentX(A) , ∅
if and only if CentY( f (A)) , ∅.

Proof. As f is an isometry, f (∂X(A)) = ∂Y( f (A)). For a ∈ A, we have dX(a, ∂X(A)) = dY( f (a), f (∂X(A))) =
dY( f (a), ∂Y( f (A))). Notice that CentX(A) , ∅ ⇐⇒ ∃a ∈ A such that dX(a, ∂X(A)) ≥ dX(b, ∂X(A)),∀b ∈ A ⇐⇒

dY( f (a), ∂Y( f (A))) ≥ dY( f (b), ∂Y( f (A)),∀b ∈ A. ⇐⇒ f (a) ∈ CentY( f (A)) ⇐⇒ CentY( f (A)) , ∅.

Theorem 3.22. Let f : X −→ Y be an isometry between two metric spaces X and Y. For a subset A of X,
radX(A) = radY( f (A)) and f (CentX(A)) = CentY( f (A)).

Proof. First, let CentX(A) = ∅. Then it is true by Lemma 3.21. Next, let CentX(A) , ∅. Then radY( f (A)) ≥
dY( f (a), ∂Y( f (A)) = dY( f (a), f (∂X(A))) = dX(a, ∂X(A)), ∀a ∈ A. This implies that radY( f (A)) ≥ radX(A). By
Lemma 3.21, CentY( f (A)) , ∅. Similarly, we get radX(A) ≥ radY( f (A)). Hence, radX(A) = radY( f (A)).
As radY( f (A)) = radX(A) = dX(CentX(A), ∂X(A)) = dY( f (CentX(A)), ∂Y( f (A))),we get every point of f (CentX(A))
is at the maximum distance from ∂Y( f (A))). So, f (CentX(A)) ⊆ CentY( f (A)). Similarly, we get CentY( f (A)) ⊆
f (CentX(A)). Hence, f (CentX(A)) = CentY( f (A)).

Remark 3.23. Let X and Y be two metric spaces such that A ⊆ X and B ⊆ Y. If CentX(A) is connected and
CentY(B) is disconnected then by Theorem 3.22, there does not exist any isometry between X and Y such
that f (A) = B.

4. Center and radius of a finite product of subsets of metric spaces

Let (X×Y, d) be the product of metric spaces (X, dX). and (Y, dY),where d((x1, y1), (x2, y2)) = max{dX(x1, x2),
dY(y1, y2)},∀ (x1, y1), (x2, y2) ∈ X×Y.Now, we see how CentX×Y(A×B) is related to CentX(A) and CentY(B).
Let A ⊆ X and B ⊆ Y be subsets. If radX(A) and radY(B) are infinite then there are three possible

cases: (i) both A and B are clopen, (ii) one of A and B is clopen and the other has empty center, and (iii)
CentX(A) = CentY(B) = ∅.

Theorem 4.1. Let (X, dX) and (Y, dY) be two metric spaces. Let A ⊆ X and B ⊆ Y be subsets.
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(1) If both A and B are clopen, then CentX×Y(A × B) = A × B and radX×Y(A × B) = ∞,

(2) If A is clopen and CentY(B) = ∅, then CentX×Y(A × B) = ∅ and radX×Y(A × B) = ∞, and

(3) CentX(A) = CentY(B) = ∅, then CentX×Y(A × B) = ∅ and radX×Y(A × B) = ∞.

Proof. (1) If A and B are clopen then A×B is clopen, and hence CentX×Y(A×B) = A×B and radX×Y(A×B) = ∞.
(2) As A is clopen, ∂X(A) = ∅. Recall that ∂X×Y(A × B) = (A × ∂Y(B)) ∪ (∂X(A) × B). In this case,

∂X×Y(A × B) = A × ∂Y(B). First, we observe that d((a, b),A × ∂Y(B)) = dY(b, ∂Y(B)),∀(a, b) ∈ A × B.
We have d((a, b),A × ∂Y(B)) ≤ d((a, b), (a, y)) = max{dX(a, a), dY(b, y)} = dY(b, y),∀y ∈ ∂Y(B) =⇒ d((a, b),A ×
∂Y(B)) ≤ dY(b, ∂Y(B)). And, for x ∈ A and y ∈ ∂Y(B),we have dY(b, ∂Y(B)) ≤ dY(b, y) ≤ max{dX(a, x), dY(b, y)} =
d((a, b), (x, y)) =⇒ dY(b, ∂Y(B)) ≤ d((a, b),A × ∂Y(B)). Hence, d((a, b),A × ∂Y(B)) = dY(b, ∂Y(B)),∀(a, b) ∈ A × B.

Suppose that CentX×Y(A × B) , ∅. For (a, b) ∈ CentX×Y(A × B), we get dY(b, ∂Y(B)) = d((a, b),A × ∂Y(B)) ≥
d((a, b′),A × ∂Y(B)) = dY(b′, ∂Y(B)),∀b′ ∈ B =⇒ b ∈ CentY(B), a contradiction. So, CentX×Y(A × B) = ∅, and
hence radX×Y(A × B) = ∞.

(3) Similarly, as in case (ii), we get d((a, b),A× ∂Y(B)) = dY(b, ∂Y(B)), and d((a, b), ∂X(A)×B) = dX(a, ∂X(A)),
∀(a, b) ∈ A × B.

Suppose that CentX×Y(A × B) , ∅. , For (a, b) ∈ CentX×Y(A × B) ⊆ A × B, we get d((a, b), ∂X×Y(A ×
B)) = min{d((a, b), (∂X(A)×B)), d((a, b), (A×∂Y(B)))} = min{dX(a, ∂X(A)), dY(b, ∂Y(B))}. If d((a, b), ∂X×Y(A×B)) =
dX(a, ∂X(A)) then a ∈ CentX(A), a contradiction, and if d((a, b), ∂X×Y(A × B)) = dY(b, ∂Y(B)) then b ∈ CentY(B),
again a contradiction. So, CentX×Y(A × B) = ∅, and hence radX×Y(A × B) = ∞.

Example 4.2. (i) Let A = {2, 3} ⊆ Z and B = [0,∞) ⊆ R,whereZ is discrete space andR is equipped with
the usual metric. As A is clopen inZ and CentR(B) = ∅, by Theorem 4.1(ii), we get CentZ×R(A× B) = ∅
and radZ×R(A × B) = ∞.

(ii) Let Q = (0,∞)× (0,∞) be the first quadrant inR2 with the maximum metric. Then by Theorem 4.1(iii),
we get CentR2 (Q) = ∅ and radR2 (Q) = ∞.

Theorem 4.3. Let (X, dX) and (Y, dY) be two metric spaces. For A ⊆ X and B ⊆ Y, let B̂ = {b ∈ B | dY(b, ∂Y(B)) ≥
radX(A)}. If radX(A) ≤ radY(B), then CentX×Y(A × B) = CentX(A) × B̂.

Proof. First, let both radX(A) and radY(B) be infinite. In this case, we have three possibilities. If A and B
are clopen then CentX(A) = A and B̂ = B, and the result follows by Theorem 4.1(i). And in other two cases
either B̂ = ∅ or CentX(A) = ∅, and the result follows by Theorem 4.1(ii) or Theorem 4.1(iii).

Now, WLOG suppose that radX(A) is finite, then CentX(A) is nonempty. If radY(B) is finite, then CentY(B) ,
∅ and CentY(B) ⊆ B̂ =⇒ B̂ , ∅. If radY(B) = ∞ such that radX(A) < SradY(B), then B̂ , ∅.

In both the above cases, we observe that if (a, b) ∈ CentX(A) × B̂, then d((a, b), ∂X×Y(A × B)) = radX(A).
As a ∈ CentX(A) and b ∈ B̂, dX(a, ∂X(A)) = radX(A) and dY(b, ∂Y(B)) ≥ radX(A) =⇒ d((a, b), ∂X×Y(A ×
B)) = min{dX(a, ∂X(A)), dY(b, ∂Y(B))} = radX(A). Next, we observe that if (a, b) < (CentX(A) × B̂), then
d((a, b), ∂X×Y(A × B)) < radX(A). If (a, b) < (CentX(A) × B̂), then we have either a < CentX(A) or b < B̂.
If a < CentX(A), then dX(a, ∂X(A)) < radX(A). And, if b < B̂, then dX(b, ∂X(A)) < radX(A). This implies
d((a, b), ∂X×Y(A × B)) < radX(A). So, CentX×Y(A × B) = CentX(A) × B̂.

Now, if radY(B) = ∞ such that radX(A) ≥ SradY(B), then B̂ = ∅. In this case, we prove that CentX×Y(A×B) =
∅. Let (a, b) ∈ CentX×Y(A × B). Then d((a, b), ∂X×Y(A × B)) = min{dX(a, ∂X(A)), dY(b, ∂Y(B)}. If d((a, b), ∂X×Y(A ×
B)) = dY(b, ∂Y(B), then b ∈ CentY(B), a contradiction. So, d((a, b), ∂X×Y(A × B)) = dX(a, ∂X(A)) =⇒ a ∈
CentX(A). So, we get radX(A) = dX(a, ∂X(A)) = d((a, b), ∂X×Y(A × B)) < dY(b, ∂Y(B)) ≤ supb∈B dY(b, ∂Y(B)) =
SradY(B), which is not the case. So, CentX×Y(A × B) = ∅. Hence, our claim.

Remark 4.4. In the above theorem,

(i) if radX(A) = radY(B), then B̂ = CentY(B). So, CentX×Y(A × B) = CentX(A) × CentY(B).

(ii) if radX(A) = 0, then B̂ = B and CentX(A) = A. So, CentX×Y(A × B) = A × B.
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(iii) if radY(B) ≤ radX(A), then CentX×Y(A × B) = Â × CentY(B), where Â = {a ∈ A | dX(a, ∂X(A)) ≥ radY(B)}.

From above results, we get

Corollary 4.5. Let A and B are subsets of metric spaces X and Y, respectively. If the radii of A and B are either both
finite or both infinite, then radX×Y(A × B) = min{radX(A), radY(B)}.

Moreover, if radX(A) < SradY(B) or radY(B) < SradX(A), then the above result is also true.

Example 4.6. Let A and B be subsets of the Euclidean space R.

(i) If A = B = [0, 1] then radR(A) = radR(B) and B̂ = CentY(B) = { 12 }. By Theorem 4.3, CentR2 (A × B) =
{( 1

2 ,
1
2 )}, and radR2 (A × B) = 1

2 .

(ii) If A = [0, 1] and B = [0, 5] then radR(A) ≤ radR(B) and B̂ = [0.5, 4.5]. Hence, CentR2 (A×B) = { 12 }×[0.5, 4.5]
and radR2 (A × B) = 1

2 .

(iii) If A = [0, 1] and B = [0, 1]∪ [2, 4] then radR(A) ≤ radR(B) and B̂ = { 12 }∪ [2.5, 3.5]. Hence, CentR2 (A×B) =
{( 1

2 ,
1
2 )} ∪ ({ 12 } × [2.5, 3.5]) and radR2 (A × B) = 1

2 .

Example 4.7. Let R2 and R be the Euclidean spaces. By Theorem 4.3, we have

(i) the center and radius of the cylinder S1
× I in R3 are S1

× I and 0, respectively, where I = [0, 1].

(ii) for D2
⊆ R2 and I ⊆ R, radR2 (D2) > radR(I) and D̂2 = {a ∈ D2

| dR2 (a, S1) ≥ 1
2 } = {a ∈ D

2
| |a| ≤ 1

2 }. So,
CentR3 (D2

× I) = {(a, 1
2 ) ∈ (D2

× I) | |a| ≤ 1
2 } and radR3 (D2

× I) = 1
2 .

(iii) for A = D2
⊆ R2,B = [0, 4] ⊆ R, radR2 (A) < radR(B) and B̂ = [1, 3]. So, CentR3 (A × B) = {(0, 0, b) | 1 ≤

b ≤ 3} and radR3 (A × B) = 1.

Example 4.7

Next, we generalize Theorem 4.3 for a finite product
n∏

i=1
Ai of subsets Ai of metric spaces Xi, 1 ≤ i ≤ n.

Theorem 4.8. Let (Xi, di) be metric spaces , 1 ≤ i ≤ n, where n ∈ N. For Ai ⊆ Xi, 1 ≤ i ≤ n, let Âi = {a ∈

Ai | di(a, ∂Xi (Ai)) ≥ min{radX j (A j)|1 ≤ j ≤ n}}. Then Cent n∏
1

Xi
(

n∏
1

Ai) =
n∏
1

Âi. Moreover, if the radii of Ai are either

all finite or all infinite, then rad n∏
1

Xi
(

n∏
1

Ai) = min{radXi (Ai) | 1 ≤ i ≤ n}.

Proof. We prove by induction. If n = 2 and radX1 (A1) ≤ radX2 (A2) then Â1 = CentX1 (A1) and it is true by
Theorem 4.3.
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Assume that it is true for some k ∈N. Let B =
k∏
1

Ai. By Induction hypothesis, we have Cent k∏
1

Xi

(B) =
k∏
1

Âi

and rad k∏
1

Xi

(B) = min{radXi (Ai) | 1 ≤ i ≤ k}.

Now, we prove it for k + 1.

If rad k∏
1

Xi

(B) ≤ radXk+1 (Ak+1), then by Theorem 4.3, we have Centk+1∏
1

Xi

(
k+1∏

1
Ai) = Centk+1∏

1
Xi

(B × Ak+1) =

(Cent k∏
1

Xi

B) × Âk+1 =
k+1∏

1
Âi, and radk+1∏

1
Xi

(
k+1∏

1
Ai) = radk+1∏

1
Xi

(B × Ak+1) = rad k∏
1

Xi

(B) = min{radXi (Ai) | 1 ≤ i ≤ k} =

min{radXi (Ai) | 1 ≤ i ≤ k + 1}.

If radXk+1 (Ak+1) ≤ rad k∏
1

Xi

(B), then by Theorem 4.3, we have Centk+1∏
1

Xi

(
k+1∏

1
Ai) = B̂×CentXk+1 (Ak+1) = B̂× Âk+1,

and radk+1∏
1

Xi

(
k+1∏

1
Ai) = radk+1∏

1
Xi

(B × Ak+1) = radXk+1 (Ak+1) = min{radXi (Ai) | 1 ≤ i ≤ k + 1}. Next, we observe that

B̂ =
k∏
1

Âi.

We have B̂ = {b ∈ B|d(b, ∂ k∏
1

Xi

(B)) ≥ radXk+1 (Ak+1)}. It is easy to see that d(a,A1 ×A2 × ...∂Xi (Ai) × ... ×Ak) =

di(ai, ∂Xi (Ai)),∀a = (a1, a2, ..., ak) ∈
k∏
1

Ai. Note that d(b, ∂ k∏
1

Xi

(B)) = d(b,
k⋃

i=1
(A1 × A2 × ... × ∂Xi (Ai) × ... × Ak)) =

min{d(b, (A1 × A2 × ... × ∂Xi (Ai) × ...Ak)) | 1 ≤ i ≤ k} = min{di(b, ∂Xi (Ai)) | 1 ≤ i ≤ k},∀b ∈ B. Now, b =
(b1, b2, ..., bk) ∈ B̂ ⇐⇒ d(b, ∂ k∏

1
Xi

(B)) ≥ radXk+1 (Ak+1) ⇐⇒ min{di(bi, ∂Xi (Ai)) | 1 ≤ i ≤ k} ≥ radXk+1 (Ak+1) ⇐⇒

di(bi, ∂Xi (Ai)) ≥ radXk+1 (Ak+1), 1 ≤ i ≤ k ⇐⇒ bi ∈ Âi, 1 ≤ i ≤ k ⇐⇒ b = (b1, b2, ..., bk) ∈
k∏
1

Âi. Thus, B̂ =
k∏
1

Âi.

So, Centk+1∏
1

Xi

(
k+1∏

1
Ai) =

k∏
1

Âi × Âk+1 =
k+1∏

1
Âi. Hence, our claim.

5. Center and radius of a finite union of subsets of a metric space

We know that if A and B are subsets of a metric space (X, dX) such that A ∩ B = ∅, then we have
diamX(A ∪ B) ≤ diamX(A) + diamX(B) + dX(A,B), where diamX(A) denotes the diameter of A (Ref. [3]).

In this section, we determine CentX(A ∪ B) and radX(A ∪ B) for nonclopen subsets A and B of a metric
space X.

For nonclopen subsets A and B of a metric space X, let
Ã = {a ∈ CentX(A) | dX(a, ∂X(B)) < radX(A)}, and
B̃ = {b ∈ CentX(B) | dX(b, ∂X(A)) < radX(B)}.

Using these notations, we have the following results:

Theorem 5.1. Let A and B be nonclopen separated subsets of a metric space (X, dX). Then,

(1) if radX(A) > radX(B) and CentX(A)\Ã , ∅, then CentX(A∪ B) = CentX(A)\Ã & radX(A∪ B) = radX(A), and

(2) if radX(A) = radX(B) and (CentX(A)\Ã) ∪ (CentX(B)\B̃) , ∅, then CentX(A ∪ B) = (CentX(A)\Ã) ∪
(CentX(B)\B̃) and radX(A ∪ B) = radX(A) = radX(B).

Proof. (1) For a ∈ CentX(A)\Ã,we have dX(a, ∂X(B)) ≥ radX(A).Consequently, dX(a, ∂X(A∪B)) = min{dX(a, ∂X(A)),
dX(a, ∂X(B))} = dX(a, ∂X(A)) = radX(A). If a < CentX(A)\Ã, then either a ∈ Ã or a < CentX(A). If a ∈ Ã,

then dX(a, ∂X(B)) < radX(A). So, dX(a, ∂X(A ∪ B)) ≤ dX(a, ∂X(B)) < radX(A). If a ∈ A such that a < CentX(A)
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then dX(a, ∂X(A)) < radX(A). So, dX(a, ∂X(A ∪ B)) ≤ dX(a, ∂X(A)) < radX(A). And if a ∈ B then dX(a, ∂X(A ∪
B)) ≤ dX(a, ∂X(B)) ≤ radX(B) < radX(A). So, for a < CentX(A)\Ã, we have dX(a, ∂X(A ∪ B)) < radX(A). Thus,
CentX(A ∪ B) = CentX(A)\Ã and radX(A ∪ B) = radX(A).

(2) Similarly, for a ∈ (CentX(A)\Ã) ∪ (CentX(B)\B̃), we get dX(a, ∂X(A ∪ B)) = radX(A). And, for a <
(CentX(A)\Ã) ∪ (CentX(B)\B̃), we get dX(a, ∂X(A ∪ B)) < radX(A). Thus, CentX(A ∪ B) = (CentX(A)\Ã) ∪
(CentX(B)\B̃) and radX(A ∪ B) = radX(A).

Next, we derive relationship of SradX(A ∪ B) with radX(A) & radX(B).

Theorem 5.2. Let A and B be nonclopen separated subsets of a metric space (X, dX). Then SradX(A ∪ B) ≤
max{radX(A), radX(B)}.

Proof. As A and B are separated, ∂X(A ∪ B) = ∂X(A) ∪ ∂X(B). So, for a ∈ A, we have dX(a, ∂X(A ∪ B)) ≤
dX(a, ∂X(A)) ≤ radX(A). Similarly, for b ∈ B, we have dX(b, ∂X(A ∪ B)) ≤ dX(b, ∂X(B)) ≤ radX(B). This implies
that SradX(A ∪ B) ≤ max{radX(A), radX(B)}.

Theorem 5.3. Let A and B be nonclopen separated subsets of a metric space (X, dX). Then,

(1) if radX(B) < radX(A) < ∞ and CentX(A)\Ã = ∅, then SradX(A ∪ B) < radX(A), and

(2) if radX(A) = radX(B) < ∞ and (CentX(A)\Ã) ∪ (CentX(B)\B̃) = ∅, then SradX(A ∪ B) < radX(A) = radX(B).

Proof. By Theorem 5.2, we get SradX(A ∪ B) ≤ radX(A).
First, let radX(A) > radX(B). As Ã ⊆ CentX(A) and CentX(A)\Ã = ∅, we get CentX(A) = Ã. As radX(A) is finite,
by Theorem 3.12, we get CentX(A) , ∅. So, for a ∈ CentX(A), we get dX(a, ∂X(B)) < radX(A). Consequently,
dX(a, ∂X(A∪B)) < radX(A).And for a ∈ A such that a < CentX(A),we get dX(a, ∂X(A∪B)) < radX(A). For b ∈ B,
we have dX(b, ∂X(A ∪ B)) ≤ radX(B). Therefore, SradX(A ∪ B) < radX(A).

Now, let radX(A) = radX(B).We must have both CentX(A) and CentX(B) are nonempty. As (CentX(A)\Ã)∪
(CentX(B)\B̃) is empty, then CentX(A) = Ã & CentX(B) = B̃. So, for a ∈ CentX(A) ∪CentX(B), we get
dX(a, ∂X(A∪ B)) < radX(A). Also, for a ∈ A∪ B such that a < CentX(A)∪ CentX(B),we have dX(a, ∂X(A∪ B)) <
radX(A). Therefore, SradX(A ∪ B) < radX(A) = radX(B).

The above result may not hold if radX(A) is infinite. For example: Let A = [2,∞) and B = [0, 1] be subsets
of Euclidean lineR.Here, radX(B) = 0.5 < radX(A) = ∞ and CentX(A)\Ã = ∅. But SradX(A∪B) = ∞ ≮ radX(A).

Notice that, in the above theorems, if CentX(A ∪ B) , ∅, then SradX(A ∪ B) can be replaced with
radX(A ∪ B). On the other hand, if CentX(A ∪ B) = ∅, then above results may not hold by replacing
SradX(A) with radX(A). For example: Consider, a metric subspace X = R × ({0} ∪ [1,∞)) of Euclidean
space R2. Let A =

⋃
n∈N[10n, 10n + 5] × {0} and B =

⋃
n∈N[10n, 10n + 5] × {2 − 1

n } be subsets of X. Here,
CentX(A) = Ã =

⋃
n∈N{10n + 2.5}, radX(A) = 2.5, radX(B) = 0 and SradX(A ∪ B) = 2. We can also notice that

CentX(A ∪ B) = ∅ and radX(A ∪ B) = ∞ ≰ radX(A).

Remark 5.4. In Theorem 5.3(i), we further establish a relationship between SradX(A∪B) and radX(B). Define
˜̃A = {a ∈ A | dX(a, ∂X(A ∪ B)) > radX(B)}. Then

(i) if ˜̃A , ∅, then radX(B) < SradX(A ∪ B), and

(ii) if ˜̃A = ∅ then SradX(A ∪ B) ≤ radX(B).

Note that for any point a ∈ A ∪ B such that a < ˜̃A,we get dX(a, ∂X(A ∪ B)) ≤ radX(B). It is easy to observe
that if ˜̃A , ∅, then all those points of A ∪ B which are at the maximum distance from ∂X(A ∪ B) are in ˜̃A. So,
we get

Remark 5.5. Let A and B are nonclopen separated subsets of a metric space (X, dX). If ˜̃A , ∅, then
CentX(A ∪ B) ⊆ ˜̃A.
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Theorem 5.6. Let A and B be nonclopen separated subsets of a metric space (X, dX), such that radX(B) < radX(A) = ∞
and radX(B) ≥ SradX(A). Then,

(1) if CentX(B)\B̃ , ∅, then radX(A ∪ B) = SradX(A ∪ B) = radX(B) & CentX(A ∪ B) = CentX(B)\B̃, and

(2) if CentX(B)\B̃ = ∅, then SradX(A ∪ B) < radX(B).

Proof. As radX(A) = ∞, by Theorem 3.12, CentX(A) = ∅, which means dX(a, ∂X(A)) < SradX(A),∀a ∈ A. Since
radX(B) is finite, we get CentX(B) , ∅.

(1) If a ∈ CentX(B)\B̃, then a ∈ CentX(B) such that dX(a, ∂X(A)) ≥ radX(B). Thus, dX(a, ∂X(A ∪ B)) =
min{dX(a, ∂X(A)), dX(a, ∂X(B))} = dX(a, ∂X(B)) = radX(B). And, if a < CentX(B)\B̃, then dX(a, ∂X(A ∪ B)) <
radX(B). So, CentX(A ∪ B) = CentX(B)\B̃ and radX(A ∪ B) = SradX(A ∪ B) = radX(B).

(2) Similarly, if CentX(B)\B̃ = ∅, then SradX(A ∪ B) < radX(B).

Example 5.7. Let X ⊆ R2 be the union of two rectangles with vertices (0, 0), (1, 0),
(1, 2) & (0, 2) and (1, 0), (2, 0), (2, 2) & (1, 2). Thus X is a metric subspace of the Euclidean space R2. We
consider nonclopen separated subsets A and B of X.

(i) Let A and B be the line segments joining (0, 0) to (0, 2) and (2, 1) to (2, 2), respectively. Here radX(A) =
1 > 0.5 = radX(B),CentX(A) = {(0, 1)} and Ã = ∅. By Theorem 5.1(i), we get radX(A ∪ B) = 1 &
CentX(A ∪ B) = {(0, 1)}.

(ii) Let A and B be the line segments joining (0, 0) to (0, 2) and (2, 0) to (2, 2), respectively. Here radX(A) =
1 = radX(B),CentX(A) = {(0, 1)},CentX(B)
= {(2, 1)} and Ã = ∅ = B̃. By Theorem 5.1(ii), radX(A ∪ B) = 1 and CentX(A ∪ B) = {(0, 1), (2, 1)}.

(iii) Let A and B be the line segments joining (0, 0) to (2, 0) and (1, 0.2) to (1, 1), respectively. Here radX(A) =
1 > 0.4 = radX(B),CentX(A) = {(1, 0)} and Ã = {(1, 0)}. By Theorem 5.3(i), SradX(A∪B) < 1.Note that for
a = (0.5, 0), dX(a, ∂X(A∪ B)) > 0.4 = radX(B). So, ˜̃A , ∅, and hence by Remark 5.4(i), SradX(A∪ B) > 0.4.

(iv) Let A and B be the line segments joining (0, 0) to (2, 0) and (1, 0.2) to (1, 2), respectively. Here radX(A) =
1 > 0.9 = radX(B),CentX(A) = {(1, 0)} and Ã = {(1, 0)}. By Theorem 5.3(i), SradX(A ∪ B) < 1. Infact, as
˜̃A = ∅, by Remark 5.4(ii), SradX(A ∪ B) ≤ 0.9.

One can easily verify that the radius and center of A∪ B in above all four cases are the same as we have
obtained using Theorems 5.1 and 5.3.

Example 5.8. Let S2
⊆ R3 be the unit sphere with metric induced from the Euclidean space R3. Let A =

{(x, y, z) ∈ S2
| y = 0}\BS2 ((1, 0, 0), 0.1) and B = {(x, y, z) ∈ S2

| z = 0}\BS2 ((−1, 0, 0), 0.1) be nonclopen subsets
of S2 such that A ∩ B = ∅, where BS2 ((1, 0, 0), 0.1) and BS2 ((−1, 0, 0), 0.1) are open balls centred at (1, 0, 0) and
(−1, 0, 0) respectively, with radius 0.1. Here radS2 (A) = radS2 (B) ≈ 1.97, CentS2 (A) = {(−1, 0, 0)},CentS2 (B) =
{(1, 0, 0)} and Ã = {(−1, 0, 0)}, B̃ = {(1, 0, 0)}. This implies CentS2 (A)\Ã and CentS2 (B)\B̃ are empty. By Theorem
5.3(ii), SradS2 (A ∪ B) < 1.97.

Next, we generalise above results for a finite union
n⋃

i=1
Ai of nonclopen subsets Ai, 1 ≤ i ≤ n, of a metric

space X.

Theorem 5.9. Let (X, dX) be a metric space. For nonclopen subsets Ai ⊆ X, 1 ≤ i ≤ n, such that Ai & A j are
separated, for all i , j and n ∈ N, let Ã j = {a ∈ CentX(A j) | dX(a, ∂X(Ai)) < radX(A j), for some i , j}, 1 ≤ j ≤ n.
Let M be the collection of all those A j such that radX(A j) = max{radX(Ai) | 1 ≤ i ≤ n} and CentX(A j)\Ã j , ∅. Then,

SradX(
n⋃
1

Ai) ≤ max{radX(Ai) | 1 ≤ i ≤ n}.

Moreover, if
⋃

A j∈M
(CentX(A j)\Ã j) , ∅, then CentX(

n⋃
1

Ai) =
⋃

A j∈M
(CentX(A j)\Ã j) & radX(

n⋃
1

Ai) = max{radX(Ai) | 1 ≤

i ≤ n}.
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Proof. We prove it by induction. If n = 2, it is true by Theorems 5.1 & 5.2.

Assume that it is true for some k ∈ N. Let B =
k⋃
1

Ai and K be the collection of all those A j such that

radX(A j) = max{radX(Ai) | 1 ≤ i ≤ k} and CentX(A j)\Ã j , ∅. By induction hypothesis, we have SradX(B) ≤
max{radX(Ai) | 1 ≤ i ≤ k}, and if

⋃
A j∈K

(CentX(A j)\Ã j) , ∅, then CentX(B) =
⋃

A j∈K
(CentX(A j)\Ã j) and radX(B) =

max{radX(Ai) | 1 ≤ i ≤ k}.
Now, we prove it for k+ 1. Let K′ be the collection of all those A j such that radX(A j) = max{radX(Ai) | 1 ≤

i ≤ k + 1} and CentX(A j)\Ã j , ∅.

If radX(B) < radX(Ak+1), then by Theorems 5.1 & 5.2, we have SradX(
k+1⋃

1
Ai) = SradX(B ∪ Ak+1) ≤

radX(Ak+1) ≤ max{radX(Ai) | 1 ≤ i ≤ k+1}. And if CentX(Ak+1)\Ãk+1 , ∅, then CentX(
k+1⋃

1
Ai) = CentX(B∪Ak+1) =

CentX(Ak+1)\Ãk+1, and radX((
k+1⋃

1
Ai)) = radX(Ak+1) = max{radX(Ai) | 1 ≤ i ≤ k + 1}.

If radX(Ak+1) < radX(B), then again by Theorems 5.1 & 5.2, we have SradX(
k+1⋃

1
Ai) = SradX(B ∪ Ak+1) ≤

radX(B) ≤ max{radX(Ai) | 1 ≤ i ≤ k + 1}. And if CentX(B)\B̃ , ∅, then CentX(
k+1⋃

1
Ai) = CentX(B)\B̃ and

radX(
k+1⋃

1
Ai) = radX(B) = max{radX(Ai) | 1 ≤ i ≤ k + 1}.

Next, we observe that in this case CentX(B)\B̃ =
⋃

A j∈K′
(CentX(A j)\Ã j).

We have B̃ = {b ∈ CentX(B) | dX(b, ∂X(Ak+1)) < radX(B)}. Let b ∈ CentX(B)\B̃. Then b ∈ CentX(B) =⋃
A j∈K

(CentX(A j)\Ã j) and b < B̃ =⇒ b ∈ CentX(A j)\Ã j for some A j ∈ K and dX(b, ∂X(AK+1)) ≥ radX(B) =

radX(A j). This gives that CentX(A j)\Ã j , ∅, and radX(A j) = max{radX(Ai | 1 ≤ i ≤ k + 1)} =⇒ A j ∈ K′ =⇒
b ∈

⋃
A j∈K′

(CentX(A j)\Ã j).

Conversely, let b ∈
⋃

A j∈K′
(CentX(A j)\Ã j) =⇒ b ∈ CentX(A j)\Ã j for some A j ∈ K′ =⇒ b < Ã j =⇒ A j ∈

K and dX(b, ∂X(Ak+1)) ≥ radX(A j) = radX(B) =⇒ b ∈ CentX(B) and b < B̃ =⇒ b ∈ CentX(B)\B̃R.

If radX(Ak+1) = radX(B), then by Theorems 5.1 & 5.2, we have SradX(
k+1⋃

1
Ai) = SradX(B∪Ak+1) ≤ radX(B) ≤

max{radX(Ai) | 1 ≤ i ≤ k + 1}. And if (CentX(B)\B̃) ∪ (CentX(Ak+1)\Ãk+1) , ∅, then CentX(
k+1⋃

1
Ai) = CentX(B ∪

Ak+1) = (CentX(B)\B̃) ∪ (CentX(Ak+1)\Ãk+1) and radX(
k+1⋃

1
Ai) = radX(Ak+1) = radX(B) = max{radX(Ai) | 1 ≤ i ≤

k + 1}. In this case, it is easy to observe that (CentX(B)\B̃) ∪ (CentX(Ak+1)\Ãk+1) =
⋃

A j∈K′
(CentX(A j)\Ã j).

Thus, it is true for i = k + 1. Hence, our claim.

6. Largest open balls contained in a subset of metric space

For any subset A of a metric space X, there is a natural question to identify the largest open balls (largest
open ball means an open ball of X with the largest radius) that are entirely contained in A. To answer this
question, we introduce a notion of quasi-center and quasi-radius of a subset A of metric space X:

Definition 6.1. [Quasi-center of a subset] The quasi-center of A is the set {a ∈ A | dX(a,Ac) ≥ dX(b,Ac),∀b ∈ A},
where Ac denotes the complement of A in X. We denote the quasi-center of A in X by QCentX(A).
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Thus the quasi-center of A is the set of all those elements of A which are at the maximum distance from
Ac.

Definition 6.2. [Quasi-radius of a subset] The quasi-radius of a subset A of metric space X is the distance
between its quasi-center and its complement in X.We denote the quasi-radius of A in X by QradX(A).

Notice that QradX(A) = dX(QCentX(A),Ac) = dX(a,Ac),∀a ∈ QCentX(A).

Example 6.3. Let X ⊆ R2 denote the union of A and B, where A is a semi unit circle {(x, y) ∈ R2
| x2 + y2 = 1

and x ≥ 0} and B is the union of three line segments joining (i) (0, 1) to (1.5, 1), (ii) (1.5, 1) to (1.5,−1) and
(iii) (0,−1) to (1.5,−1). Consider X = A ∪ B as a metric subspace of the Euclidean metric space R2. Here
CentX(B) = {(1.5, 0)} & radX(B) ≈ 1.8, and QCentX(B) = {(1.5, 1), (1.5,−1)} & QradX(B) ≈ 0.8.

As the complement of a metric space X is empty in itself, we get QCentX(X) = X & QradX(X) = ∞. Also,
we have QCentX(∅) = ∅ & QradX(∅) = ∞.

As the quasi-center of A consists of all those points of A which are at the maximum distance from
its complement, QradX(A) is the maximum distance of any point a ∈ A from its complement. It is clear
that if QCentX(A) , ∅ then QradX(A) = supa∈A dX(a,Ac). And, if QCentX(A) = ∅, then QradX(A) = ∞, but
supa∈A dX(a,Ac) could be finite.

It leads us to introduce the notion of the semi-quasi-radius of a subset A of a metric space X.

Definition 6.4. [Semi-quasi-radius] The semi-quasi-radius of a subset A of metric space X is the supremum
of the set that consists of distance of any point a ∈ A from Ac. We denote the semi-quasi-radius of A in X by
SQradX(A).

That is, SQradX(A) = supa∈A dX(a,Ac).

Note that, QradX(A) ≥ SQradX(A). In Example 3.7 and 3.8, it is easy to see that QradX(A) > SQradX(A).

Lemma 6.5. Let A be a subset of metric space X. Then, SQradX(A) ≤ radX(A).

Proof. As ∂X(A) ⊆ Ac =⇒ dX(a, ∂X(A)) ≥ dX(a,Ac) = dX(a,Ac),∀a ∈ A =⇒ radX(A) ≥ supa′∈A dX(a′, ∂X(A)) ≥
dX(a, ∂X(A)) ≥ dX(a,Ac),∀a ∈ A. Thus, SQradX(A) ≤ radX(A).

If QCentX(A) , ∅, then by the above lemma QradX(A) ≤ radX(A). If QCentX(A) = ∅, then it may not
be true. For example: Consider, X = (R × {0}) ∪ B with subspace metric from Euclidean space R2, where
B =
⋃

n∈N[10n, 10n+ 5]× {2− 1
n }. And, let A =

⋃
n∈N[10n, 10n+ 5]× {0}.Here, QCentX(A) = ∅, SQradX(A) = 2

but QradX(A) = ∞ ≰ radX(A) = 2.5.

Remark 6.6. A metric space (X, dX) is a path metric space if the distance between each pair of points
equals the infimum of the lengths of the curves joining the points, see [1]. Recall that the Euclidean
spaces and connected Riemannian manifolds are path metric spaces. If X is a path metric space, then for
a proper subset A of X, we have dX(a, ∂X(A)) = dX(a,Ac),∀a ∈ A. This gives that for path metric space X,
CentX(A) = QCentX(A), and radX(A) = QradX(A).

Notice that, in Example 3.3 and 3.4, quasi-center and quasi-radius of subsets are the same as their center
and radius, respectively. By Example 6.3, we see that the above remark is not true if X is not a path metric
space.

It is easy to observe the following results:

Lemma 6.7. Let A be a nonempty subset of a metric space X such that A ⊆ ∂X(A). Then, QCentX(A) = A and
QradX(A) = 0.

Lemma 6.8. Let A be a subset of metric space X with nonempty interior. Then QCentX(A) ⊆ A◦.

Theorem 6.9. Let A be a nonempty subset of metric space X. Then A◦ = ∅ if and only if QradX(A) = 0.
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In the next theorem, using the above notions of quasi-center and quasi-radius, we determine the largest
open balls contained in a subset A of metric space X. If A is a proper subset of metric space (X, dX) such
that QCentX(A) is empty, then there does not exist any open ball with largest radius that is contained in
A. As QCentX(A) = ∅ =⇒ QradX(A) = ∞. Let open ball B(a, r) be the largest open ball entirely contained
in A for some a ∈ A and r > 0. This means B(a, r) ∩ Ac = ∅ =⇒ dX(a,Ac) ≥ r. Now, as QradX(A) = ∞ ,
for some s > r,∃ b ∈ A such that dX(b,Ac) ≥ s =⇒ B(b, s) contained in A, a contradiction. For example,
A = [0,∞) ⊆ R has no largest open ball contained in A.

For the nonempty quasi-center of a subset A of metric space X, we have the following result.

Theorem 6.10. Let A be a nonempty proper subset of metric space X. Then the largest open balls of X which are
entirely contained in A are the balls whose centers belong to QCentX(A) and radius is equal to QradX(A).

Proof. Any point a ∈ A is either an interior point of A or a boundary of A. If a ∈ ∂X(A) then for every ϵ > 0,
the open ball B(a, ϵ) intersects Ac. So, any ball centered at boundary point of A with positive radius can not
be entirely contained in A. Thus if A◦ = ∅ then QCentX(A) = A and the largest open balls contained in A are
balls with zero radii.

If A◦ , ∅ then by Lemma 6.8, QCentX(A) ⊆ A◦. First, let a ∈ A◦ such that a < QCentX(A). As dX(a,Ac) <
QradX(A), and A is proper subset of X, then ∃ b ∈ Ac such that dX(a, b) < QradX(A). Thus B(a,QradX(A))∩Ac ,
∅. Therefore, any open ball centred at a with radius ≥ QradX(A) can not be entirely contained in A. Now,
let a ∈ QCentX(A). Then dX(a,Ac) = QradX(A). So, B(a,QradX(A)) ⊆ A. Next, we observe that for ϵ > 0, open
balls B(a,QradX(A)+ϵ) has nonempty intersection with Ac.As infb∈Ac dX(a, b) = QradX(A),we get that ∀ϵ > 0,
∃ b′ ∈ Ac such that dX(a, b′) < QradX(A)+ϵ. So, B(a,QradX(A)+ϵ)∩Ac , ∅, and therefore any ball with radius
greater than QradX(A) can not be entirely contained in A. Hence, our claim.

Corollary 6.11. Let A and B be proper subsets of a metric space X such that QCentX(A) , ∅ and A ⊆ B. Then
QradX(A) ≤ QradX(B).

Proof. If A◦ = ∅ then the result follows from Theorem 6.9. If A◦ , ∅ then by Theorem 6.10, B(a,QradX(A) is
the largest open ball contained in A, where a ∈ QCentX(A). As B(a,QradX(A)) ⊆ A ⊆ B and B(b,QradX(B)) is
the largest ball contained in B, where b ∈ QCentX(B). Hence, our claim.

But if A ⊆ B are proper subsets of metric space X then it does not imply that QCentX(A) ⊆ QCentX(B).
For example: Take subsets A = [0, 1] and B = [0, 2] of R with the usual metric. Then QCentR(A) = { 12 } and
QentR(B) = {1}.

Remark 6.12. Note that if A ⊆ B are proper subsets of a path metric space X such that CentX(A) , ∅, then
by Corollary 6.11, radX(A) ≤ radX(B).

Remark 6.13. We can notice that the radius of a subset may not be equal to half of its diameter. In
fact, it is easy to observe that if A is a nonclopen subset of metric space X such that CentX(A) , ∅, then
radX(A) ≤ diamX(A). By Theorem 6.10, we also observe that for a proper subset A of the Euclidean space
Rn, having nonempty center, radRn (A) ≤ 1

2 diamRn (A).

For subsets A and B of a metric space X, we observe that diamX(A) ≤ diamX(B) does not imply radX(A) ≤
radX(B) or QradX(A) ≤ QradX(B).

Example 6.14. Consider A1 and A2 ⊆ R2, where A1 is the line segment joining (−2, 0) and (2, 0) in R2 and
A2 is the closed ball centered at (4, 0) with radius 1. Notice that diamR2 (A1) = 4 > 2 = diamR2 (A2) but
QradR2 (A1) = radR2 (A1) = 0 < 1 = radR2 (A2) = QradR2 (A2).

Next, we introduce a notion of concentric subsets.

Definition 6.15. [Concentric Subsets] Two subsets A and B of a metric space X are called concentric subsets
if they have the same nonempty centers in X
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Example 6.16. Take A = [−2, 2] and B = [−1, 1] in the set R of real numbers with the usual metric. Here,
CentR(A) = CentR(B) = {0}. So, A and B are concentric inR. Infact, all intervals of the form [−n,n] or (−m,m)
are concentric in R,where m,n are positive real numbers.

Example 6.17. LetR2 be the real plane with the Euclidean metric. Then the unit circle S1 and the punctured
disc A = {(x, y) ∈ R2

| x2 + y2
≤ 4}\{(0, 0)} are concentric as CentR2 (S1) = CentR2 (A) = S1.

Remark 6.18. Concentric subsets may not be contained in each other. For example: Let A = D2
∪ {(2, 0)}

and B = D2
∪ {(0, 2)} be two subsets of the Euclidean plane R2, where D2 is the unit disc in R2. Note that

CentR2 (A) = CentR2 (B) = {(0, 0)}, but neither A ⊆ B nor B ⊆ A. Also, notice that if A and B are concentric
subsets with the same radius then A may not be equal to B.

It is easy to see that the relation of being concentric subsets is an equivalence relation on the class of
subsets of X with nonempty centers.

Theorem 6.19. Let A be a subset of a path metric space X such that A has nonempty interior and CentX(A) , ∅.
Then A and A◦ are concentric with same radii.

Proof. By Theorem 3.17 and Remark 6.12, we get radX(A) = radX(A◦). Let x ∈ CentX(A). Then by Lemma
3.14, x ∈ A◦. We have radX(A) = radX(A◦) ≥ dX(x, ∂X(A◦)) ≥ dX(x, ∂X(A)) = radX(A). Thus dX(x, ∂X(A◦)) =
radX(A◦). So, x ∈ CentX(A◦). Therefore, CentX(A) ⊆ CentX(A◦). Now, let x < CentX(A) = QCentX(A). So,
dX(x,Ac) < radX(A) = QradX(A). So, B(x, radX(A)) ∩ Ac , ∅ =⇒ B(x, radX(A◦)) ∩ Ac , ∅. This implies
that B(x, radX(A◦)) ∩ (A◦)c , ∅. Thus x < QCentX(A◦) = CentX(A◦). Therefore, CentX(A◦) ⊆ CentX(A). Hence,
CentX(A◦) = CentX(A).

Remark 6.20. Theorem 6.19 may not be true if A◦ = ∅. For example: Consider the set R of real numbers
with the usual metric. If A = { 1

n | n ∈ N} ⊆ R, then A◦ = ∅. We have CentX(A◦) = ∅ & CentX(A) = A and
radX(A◦) = ∞ & radX(A) = 0. Notice that radX(A◦) , radX(A), and CentX(A) , CentX(A◦).

If X is a path metric space in Theorem 5.9, then we have the following result.

Corollary 6.21. Let (X, dX) be a path metric space. For nonempty proper subsets Ai ⊆ X, 1 ≤ i ≤ n, such
that Ai and A j are separated, for all i , j and n ∈ N, and let M be the collection of all those A j such that

radX(A j) = max{radX(Ai) | 1 ≤ i ≤ n} and CentX(A j) , ∅. Then, if M , ∅, then CentX(
n⋃
1

Ai) =
⋃

A j∈M
CentX(A j) &

radX(
n⋃
1

Ai) = max{radX(Ai) | 1 ≤ i ≤ n}.

Proof. We observe that Ã j = ∅, ∀ j, where Ã j is the same as defined in Theorem 5.9. As Ai and A j are
separarted for all i , j, ∂X(Ai) ⊆ (A j)c. So, we get dX(a, (A j)c) ≤ dX(a, ∂X(Ai)),∀ a ∈ A j. As X is path metric
space, by Remark 6.6, we get radX(A j) = QradX(A j) ≤ dX(a, ∂X(Ai)),∀ a ∈ CentX(A j). This implies that
Ã j = ∅,∀ j. Now, the result follows from Theorem 5.9.

Remark 6.22. If X is a Euclidean space then the center of a disconnected proper subset of X is equal to the
union of centers of its connected components with the maximum radius and its radius is equal to the radius
of component with the maximum radius.

Example 6.23. Let A = [0, 1],B = [2, 6] and C = [8, 12] be subsets of R with the usual metric. Here
radR(B) = radR(C) = 2 > 0.5 = radR(A). So, by corollary 6.21, CentR(A∪B∪C) = CentR(B)∪CentR(C) = {4, 10}
and radR(A ∪ B ∪ C) = radR(B) = 2.
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