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Center and radius of a subset of a metric space

Akhilesh Badra?, Hemant Kumar Singh®*

?Department of Mathematics, University of Delhi, Delhi 110 007, India

Abstract. In this paper, we introduce a notion of the center and radius of a subset A of metric space X. In
the Euclidean spaces, this notion can be seen as the extension of the center and radius of open/closed balls.
The center and radius of a finite product of subsets of metric spaces, and a finite union of subsets of a metric
space are also determined.

For any subset A of metric space X, there is a natural question to identify the open balls of X with
the largest radius that are entirely contained in A. To answer this question, we introduce a notion of
quasi-center and quasi-radius of a subset A of metric space X. We prove that the center of the largest open
balls contained in A belongs to the quasi-center of A, and its radius is equal to the quasi-radius of A. In
particular, for the Euclidean spaces, we see that centers of the largest open balls contained in A belong to
the center of A, and their radius is equal to the radius of A.

1. Introduction

To extend classical geometric ideas beyond the Euclidean spaces, Maurice Fréchet introduced a notion
of distance to more abstract setting in 1906. In his doctoral dissertation (Ref. [2]), he defined the distance
between any two points within a given set. A set along with this distance notion is called metric space, and
this name was given by Hausdorff in 1914. In a metric space, the concept of distance is axiomatized, and
allowing us to study convergence, continuity, compactness etc. which are essential in many areas of pure
and applied mathematics.

Understanding the geometric properties of subsets within metric spaces is a fundamental aspect of
mathematical analysis and topology. The notion of open/closed balls provides essential tools for analyzing
properties of metric spaces. Every ball is defined by its center and radius. The center of ball is in the middle
of ball, from which the radius is measured. The purpose of the center of a ball is to act as the fixed reference
from which all other points on the boundary of the ball are equidistant. It is natural to question whether
this concept can be extended to any arbitrary subset of a metric space. Are there any points within a subset
of a metric space that are equidistant from its boundary? However, extending this notion of center and
radius to a subset of metric spaces has significant challenges and opens new avenues for exploration.
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This paper addresses these questions by introducing a novel framework for defining the center and
radius of subsets within arbitrary metric spaces, in a way that parallels to the idea of center and radius of
balls in the Euclidean spaces. This definition not only preserves the intuitive geometric interpretation but
also extends it to abstract settings. We further explore the properties of the center and radius in the context
of finite products of subsets of metric spaces and a finite union of subsets within a metric space.

A central question addressed in this paper is the identification of the largest open balls that are entirely
contained within a given subset A of metric space X. To tackle this, we introduce a notion of quasi-center
and quasi-radius. These concepts serve as pivotal tools in characterizing the maximal open balls contained
in A, and we demonstrate that the center of these balls is located within the quasi-center of A, with their
radius equating to the quasi-radius of A. Notably, when applied to the Euclidean spaces, our results show
that the center and radius of the largest open balls contained in A correspond directly to the center and
radius of A itself.

This paper is structured as follows: Section 2 consists of notations, terminology and basics of metric
spaces that are used in this paper. Section 3 provides a detailed definition of the center and radius of a
subset within a metric space, along with key properties and examples. Section 4 and Section 5 extend these
concepts to finite products and finite unions of subsets of metric space, respectively. Finally, in Section 6, we
introduce the notions of quasi-center and quasi-radius, leading to a key result that connects these concepts
to largest open balls contained within a subset.

2. Notations, terminology and basics

Let (X, dx) be a metric space. The distance between two subsets A and B of X is dx(A, B) = inf{dx(a, b) |a €
A, b € B}. In many results of this paper, a subset is required to be nonclopen, which means that the subset

is not both open and closed. The interior, closure and boundary of A are denoted by A°, A and dx(A),
respectively. For details about metric spaces, we refer to [3].
Now, we recall some basic results and properties of metric spaces.

o Let f : X — Y be an isometry between two metric spaces X and Y. For a subset A of X, f(dx(4)) =
I (f(A)).

For a subset A of metric space X, dx(A°) C dx(A) and dx(A) C Ix(A).

If A C B C X thendx(a, B) < dx(a,A),Va € X.

Let A and B be subsets of metric spaces X and Y, respectively. Then dxxy(AXB) = (Axdy(B)U(dx(A)xB).
Similarly, for subsets A; of metric spaces X;, we have aﬁx (ITA) = U(Zl X Ay X ... X Ix,(Aj) X ... X Zk).
i1 1

e For separated subsets A and B of a metric space X, we have dx(A U B) = dx(A) U dx(B).

Let (X, dx) be a path metric space (Ref. [1]). For a proper subset A of X, dx(a, dx(A)) = dx(a, A°),VYa € A.

3. The definition of center and radius

Let (X, dx) be a metric space and A be a subset of X. We introduce the notion of center and radius of A
in X:

Definition 3.1. [Center of a subset] The center of subset A of a metric space X is the set {a € A |dx(a, dx(A)) =
dx(b, dx(A)),V b € A}, where dx(A) is the boundary of A in X. We denote the center of A in X by Centx(A).

Thus the center of A is the set of all those elements of A which are at the maximum distance from the
boundary of A.
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Definition 3.2. [Radius of a subset] The radius of subset A of a metric space X is the distance between the
center of A and the boundary of A. We denote the radius of A in X by radx(A).

It is clear that for every point in Centx(A) has the same distance from dx(A). Thus radx(A) =
dx(Centx(A), dx(A)) = dx(a, dx(A)), Va € Centx(A).

Example 3.3. Let R be the set of real numbers with usual metric. For subsets A = [0,1],B = [0,1] U [2,3]
and C = [0,1] U [5,10], we get Centr(A)= {0.5} & radr(A) = 0.5, Centr(B)= {0.5,2.5} & radr(B) = 0.5 and
Centr(C)= {7.5} & radgr(C) = 2.5

Example 3.4. Let IR? be the real plane with the Euclidean metric. For the unit disc D? C R?, Centg.(ID?) =
{(0,0)} & radg:(ID?) = 1, and for a punctured unit disc A = ID*\{(0,0)} € R?, Centg:(A) = {(x,y) € A| x>+ y* =
(3)?} & radge(A) = 3

Example 3.5. The 1 + 1 vertices of the standard n-simplex A" are the pointse;, 1 <i < n+1, in the Euclidean
space R™! whose i-th coordinate is 1 and all other coordinates are 0. The simplex A" lies in the affine
hyperplane H" C R"*! spanned by its vertices ¢;. The center of Centy:(A") is the barycenter —-(1,1, ..., 1) of
A",

As the center of A consists of all those points of A which are at the maximum distance from its boundary,
radx(A) is the maximum distance of any point a € A from its boundary. It is clear that if Centx(A) # 0 then
radx(A) = sup,., dx(a,9dx(A)). And, if Centx(A) = 0 then radx(A) = oo but sup,_, dx(a, dx(A)) could be finite.

It leads us to introduce the concept of the Semi-radius of a subset A in the metric space X.

Definition 3.6. [Semi-radius of a subset] The semi-radius of subset A of a metric space X is the supremum
of the set that consists of distance of any point 2 € A from the boundary of A. We denote the Semi-radius
of A in X by Sradx(A).

That is, Sradx(A) = sup,_, dx(a, dx(A)).

Note that radx(A) > Sradx(A). We can notice it from the following examples.

Example 3.7. Let X ]R\{ } be the metric subspace of the Euclidean line R. Let A = [0,2]\{1} be a subset of
X. Then dx(A) = . If Centx(A) # 0, then A a € A such that dx(a, dx(A)) > dx(x, dx(A)),Vx € A, which is
not true. So, Cent]R(A) 0 and radr(A) = oo, whereas Sradx(A) = 1 < radx(A).

Example 3.8. Let R be the set of real numbers with the usual metric. For A = |J [n+ %, n+1] C R, we have
nelN
Centgr(A) = 0 and radr(A) = oo but Sradr(A) = 5

Example 3.9. Let X = (—00,0) U (Q N [0, 7t]) U [, 00) be a metric subspace of the Euclidean line IR. For
=(@Qn[0,7]) € X, we have dx(A) = {0, rt}, Centx(A) = 0 and radx(A) = oo but Sradx(A) = 5 < radx(A).
Example 3.10. Let I, = [0,1],n € IN be intervals. Take a dls]01nt union X = Uyenl, and define dx(a;, bj) =
(1 - 6]) +(2- 6])|a —bl, where a; € I;,b; € I}, ¥i,j € N and (5] denote the kronecker delta. Then (X, dx) is a
metric space. For A = L7 [n, n] C X, we have dx(A) = un:S{n’ ;}, Centx(A) = 0, radx(A) = o but

Sradx(A) = § < radx(A).
Notice that if the boundary of a subset A of a metric space X is empty then every point of A is at infinite

distance from dx(A). As the boundary of any metric space X is empty in itself, we have Centx(X) = X &
radx(X) = co. Similarly, for the empty set 0, Centx(0) = 0 & radx(0) = oo

Lemma 3.11. For any clopen subset A of a metric space X, Centx(A) = A and radx(A) = oo

But if a subset A of a metric space X has infinite radius then it does not mean that A is clopen in X.
Consider a subset A = [0, o) of the set R of real numbers with the usual metric. Then, dr(A) = {0}. Here,
Centr(A) = 0 and radr(A) = Sradr(A) = oo

The following result is for nonclopen subsets of a metric space.
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Theorem 3.12. Let A be a nonclopen subset of a metric space X. Then Centx(A) is nonempty if and only if radx(A)
is finite.
Proof. As A C X is nonclopen, dx(A) # 0. If Centx(A) is nonempty then radx(A) = dx(Centx(A), Ix(A)) =
infyeq, (a) dx(a, b) < dx(a,b), Va € Centx(A), Vb € dx(A), which is finite.

Conversely, if radx(A) is finite then by the definition of radius, the center of A is nonempty. [

Next, we discuss examples of subsets of a metric space with zero radius. Consider IN C IR, the set
of real numbers with the usual metric. Then Centr(IN) = IN and radr(IN) = 0. In fact, for any totally
disconnected subset A of R, we get Centr(A) = A and radr(A) = 0. For the unit circle $! in the Euclidean
plane R?, Centp:($') = S! & radg:($') = 0. We know that topological manifolds are metrizable spaces. Let
N be an n-dimensional submanifold of a topological manifold M of dimension m where n < m. Note that
N € dm(N), and hence Centp(N) = N and radp(N) = 0. Also notice that in Example 3.5, Centrai(A") = A"
and radg.+1 (A") = 0.

In general, for any subset A of a metric space X contained in its boundary, it means for A having empty
interior, we have

Lemma 3.13. Let A be a nonempty subset of a metric space X such that A has empty interior. Then, Centx(A) = A
and radx(A) = 0.

The following result is for subsets of metric spaces having nonempty interior.
Lemma 3.14. Let X be a metric space and A C X such that A has nonempty interior. Then, Centx(A) C A°.

Proof. If A is clopen then it is true by Lemma 3.11. And, if A is nonclopen then for any a € A, either
a € dx(A)ora e A°. If a € dx(A) then dx(a,dx(A)) = 0. If a € A° then 3 € > 0 such that By, (a,€) C A°. As
Ba,(a,€) N dx(A) = 0, we have dx(a,dx(A)) > € > 0,¥Ya € A°. So, by definition of center of A in X, we get
Centx(A) C A°. O

Theorem 3.15. Let X be a metric space and A be a nonempty subset of X. Then, A° = 0 if and only if radx(A) = 0.

Proof. If A° = 0 then by Lemma 3.13, radx(A) = 0. Conversely, assume that radx(A) = 0 then by Lemma
3.11, A is nonclopen and by Theorem 3.12, Centx(A) is nonempty. So, for x € Centx(A), we get dx(x, dx(A)) =
0 = x € dx(A) = Ix(A), and hence we get Centx(A) C dx(A). If A° # 0 then by Lemma 3.14 Centx(A) C A°.
As dx(A) N A° = 0, we get Centx(A) = 0, a contradiction. Thus, A° =0. O

Theorem 3.16. The center of a subset A of a metric space X is closed in A.

Proof. Let b € A be a limit point of Centx(A) in A. Then, 3 a sequence (a,,) in Centx(A) such that (a,) — b.
Consider a map p : A — R such that p(x) = dx(x,dx(A4)),Yx € A. Tt is easy to observe that p is a
continuous map. By the continuity of p, we have p(a,) — p(b). As a, € Centx(A), which means p(a,) =
dx(ay, dx(A)) = radx(A),Vn € N. So, p(a,) is a constant sequence, and hence it converges to radx(A). Thus,
p(b) = dx(b, dx(A)) = radx(A). This implies that b € Centx(A). Hence, Centx(A) is a closed subset of A. [

It is not necessary that Centx(A) is a closed subset of X. For example: Consider a subset A = (0, 1) x {0}
of the Euclidean plane IR?. Then Centg:(A) = A which is not closed in R?.

Now for any subset A of a metric space X, we establish a relationship between the radii of A and A°
with the radius of A.

Theorem 3.17. Let X be a metric space and A C X such that Centx(A) # 0. Then radx(A) < radx(A°) and
radx(A) < radx(A).

Proof. If Centx(A°) is empty then radx(A°) = co, which implies radx(A) < radx(A°). If Centx(A°) # 0 then for
b € Centx(A°), we have dx(b, dx(A°)) > dx(V’,dx(A°)), VU’ € A°. As dx(A°) C dx(A), we get dx(V’, Ix(A°)) >
dx (', dx(A)), YU’ € A° C A. Hence, dx(b,dx(A°)) = dx(V’',dx(A)),¥b’' € A°. This implies that radx(A°) >
supy 4o dx (', dx(A)) and forany b’ € dx(A), we have dx(b’, dx(A)) = 0. So, radx(A°) > sup,, ., dx(b’, Ix(A)) =
radx(A). Thus, radx(A) < radx(A°).

Similarly, as dx(A) C dx(A), we get radx(A) < radx(A). O
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Example 3.18. Consider the set R of real numbers with the usual metric.

Let A = {% |n € N} C R Then A = {0} U {% | n € N} and A° = 0. We get Centr(A°) = 0 & Centr(A) = A,
Centr(A) = A and radr(A°) = oo & radgr(A) = radr(A) = 0. 3

Let B=(QN[0,00)) CR. Then B° = 0 and B = [0, 0). We get Centr(B°®) = 0 & Centr(B) = B, Centr(B) = 0
and radg(B) = 0 & radr(B°) = radr(B) = co.

Let C = [0,1) C R then radg(C) = radr(C°) = radr(C) = 1.

In the Euclidean plane R?,let Y = Rx {0} and A = (0, 1) x {0}. Here A C Y C IR? and Centx(A) # 0. Notice
that radr:(A) = 0 < rady(A) = % In general, we have the following result.

Theorem 3.19. Let X be a metric space and Y be a subspace of X. If A C Y C X such that Centx(A) is nonempty,
then radx(A) < rady(A).

Proof. We know that dy(A) € dx(A) € X. So, dx(a,dx(A)) < dx(a,dy(A),Ya € A = dx(a,dx(A)) <
dy(a,dy(A)),¥Ya € A. And, if Centx(A) # 0, we have radx(A) = sup,, dx(a, dx(A)) < sup,., dy(a,dy(A)) <
rady(A). O

Remark 3.20. In the above result, Centx(A) # 0 is necessary. In Example 3.9, let Y = (Q N [0, 7t]) U [7, 00).
Then A C Y C X. Here dy(A) = {mr}, Centy(A) = {0} and Centx(A) = 0. But rady(A) = 1w whereas radx(A) = co.

Let f : X — Y be an isometry between two metric spaces X and Y (Ref. [3]). We know that isometry
preserves the boundary of a subset. Here, we observe that isometry also preserves the center and radius of
a subset.

First, we prove the following lemma.

Lemma 3.21. Let f : X — Y be an isometry between two metric spaces X and Y. For a subset A of X, Centx(A) # 0
if and only if Centy(f(A)) # 0.

Proof. As f is an isometry, f(dx(A)) = dv(f(A)). For a € A, we have dx(a,dx(A)) = dy(f(a), f(Ix(A))) =
dy(f(a), dy(f(A))). Notice that Centx(A) # 0 <= a € A such that dx(a, dx(A)) = dx(b,dx(A)),Vbe A
dy(f(a), dy(f(A))) = dy(f(b),dy(f(A), Vb e A. < f(a) € Centy(f(A)) & Centy(f(A) #0. O

Theorem 3.22. Let f : X — Y be an isometry between two metric spaces X and Y. For a subset A of X,
radx(A) = rady(f(A)) and f(Centx(A)) = Centy(f(A)).

Proof. First, let Centx(A) = 0. Then it is true by Lemma 3.21. Next, let Centx(A) # 0. Then rady(f(A)) >
dy(f(a), dy(f(A)) = dy(f(a), f(@x(A))) = dx(a,dx(A)), Va € A. This implies that rady(f(A)) > radx(A). By
Lemma 3.21, Centy(f(A)) # 0. Similarly, we get radx(A) > rady(f(A)). Hence, radx(A) = rady(f(A)).
Asrady(f(A)) = radx(A) = dx(Centx(A), dx(A)) = dy(f(Centx(A)), dy(f(A))), we getevery point of f(Centx(A))
is at the maximum distance from dy(f(A))). So, f(Centx(A)) C Centy(f(A)). Similarly, we get Centy(f(A)) €
f(Centx(A)). Hence, f(Centx(A)) = Centy(f(A)). O

Remark 3.23. Let X and Y be two metric spaces such that A € X and B C Y. If Centx(A) is connected and
Centy(B) is disconnected then by Theorem 3.22, there does not exist any isometry between X and Y such
that f(A) = B.

4. Center and radius of a finite product of subsets of metric spaces

Let (Xx Y, d) be the product of metric spaces (X, dx). and (Y, dy), where d((x1, y1), (x2, y2)) = max{dx(x1, x2),

dy(y1, y2)}, VY (x1, 1), (x2, y2) € X X Y. Now, we see how Centxyy(A X B) is related to Centx(A) and Centy(B).

Let A € X and B C Y be subsets. If radx(A) and rady(B) are infinite then there are three possible
cases: (i) both A and B are clopen, (ii) one of A and B is clopen and the other has empty center, and (iii)
Centx(A) = Centy(B) = 0.

Theorem 4.1. Let (X, dx) and (Y, dy) be two metric spaces. Let A C X and B C 'Y be subsets.
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(1) If both A and B are clopen, then Centxyxy(A X B) = A X B and radxyxy(A X B) = oo,
(2) If Ais clopen and Centy(B) = 0, then Centxxy(A X B) = 0 and radxxy(A X B) = oo, and
(3) Centx(A) = Centy(B) = 0, then Centxxy(A X B) = 0 and radxxy(A X B) = .

Proof. (1)If A and B are clopen then A X B is clopen, and hence Centxyy(AXB) = AX B and radxxy(AXB) = co.

(2) As A is clopen, dx(A) = 0. Recall that dxxy(A X B) = (A X dy(B)) U (Ox(A) x B). In this case,
dxxy(A X B) = A X dy(B). First, we observe that d((4, b), A X dy(B)) = dy(b, dy(B)),Y(a,b) € A X B.

We have d((a, b), A X dy(B)) < d((a,b), (a,y)) = max{dx(a,a),dy(b,y)} = dy(b,y),Yy € dy(B) = d((a,b),A X
dy(B)) < dy(b, dy(B)). And, for x € A and y € dy(B), we have dy(b, dy(B)) < dy(b, y) < max{dx(a, x),dy(b, y)} =
d((a,b), (x,y)) = dy(b,dv(B)) <d((a,b), A x dy(B)). Hence, d((a,b), A X dy(B)) = dy(b,dy(B)),¥(a,b) € A X B.

Suppose that Centxxy(A x B) # 0. For (a,b) € Centxyxy(A X B), we get dy(b,dy(B)) = d((a,b), A X dy(B)) >
d((a,b’),A x dy(B)) = dy(V’,dy(B)),Yb' € B = b € Centy(B), a contradiction. So, Centxxy(A X B) = 0, and
hence radxxy(A X B) = co.

(3) Similarly, as in case (ii), we get d((a, b), Ax dy(B)) = dy(b, dy(B)), and d((a, b), dx(A) x B) = dx(a, dx(A)),
Y(a,b) € AXB.

Suppose that Centxxy(A X B) # 0., For (a,b) € Centxxy(A X B) € A X B, we get d((a,b), Ixxy(A X
B)) = min{d((a, b), (Ix(A) X B)),d((a, b), (A X dy(B)))} = min{dx(a, dx(A)), dy(b, dy(B))}. If d((a, b), Ixxy(A X B)) =
dx(a, dx(A)) then a € Centx(A), a contradiction, and if d((a, b), dxxy(A X B)) = dy(b, dy(B)) then b € Centy(B),
again a contradiction. So, Centxyy(A X B) = 0, and hence radxxy(A X B) = c0. [

Example 4.2. (i) LetA = (2,3} € Zand B = [0, o) C R, where Z is discrete space and R is equipped with
the usual metric. As A is clopen in Z and Centr(B) = 0, by Theorem 4.1(ii), we get Centzyr(A X B) = 0
and radzxr(A X B) = oco.

(ii) Let Q = (0, 00) %X (0, o) be the first quadrant in R? with the maximum metric. Then by Theorem 4.1(iii),
we get Centrz(Q) = 0 and radg:(Q) = oo.

Theorem 4.3. Let (X,dx) and (Y, dy) be two metric spaces. For AC X and B C Y, let B = {b € B | dy(b, dy(B)) >
radx(A)}. If radx(A) < rady(B), then Centxxy(A X B) = Centx(A) X B.

Proof. First, let both radx(A) and rady(B) be infinite. In this case, we have three possibilities. If A and B
are clopen then Centx(A) = A and B = B, and the result follows by Theorem 4.1(i). And in other two cases
either B = 0 or Centyx(A) = 0, and the result follows by Theorem 4.1(ii) or Theorem 4.1(iii).

Now, WLOG suppose that radx(A) is finite, then Centx(A) is nonempty. If rady(B) is finite, then Centy(B) #
0 and Centy(B) C B = B # 0. If rady(B) = oo such that radx(A) < Srady(B), then B # 0.

In both the above cases, we observe that if (a,b) € Centx(A) x B, then d((a,b), dxxy(A X B)) = radx(A).
As a € Centx(A) and b € B, dx(a,dx(A)) = radx(A) and dy(b,dy(B)) > radx(A) = d((a,b),dxxy(A X
B)) = min{dx(a, dx(A)),dy(b, dy(B))} = radx(A). Next, we observe that if (a,b) ¢ (Centx(A) x B), then
d((a, b), dxxy(A X B)) < radx(A). If (a,b) ¢ (Centx(A) x B), then we have either a ¢ Centx(A) or b ¢ B.
If a ¢ Centx(A), then dx(a,dx(A)) < radx(A). And, if b ¢ B, then dx(b,dx(A)) < radx(A). This implies
d((a, b), dxxy(A X B)) < radx(A). So, Centxxy(A x B) = Centx(A) x B.

Now, if rady(B) = oo such that radx(A) > Srady(B), then B = 0. In this case, we prove that Centxyxy(AXB) =
0. Let (a,b) € Centxxy(A X B). Then d((a, b), dxxy(A X B)) = min{dx(a, dx(A)), dy(b, dy(B)}. If d((a, b), dxxy(A X
B)) = dy(b,dy(B), then b € Centy(B), a contradiction. So, d((a,b), dxxy(A X B)) = dx(a,dx(A)) — a €
Centx(A). So, we get radx(A) = dx(a,dx(A)) = d((a,b), Ixxy(A X B)) < dy(b,dy(B)) < sup,;dy(b,dy(B)) =
Srady(B), which is not the case. So, Centxxy(A X B) = . Hence, our claim. O

Remark 4.4. In the above theorem,
(i) if radx(A) = rady(B), then B = Centy(B). So, Centxxy(A x B) = Centx(A) x Centy(B).
(ii) if radx(A) = 0, then B = B and Centx(A) = A. So, Centxxy(A X B) = A X B.
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(iii) if rady(B) < radx(A), then Centxxy(A X B) = A x Centy(B), where A = {a € A | dx(a, dx(A)) > rady(B)}.
From above results, we get

Corollary 4.5. Let A and B are subsets of metric spaces X and Y, respectively. If the radii of A and B are either both
finite or both infinite, then radxyy(A X B) = min{radx(A), rady(B)}.

Moreover, if radyx(A) < Srady(B) or rady(B) < Sradx(A), then the above result is also true.
Example 4.6. Let A and B be subsets of the Euclidean space R.

(i) If A = B = [0,1] then radr(A) = radgr(B) and B = Centy(B) = {3}. By Theorem 4.3, Centg:(A x B) =
{(%/% }, and T[ld]Rz(A X B) = %

(i) IfA =[0,1]and B = [0, 5] then radr(A) < radr(B)and B = [0.5,4.5]. Hence, Centg:(AXB) = {%}x[0.5,4.5]
and radg:(A X B) = 1.

(iii) If A =[0,1]and B = [0,1]U[2, 4] then radr(A) < radg(B) and B = {%} U[2.5,3.5]. Hence, Centr:(AXB) =
{ %,% Ju ({%} X [2.5,3.5]) and radR:(A X B) = %

Example 4.7. Let R? and R be the Euclidean spaces. By Theorem 4.3, we have
(i) the center and radius of the cylinder ! X I in R® are §' x I and 0, respectively, where I = [0, 1].

(ii) for D> € R? and I C R, radg:(D?) > radg(I) and ID? = {a € D? | dge(a,S') > 1} = {a € D? | Ja| < 1}. So,
Centgs(D? X I) = {(a, 3) € ID* xI) | la| < 1} and radg:(ID* X I) = 1.

(iii) for A = D> C R%, B = [0,4] C R, radge(A) < radr(B) and B = [1,3]. So, Centgs(A x B) = {(0,0,b) | 1 <
b < 3} and radgs(A x B) = 1.

l 28 CentAXB

CleitB CentAXB o
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n
Next, we generalize Theorem 4.3 for a finite product [] A; of subsets A; of metric spaces X;,1 <i < n.
i=1

Theorem 4.8. Let (X;,d;) be metric spaces ,1 < i < n, where n € N. For A; € X;,1 <i < n, let Ai=1{ae

Aildi(a, dx,(A)) = minfradx;(Aj)[1 < j < n}}. Then Centﬁx (ITA) = [1A;. Moreover, if the radii of A; are either
i 1

n
all finite or all infinite, then mdﬁx (ITA:) = min{radx,(A;) |1 <i < n}.
i1
1

Proof. We prove by induction. If n = 2 and radx, (A1) < radx,(Az) then A = Centx, (A1) and it is true by
Theorem 4.3.



A. Badra, H. K. Singh / Filomat 39:20 (2025), 7017-7031 7024

k
Assume thatitis true forsomek € IN. Let B = [ [ A;. By Induction hypothesis, we have Cent b
1

1

and mdﬁ (B) = min{radx,(A;) | 1 <i < k}.
X;

1
Now, we prove it for k + 1.
k+1
If rad ﬁ (B) < radx,,,(Ak+1), then by Theorem 4.3, we have Centi.. (J] Ai) = Centkﬁl (B X Agy1) =
Xi i1 X;

1 1 1

R k+1 k+1
(Centy B)X Ags1 = [l Aj, and radi, (I1 Aj) = radii (B X A1) = radx  (B) = min{radx,(A;) |1 <i <k} =
II[XI 1 IIIXI‘ 1 II[X,' l;[ i
mil"l{?’ﬂdxi(Ai) [1<i<k+1}.
k+1 N N R
If radx,,, (Ak+1) < mdﬁ (B), then by Theorem 4.3, we have Centkﬁl (IT Aj) = BxCentx,,,(Ak+1) = BX Ak,
X,‘ Xi 1
1
k+1

and mdkﬁl (ITA) = mdkﬁl (B X Ags1) = radx,,, (Ar+1) = min{radx,(A;) | 1 <i < k + 1}. Next, we observe that
i1 Xi

i
1 1

ve B = {b e Bld(b, aﬁ (B)) = radx,. (Axs1)). It is easy to see that d(a, A X Ay X ...0x.(A}) X ... X Ay) =
Xi
1
k k _ —
di(a;, 8X,.(Ai)), Ya = (ay,4az, ...,a;) € [] A;. Note that d(b, 8ﬁ (B)) =d(b, (A X Ay X ... X 8X,.(Ai) X ... X Ag)) =
1 i=1

Xi
1

min{d(b, (A; X Ay X ... X Ix,(A}) X ..A)) | 1 < i <k} = min{d;(b,dx,(A))) | 1 < i < k},¥b € B. Now, b =
(b1, b, ..., by) € B = d, 8ﬁ (B)) = mdxkﬂ (Agr1) = min{d;(b;, 3X1(A,-)) |[1<i<k}> T’dekﬂ (Axr) =
X

di(bi,axi(Ai)) > rakaH(AkH),l <i<k < beA,1<i<k < b= (bl,bz,..., bk) € HA, Thus, B = HAz
1 1

k+1 k. N k+1
So, Centkﬁl (ITA:) = [TA; X Axs1 = [1 Ai. Hence, our claim. O
Xi 1 1 1
1

5. Center and radius of a finite union of subsets of a metric space

We know that if A and B are subsets of a metric space (X, dx) such that AN B = 0, then we have
diamyx (A U B) < diamx(A) + diamx(B) + dx(A, B), where diamx(A) denotes the diameter of A (Ref. [3]).
In this section, we determine Centx(A U B) and radx(A U B) for nonclopen subsets A and B of a metric
space X.
For nonclopen subsets A and B of a metric space X, let
A = {a € Centx(A) | dx(a, dx(B)) < radx(A)}, and
B = {b € Centx(B) | dx(b, dx(A)) < radx(B)}.
Using these notations, we have the following results:

Theorem 5.1. Let A and B be nonclopen separated subsets of a metric space (X, dx). Then,
(1) ifradx(A) > radx(B) and Centx(A)\A # 0, then Centx(A U B) = Centx(A)\A & radx(A U B) = radx(A), and

(2) if radx(A) = radx(B) and (Centx(A)\A) U (Centx(B)\B) # 0, then Centx(A U B) = (Centx(A)\A) U
(Centx(B)\B) and radx(A U B) = radx(A) = radx(B).

Proof. (1)Fora € Centx(A)\A, wehavedx(a, dx(B)) > radx(A). Consequently, dx(a, dx(AUB)) = min{dx(a, dx(A)),
dx(a, dx(B))} = dx(a, dx(A)) = radx(A). If a ¢ Centx(A)\A, then either a € A or a ¢ Centx(A). If a € A,
then dx(a, dx(B)) < radx(A). So, dx(a,dx(A U B)) < dx(a,dx(B)) < radx(A). If a € A such thata ¢ Centx(A)
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then dx(a, dx(A)) < radx(A). So, dx(a, dx(A U B)) < dx(a,dx(A)) < radx(A). And if a € B then dx(a, dx(A U
B)) < dx(a,dx(B)) < radx(B) < radx(A). So, for a ¢ Centx(A)\A, we have dx(a, dx(A U B)) < radx(A). Thus,
Centx(A U B) = Centx(A)\A and radx(A U B) = radx(A).

(2) Similarly, for a € (Centx(A)\A) U (Centx(B)\B), we get dx(a, dx(A U B)) = radx(A). And, for a ¢
(Centx(A)\A) U (Centx(B)\B), we get dx(a,dx(A U B)) < radx(A). Thus, Centx(A U B) = (Centx(A)\A) U
(Centx(B)\B) and radx(A U B) = radx(A). O

Next, we derive relationship of Sradx(A U B) with radx(A) & radx(B).

Theorem 5.2. Let A and B be nonclopen separated subsets of a metric space (X,dx). Then Sradx(A U B) <
max{radx(A), radx(B)}.

Proof. As A and B are separated, dx(A U B) = dx(A) U dx(B). So, for a € A, we have dx(a,dx(A U B)) <
dx(a,dx(A)) < radx(A). Similarly, for b € B, we have dx(b, dx(A U B)) < dx(b, dx(B)) < radx(B). This implies
that Sradx(A U B) < max{radx(A), radx(B)}. O

Theorem 5.3. Let A and B be nonclopen separated subsets of a metric space (X, dx). Then,

(1) if radx(B) < radx(A) < oo and Centx(A)\A = 0, then Sradx(A U B) < radx(A), and
(2) if radx(A) = radx(B) < oo and (Centx(A)\A) U (Centx(B)\B) = 0, then Sradx(A U B) < radx(A) = radx(B).

Proof. By Theorem 5.2, we get Sradx(A U B) < radx(A).

First, let radx(A) > radx(B). As A C Centx(A) and Centx(A)\A = 0, we get Centx(A) = A. As radx(A) is finite,
by Theorem 3.12, we get Centx(A) # 0. So, for a € Centx(A), we get dx(a, dx(B)) < radx(A). Consequently,
dx(a, dx(AUB)) < radx(A). And for a € A such thata ¢ Centx(A), we get dx(a, dx(AUB)) < radx(A). For b € B,
we have dx(b, dx(A U B)) < radx(B). Therefore, Sradx(A U B) < radx(A).

Now, let radx(A) = radx(B). We must have both Centx(A) and Centx(B) are nonempty. As (Centx(A)\A)U
(Centx(B)\B) is empty, then Centx(A) = A & Centx(B) = B. So, for a € Centx(A) U Centx(B), we get
dx(a,dx(A U B)) < radx(A). Also, for a € AU B such that a ¢ Centx(A) U Centx(B), we have dx(a, dx(A U B)) <
radx(A). Therefore, Sradx(A U B) < radx(A) = radx(B). O

The above result may not hold if radx(A) is infinite. For example: Let A = [2, 00) and B = [0, 1] be subsets
of Euclidean line R. Here, radx(B) = 0.5 < radx(A) = co and Centx(A)\A = 0. But Sradx(AUB) = co £ radx(A).

Notice that, in the above theorems, if Centx(A U B) # 0, then Sradx(A U B) can be replaced with
radx(A U B). On the other hand, if Centx(A U B) = 0, then above results may not hold by replacing
Sradx(A) with radx(A). For example: Consider, a metric subspace X = R X ({0} U [1, o)) of Euclidean
space R%. Let A = J,en[107, 107 + 5] X {0} and B = (J,,en[107, 101 + 5] X {2 — %} be subsets of X. Here,
Centx(A) = A = U,eni10n + 2.5}, radx(A) = 2.5, radx(B) = 0 and Sradx(A U B) = 2. We can also notice that
Centx(A U B) = 0 and radx(A U B) = co £ radx(A).

Remark 5.4. In Theorem 5.3(i), we further establish a relationship between Sradx(AUB) and radx(B). Define
A ={a € A|dx(a,dx(A U B)) > radx(B)}. Then

(i) if A # 0, then radx(B) < Sradx(A U B), and
(i) if A = 0 then Sradx(A U B) < radx(B).

Note that for any pointa € A U B such thata ¢ A we get dx(a,dx(A U B)) < radx(B). It is easy to observe

that if A # 0, then all those points of A U B which are at the maximum distance from dx(A U B) are in A. So,
we get

Remark 5.5. Let A and B are nonclopen separated subsets of a metric space (X,dx). If X # 0, then
Centx(AUB) C A.
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Theorem 5.6. Let A and B be nonclopen separated subsets of a metric space (X, dx), such that radx(B) < radx(A) = oo
and radx(B) > Sradx(A). Then,

(1) if Centx(B)\B # 0, then radx(A U B) = Sradx(A U B) = radx(B) & Centx(A U B) = Centx(B)\B, and
(2) if Centx(B)\B = 0, then Sradx(A U B) < radx(B).

Proof. As radx(A) = oo, by Theorem 3.12, Centx(A) = 0, which means dx(a, dx(A)) < Sradx(A), Va € A. Since
radx(B) is finite, we get Centx(B) # 0.

(1) If a € Centx(B)\B, then a € Centx(B) such that dx(a,dx(A)) > radx(B). Thus, dx(a,dx(A U B)) =
min{dx(a, dx(A)),dx(a, dx(B))} = dx(a,dx(B)) = radx(B). And, if a ¢ CentX(B)\B, then dx(a, dx(A U B)) <
radx(B). So, Centx(A U B) = Centx(B)\B and radx(A U B) = Sradx(A U B) = radx(B).

(2) Similarly, if Centx(B)\B = 0, then Sradx(A U B) < radx(B). O

Example 5.7. Let X C IR2 be the union of two rectangles with vertices (0, 0), (1,0),
(1,2) & (0,2) and (1,0),(2,0),(2,2) & (1,2). Thus X is a metric subspace of the Euclidean space R?. We
consider nonclopen separated subsets A and B of X.

(i) Let A and B be the line segments joining (0, 0) to (0,2) and (2,1) to (2, 2), respectively. Here radx(A) =
1 > 0.5 = radx(B), Centx(A) = {(0,1)} and A = 0. By Theorem 5.1(i), we get radx(AUB) = 1 &
Centx(A U B) = {(0,1)}.

(ii) Let A and B be the line segments joining (0, 0) to (0,2) and (2, 0) to (2, 2), respectively. Here radx(A) =
1 = radx(B), Centx(A) = {(0, 1)}, Centx(B)

={(2,1)} and A = 0 = B. By Theorem 5.1(ii), radx(A U B) = 1 and Centx(A U B) = {(0, 1), (2, 1)}.

(iif) Let A and B be the line segments joining (0, 0) to (2,0) and (1,0.2) to (1, 1), respectively. Here radx(A) =
1> 0.4 = radx(B), Centx(A) = {(1,0)} and A = {(1, 0)}. By Theorem 5.3(i), Sradx(A U B) < 1. Note that for
a = (0.5,0),dx(a, dx(A UB)) > 0.4 = radx(B). So, A # 0, and hence by Remark 5.4(i), Sradx(A U B) > 0.4.

(iv) Let A and B be the line segments joining (0, 0) to (2,0) and (1, 0.2) to (1, 2), respectively. Here radx(A) =
1~> 0.9 = radx(B), Centx(A) = {(1,0)} and A = {(1,0)}. By Theorem 5.3(i), Sradx(A U B) < 1. Infact, as
A = 0, by Remark 5.4(ii), Sradx(A U B) < 0.9.

One can easily verify that the radius and center of A U B in above all four cases are the same as we have
obtained using Theorems 5.1 and 5.3.

Example 5.8. Let 5> C R? be the unit sphere with metric induced from the Euclidean space R®. Let A =
{(x,y,2) € $* | y = 0}\Bs2((1,0,0),0.1) and B = {(x, y,2) € $* | z = 0}\Bs2((—1,0,0), 0.1) be nonclopen subsets
of $? such that A N B = 0, where Bs:((1,0,0),0.1) and Bs:((~1,0,0),0.1) are open balls centred at (1,0, 0) and
(-1,0,0) respectively, with radius 0.1. Here rads:(A) = rads:(B) = 1.97, Cents:(A) = {(=1,0,0)}, Cents(B) =
{(1,0,0)} and A = {(-1,0,0)}, B = {(1,0,0)}. This implies Cents:(A)\A and Cents(B)\B are empty. By Theorem
5.3(ii), Srads:(A U B) < 1.97.

n
Next, we generalise above results for a finite union |J A; of nonclopen subsets A;,1 < i < 1, of a metric
i=1
space X.
Theorem 5.9. Let (X, dx) be a metric space. For nonclopen subsets A; C X,1 < i < n, such that A; & A; are
separated, for all i # jand n € N, let Aj = {a € Centx(A)) | dx(a,dx(A)) < radx(A;), for somei # j},1 < j < n.
Let M be the collection of all those Aj such that radx(A;) = max{radx(A;) |1 <i < n}and CentX(Aj)\Aj # 0. Then,

Sde(LnJ A;)) < max{radx(A;) |1 <i<n}
1

Moreover, if | (CentX(Aj)\Aj) # 0, then CentX(Lnj A)= U (CentX(Aj)\Aj) & de(LnJ Aj) = max{radx(A;) |1 <
AjeM 1 AjeM 1

i <n}.
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Proof. We prove it by induction. If n = 2, it is true by Theorems 5.1 & 5.2.
k
Assume that it is true for some k € IN. Let B = [JA; and K be the collection of all those A; such that
1

radx(A;) = max{radx(A;) |1 <i < k} and Centx(Aj)\Aj # (. By induction hypothesis, we have Sradx(B) <
max{radx(A;) | 1 <i <k}, and if | (Centx(Aj)\A)) # 0, then Centx(B) = U (Centx(A;)\A;) and radx(B) =
A]'EK A/'EK

max{radx(A;) |1 <i < k.
Now, we prove it for k + 1. Let K’ be the collection of all those A; such that radx(A;) = max{radx(A;) |1 <
i <k+ 1} and Centx(A)\A; # 0.

If radx(B) < radx(Ag+1), then by Theorems 5.1 & 5.2, we have Smdx(kgle,-) = Sradx(B U Ags1) <
radx(Axs1) < max{radx(A;) |1 < i < k+1}. Andif Centx(Axs1)\Ars1 # 0, then Centx(kLJIrjl A;) = Centx(BUAk1) =
Centx(Ags1)\Ags1, and mdx((kgjl A))) = radx(Ags1) = max{radx(A;) |1 <i<k+1}.

If radx(Ak+1) < radx(B), then again by Theorems 5.1 & 5.2, we have Smdx(kqjl A;) = Sradx(B U Agyq) <
radx(B) < max{radx(A;) | 1 < i < k+ 1}. And if Centx(B)\B # 0, then Centx(nglAi) = Centx(B)\B and

k+1
radx(|J A;) = radx(B) = max{radx(A;) |1 <i<k+1}.
1

Next, we observe that in this case Centx(B)\B = |J (Centx(Aj)\A)).
A]‘GK’

We have B = {b € Centx(B) | dx(b,dx(Ar+1)) < radx(B)}. Let b € Centx(B)\B. Then b € Centx(B)

U (CentX(A]-)\A]-) andb ¢ B = be Centx(Aj)\Aj for some A; € K and dx(b, dx(Ak+1)) = radx(B) =
AI‘EK

radx(A;). This gives that Centx(A;)\A; # 0, and radx(A;) = max{radx(A; |1 <i<k+1)} = AjeK =

be U (Centx(A)\A)).
AjeK

Conversely, let b € |J (CentX(A]-)\Aj) = be CentX(Aj)\A~j forsome Aj € K = b ¢ Aj = Aj €
A/'EK/
Kand dx(b, dx(Ak+1)) = T’lex(A]') =radx(B) = b e Centx(B)and b ¢ B = be CentX(B)\BR.
k+1
If radx(Ak+1) = radx(B), then by Theorems 5.1 & 5.2, we have Sradx(|J A;) = Sradx(B U Ag41) < radx(B) <
1

~ k+1
max{radx(A;) | 1 <i < k+1}. And if (Centx(B)\B) U (Centx(Ais1)\Ais1) # 0, then Centx(|J A;) = Centx(B U
1
- k+1
Ags1) = (Centx(B)\B) U (Centx(Ars1)\Ar1) and radx (U Aj) = radx(Ag1) = radx(B) = max{radx(A;) |1 < i <
1
k + 1}. In this case, it is easy to observe that (Centx(B)\B) U (Centx(Ars1)\Ars1) = U (Centx(Aj)\Aj).

AjEK’

Thus, it is true for i = k + 1. Hence, our claim. [

6. Largest open balls contained in a subset of metric space

For any subset A of a metric space X, there is a natural question to identify the largest open balls (largest
open ball means an open ball of X with the largest radius) that are entirely contained in A. To answer this
question, we introduce a notion of quasi-center and quasi-radius of a subset A of metric space X:

Definition 6.1. [Quasi-center of a subset] The quasi-center of A is the set {a € A |dx(a, A°) > dx(b, A), Vb € A},
where A° denotes the complement of A in X. We denote the quasi-center of A in X by QCentx(A).
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Thus the quasi-center of A is the set of all those elements of A which are at the maximum distance from
AC.

Definition 6.2. [Quasi-radius of a subset] The quasi-radius of a subset A of metric space X is the distance
between its quasi-center and its complement in X. We denote the quasi-radius of A in X by Qradx(A).
Notice that Qradx(A) = dx(QCentx(A), A°) = dx(a, A),Ya € QCentx(A).

Example 6.3. Let X C R? denote the union of A and B, where A is a semi unit circle {(x, y) € R? | x> + y*> = 1
and x > 0} and B is the union of three line segments joining (i) (0,1) to (1.5,1), (i) (1.5,1) to (1.5,—1) and
(iii) (0,—1) to (1.5,—1). Consider X = A U B as a metric subspace of the Euclidean metric space R%. Here
Centx(B) = {(1.5,0)} & radx(B) = 1.8, and QCentx(B) = {(1.5,1), (1.5, -1)} & Qradx(B) ~ 0.8.

As the complement of a metric space X is empty in itself, we get QCentx(X) = X & Qradx(X) = oo. Also,
we have QCentx(0) = 0 & Qradx(@) = oco.

As the quasi-center of A consists of all those points of A which are at the maximum distance from
its complement, Qradx(A) is the maximum distance of any point 2 € A from its complement. It is clear
that if QCentx(A) # 0 then Qradx(A) = sup,., dx(a, A). And, if QCentx(A) = 0, then Qradx(A) = oo, but
sup,. 4 dx(a, A°) could be finite.

It leads us to introduce the notion of the semi-quasi-radius of a subset A of a metric space X.

Definition 6.4. [Semi-quasi-radius] The semi-quasi-radius of a subset A of metric space X is the supremum
of the set that consists of distance of any pointa € A from A°. We denote the semi-quasi-radius of A in X by
SQradx(A).

That is, SQradx(A) = sup,, dx(a, A°).

Note that, Qradx(A) > SQradx(A). In Example 3.7 and 3.8, it is easy to see that Qradx(A) > SQradx(A).

Lemma 6.5. Let A be a subset of metric space X. Then, SQradx(A) < radx(A).

Proof. As dx(A) C AC = dx(a,dx(A)) > dx(a, A°) = dx(a, A),Ya € A = radx(A) > sup,,., dx(@',dx(A)) >
dx(a, dx(A)) > dx(a, A),Ya € A. Thus, SQradx(A) < radx(A). O

If QCentx(A) # 0, then by the above lemma Qradx(A) < radx(A). If QCentx(A) = 0, then it may not
be true. For example: Consider, X = (R X {0}) U B with subspace metric from Euclidean space R?, where
B = U,en[10n,10n + 5] x {2 — %}. And, let A = |J,,en[10m, 101 + 5] % {0}. Here, QCentx(A) = 0, SQradx(A) = 2
but Qradx(A) = oo £ radx(A) = 2.5.

Remark 6.6. A metric space (X, dx) is a path metric space if the distance between each pair of points
equals the infimum of the lengths of the curves joining the points, see [1]. Recall that the Euclidean
spaces and connected Riemannian manifolds are path metric spaces. If X is a path metric space, then for
a proper subset A of X, we have dx(a,dx(A)) = dx(a, A°),Va € A. This gives that for path metric space X,
Centx(A) = QCentx(A), and radx(A) = Qradx(A).

Notice that, in Example 3.3 and 3.4, quasi-center and quasi-radius of subsets are the same as their center
and radius, respectively. By Example 6.3, we see that the above remark is not true if X is not a path metric
space.

It is easy to observe the following results:

Lemma 6.7. Let A be a nonempty subset of a metric space X such that A C dx(A). Then, QCentx(A) = A and
Qradx(A) = 0.

Lemma 6.8. Let A be a subset of metric space X with nonempty interior. Then QCentx(A) C A°.

Theorem 6.9. Let A be a nonempty subset of metric space X. Then A° = 0 if and only if Qradx(A) = 0.
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In the next theorem, using the above notions of quasi-center and quasi-radius, we determine the largest
open balls contained in a subset A of metric space X. If A is a proper subset of metric space (X, dx) such
that QCentx(A) is empty, then there does not exist any open ball with largest radius that is contained in
A. As QCentx(A) =0 = Qradx(A) = co. Let open ball B(a, r) be the largest open ball entirely contained
in A for some a € A and r > 0. This means B(a,r) N A° = 0 = dx(a, A°) > r. Now, as Qradx(A) = oo,
for some s > r, b € A such that dx(b,A°) > s = B(b,s) contained in A, a contradiction. For example,
A =10, o) € R has no largest open ball contained in A.

For the nonempty quasi-center of a subset A of metric space X, we have the following result.

Theorem 6.10. Let A be a nonempty proper subset of metric space X. Then the largest open balls of X which are
entirely contained in A are the balls whose centers belong to QCentx(A) and radius is equal to Qradx(A).

Proof. Any point a € A is either an interior point of A or a boundary of A.If a € dx(A) then for every € > 0,
the open ball B(g, €) intersects A°. So, any ball centered at boundary point of A with positive radius can not
be entirely contained in A. Thus if A° = 0 then QCentx(A) = A and the largest open balls contained in A are
balls with zero radii.

If A° # 0 then by Lemma 6.8, QCentx(A) C A°. First, let a € A° such that a ¢ QCentx(A). As dx(a, A°) <
Qradx(A), and A is proper subset of X, then b € A such thatdx(a, b) < Qradx(A). Thus B(a, Qradx(A))NA® #
(0. Therefore, any open ball centred at a2 with radius > Qradx(A) can not be entirely contained in A. Now,
let a € QCentx(A). Then dx(a, A°) = Qradx(A). So, B(a, Qradx(A)) C A. Next, we observe that for € > 0, open
balls B(a, Qradx(A) + €) has nonempty intersection with A°. As infpeac dx(a, b) = Qradx(A), we get that Ve > 0,
AV € A°such thatdx(a, b’) < Qradx(A)+e€. So, B(a, Qradx(A) +€) N A® # (, and therefore any ball with radius
greater than Qradx(A) can not be entirely contained in A. Hence, our claim. [

Corollary 6.11. Let A and B be proper subsets of a metric space X such that QCentx(A) # 0 and A C B. Then
Qradx(A) < Qradx(B).

Proof. If A° = 0 then the result follows from Theorem 6.9. If A° #  then by Theorem 6.10, B(a, Qradx(A) is
the largest open ball contained in A, where a € QCentx(A). As B(a, Qradx(A)) € A C B and B(b, Qradx(B)) is
the largest ball contained in B, where b € QCentx(B). Hence, our claim. [J

But if A C B are proper subsets of metric space X then it does not imply that QCentx(A) € QCentx(B).
For example: Take subsets A = [0,1] and B = [0,2] of R with the usual metric. Then QCentgr(A) = {%} and
Qentg(B) = {1},

Remark 6.12. Note that if A C B are proper subsets of a path metric space X such that Centx(A) # 0, then
by Corollary 6.11, radx(A) < radx(B).

Remark 6.13. We can notice that the radius of a subset may not be equal to half of its diameter. In
fact, it is easy to observe that if A is a nonclopen subset of metric space X such that Centx(A) # 0, then
radx(A) < diamx(A). By Theorem 6.10, we also observe that for a proper subset A of the Euclidean space
R", having nonempty center, radgr:(A) < %diamw (A).

For subsets A and B of a metric space X, we observe that diamx(A) < diamx(B) does not imply radx(A) <
radx(B) or Qradx(A) < Qradx(B).

Example 6.14. Consider A; and A; C IR?, where A is the line segment joining (-2,0) and (2,0) in R? and
Aj; is the closed ball centered at (4,0) with radius 1. Notice that diamp:(A1) = 4 > 2 = diamg2(A;) but
Qradg: (A1) = radre(A1) = 0 < 1 = radre(Az) = Qradr:(A»).

Next, we introduce a notion of concentric subsets.

Definition 6.15. [Concentric Subsets] Two subsets A and B of a metric space X are called concentric subsets
if they have the same nonempty centers in X
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Example 6.16. Take A = [-2,2] and B = [-1,1] in the set R of real numbers with the usual metric. Here,
Centr(A) = Centr(B) = {0}. So, A and B are concentric in IR. Infact, all intervals of the form [-n, n] or (—m, m)
are concentric in R, where m, nn are positive real numbers.

Example 6.17. Let IR? be the real plane with the Euclidean metric. Then the unit circle ' and the punctured
disc A = {(x,y) € R? | 2 + y* < 4}\{(0, 0)} are concentric as Centg:(S') = Centg:(A) = $'.

Remark 6.18. Concentric subsets may not be contained in each other. For example: Let A = ID? U {(2,0)}
and B = D? U {(0,2)} be two subsets of the Euclidean plane IR?, where ID? is the unit disc in R?. Note that
Centre(A) = Centr:(B) = {(0,0)}, but neither A € B nor B C A. Also, notice that if A and B are concentric
subsets with the same radius then A may not be equal to B.

It is easy to see that the relation of being concentric subsets is an equivalence relation on the class of
subsets of X with nonempty centers.

Theorem 6.19. Let A be a subset of a path metric space X such that A has nonempty interior and Centx(A) # 0.
Then A and A° are concentric with same radii.

Proof. By Theorem 3.17 and Remark 6.12, we get radx(A) = radx(A°). Let x € Centx(A). Then by Lemma
3.14, x € A°. We have radx(A) = radx(A°) > dx(x,dx(A°)) > dx(x,dx(A)) = radx(A). Thus dx(x,dx(A°)) =
radx(A°). So, x € Centx(A°). Therefore, Centx(A) C Centx(A°). Now, let x ¢ Centx(A) = QCentx(A). So,
dx(x,A%) < radx(A) = Qradx(A). So, B(x,radx(A)) N A° # 0 = B(x,radx(A°)) N A° # 0. This implies
that B(x, radx(A°)) N (A°)° # 0. Thus x ¢ QCentx(A°) = Centx(A°). Therefore, Centx(A°) C Centx(A). Hence,
Centx(A°) = Centx(A). O

Remark 6.20. Theorem 6.19 may not be true if A° = (. For example: Consider the set R of real numbers
with the usual metric. If A = {% | n € N} C R, then A° = 0. We have Centx(A°) = 0 & Centx(A) = A and
radx(A°) = oo & radx(A) = 0. Notice that radx(A°) # radx(A), and Centx(A) # Centx(A°).

If X is a path metric space in Theorem 5.9, then we have the following result.

Corollary 6.21. Let (X,dx) be a path metric space. For nonempty proper subsets A; € X,1 < i < n, such
that A; and A; are separated, for all i # j and n € IN, and let M be the collection of all those A; such that

n
radx(A;) = max{radx(A;) | 1 < i < n} and Centx(A;) # 0. Then, if M # 0, then Centx((J A;) = U Centx(A)) &
1 Aj€M

radx(U) Ay) = max{radx(A;) | 1 < i < n).
1

Proof. We observe that A]- = (, Vj, where A]- is the same as defined in Theorem 5.9. As A; and A; are
separarted for all i # j, dx(A;) € (A))°. So, we get dx(a, (A))°) < dx(a,dx(A;)),¥a € A;. As X is path metric
space, by Remark 6.6, we get radx(A;) = Qradx(A;) < dx(a,dx(A)),Va € Centx(A;). This implies that
A j =0,V j. Now, the result follows from Theorem 5.9. [J

Remark 6.22. If X is a Euclidean space then the center of a disconnected proper subset of X is equal to the
union of centers of its connected components with the maximum radius and its radius is equal to the radius
of component with the maximum radius.

Example 6.23. Let A = [0,1],B = [2,6] and C = [8,12] be subsets of R with the usual metric. Here

radr(B) = radr(C) = 2 > 0.5 = radr(A). So, by corollary 6.21, Centr(AUBUC) = Centr(B)UCentr(C) = {4, 10}
and radr(A U BU C) = radr(B) = 2.
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