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Abstract. In this paper we introduced the notions of Cauchy alpha convergence and uniform alpha
convergence for sequences of functions between metric spaces. Using these new concepts, we investigated
properties between uniform convergence and alpha convergence and provided figures illustrating the
relationships among these different types of convergence based on the structure of the functions and
their domains. Finally, we established some Korovkin-type approximation theorems involving these new
concepts.

1. Introduction

The study of convergence for function sequences is a fundamental topic in analysis, with significant
implications in various branches of mathematics and applied sciences. Continuous convergence, recently
referred to as alpha convergence, was first introduced by R. Courant [6] in 1914 . Although H. Hahn
[12] defined the concept and explored its properties in 1921, he noted that earlier variations of this idea
appeared in the works of Weierstrass and P. Du Bois-Reymond in the 19th century. Additionally, in 1929,
C. Carathéodory [5] used the concept of continuous convergence in his work. Later, around the 1950s,
H. Schaefer [17], K. Iseki [13], and S. Stoilov [18] obtained further results related with using the alpha
convergence. As studies in this area became less common, different types of convergence for function
sequences were defined, with their properties examined over the last quarter century.

In addition to alpha convergence, the concepts of exhaustiveness and semi-alpha convergence, as well
as the relationships between these concepts, are among the problems studied in recent years. In [11],
the concept of exhaustiveness was introduced which is connecting alpha convergence with pointwise
convergence.

In 2003, Das and Papanastassiou [7] introduced new type of convergences for sequences of real-valued
functions called a—uniform equal, a—strong uniform equal and a—equal. Via using this definition they
obtained a characterization of the compact metric space. In 2020, Papanastassiou [16] introduced semi-
alpha convergence, semi-exhaustiveness and semi-uniform convergence to gain a new perspective for
sequences of functions.
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Borsik [3] studied the properties, transitions and equivalences between various convergence types,
providing comparing their relationships and structural behavior in metric spaces. In 1992, Borsik [4]
characterized the class of mappings that preserve Cauchy sequences, highlighting their continuity and
uniformity properties.

Among the most significant theorems in constructive approximation is the Korovkin’s theorem [14].
Although the original theorem was formed based on the concept of uniform convergence, it has recently
been adapted to various other convergence concepts and summability methods. A classical reference for
Korovkin-type theorems in the context of statistical convergence can be found in [10]. In 2024, Erdem and
Tung studied the Korovkin-type theorems for various convergence types in [9, 20]

In this study, we introduce the notion of uniform alpha convergence and Cauchy alpha convergence
for sequences of functions between metric spaces. These new concepts describe the relationship between
uniform convergence and alpha convergence.

2. Definitions and auxiliary results

To enhance readability, in this section, we recall some basic definitions and notations. Throughout the
paper, we write X = (X,d)and Y = (Y, p) to denote metric spaces unless or otherwise mentioned. By B,(xo, 0)
denotes the open ball with center xy and radius 0 > 0 with respect to metric d. The set of all Y-valued
functions defined on X is denoted by Y*:

YX={h|h:X - Yisa function.}

The family of continuous, Cauchy continuous and uniformly continuous functions defined on X to Y are
denoted by C(YX), CC(YX) and UC(Y¥), respectively. It is well known that UC(Y*) c CC(YX) c C(Y¥).

The family of sequences of functions and the family of sequence of continuous functions defined over
X to Y is denoted by sf(YX) and scf(YX), respectively. For simplicity, if the domain of functions is known,
sf(YX) and sf(YX) are abbreviated to sf and scf, respectively :

sf = sf(Y™) = {(n) | ¥n € N, Iy, € Y} and  scf = scf(Y¥) = {(h) | Vn € N, Iy € C(Y5)}

We will use the following notations to describe various properties of function sequences. As ¢ := ¢5(Y),
it denotes the set of all point-wise convergent sequences of functionson X to Y, while ¢; := c;’f(l/X ) represents
sequences that are uniformly convergent. The subscript s¢f denotes that the sequences consist of continuous
functions, applied consistently across all related notations throughout this paper. We use “h, — h” for the
point-wise convergence of the sequence (/) € sf to i; and we use “h, =3 h” for the uniformly convergence
of the sequence (h,) € sf to h. For boundedness, let b; := bs(Y*) and b;‘f = b;’f(YX) be the set of point-wise

bounded and uniformly bounded sequences of functions on X to Y, respectively.

Definition 2.1. ([7]) The sequence (h,) € sf alpha converges to h € Y%, if for every t € X and for every
sequence (t,) of points of X converging to ¢, the sequence (k(t,)) converges to h(t).

The notation h, —, h will be used for alpha convergence of the sequence (h,) to h. The set of alpha
convergent sequences of functions on X to Y will be denoted by c’;‘f(YX):

= (V) = {(h) € 57 | Fh e YY, by o B

It is proved in [2] that the alpha convergence of the sequence () at tp € X to h is equivalent with the
following condition:

Ve > 0,36 = 6(tg, €) > 0,3dny = T’lo(to, E) € IN:t e By(ty,6), n 2ny = p(l’ln(t),h(to)) <E&.

Here are some facts related to alpha convergence.
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Lemma 2.2. (i) If the set X is compact and h, —, h, then h, = h ([11]).
(ii) If the set X is compact and h, —4 h, then (h,) € b ([8]).

(iii) If hy =3 hand h € C(YX) on X, then h, —, h ([11]).

If X is a totally bounded set then the Cauchy continuity of a function and the uniform continuity of the
function coincide [3].

Lemma 2.3. Let (x,,) be a Cauchy sequence in X. Then the set A = {x, : n € IN} C X is a totally bounded set.

Proof. Let € > 0 is given. Since (x,) is a Cauchy sequences there exists 179 € IN such that for all n,m > ny,
d(xy, xp) < €. Itis clear that x,, € By(x,,, €) foralln > no then A C U7=01 Ba(xi, €). So that A is a totally bounded
set. [

3. Cauchy alpha convergence

The alpha convergence a sequence of functions guarantees that the function it converges to is continuous.
In this section, we will define a new mode of convergence guaranteed that the function it converges to is
Cauchy continuous.

Definition 3.1. The sequence (h,) € sf is called Cauchy alpha convergent to the function h € YX on X if
for every Cauchy sequences (t,) and (w,) of points in X with the property d(t,,w,) — 0, the sequence
p(hu(tn), h(wn)) — 0.

If (h,) is Cauchy alpha convergent to 1 on X then we write i, —., h. We will use the notation cg‘;‘ Y*) to
denote set of all Cauchy alpha convergent sequences of functions in YX:
<@ = () = {(hy) € of | T € YX, hy o ).
Proposition 3.2. Ifh, —, h then h € CC(YX).

Proof. Let (t,) be a Cauchy sequence in X and ¢ > 0. By the hypothesis, there exists 1y = ny(¢) € IN such
that p (h,(t,), h(t,)) < 5 and p (hn(tn),h(tn+p)) < 5 foralln > ng and p € Np. Thus, we have

e €
p ((tn), hltey)) < p ((t), 1CE) + p (Bt Bliy)) < 5+ 5 = €

for all n > ng and p € INy. Therefore (h(t,)) is a a Cauchy sequence in Y, that is / is Cauchy continuous on

X. O

We will prove the following lemma using the method of Gregoriades and Papanastassiou ([11], Prop.
1.4). However, since the sequences considered in their proof were convergent, it was possible to produce
suitable new sequences using the limit. Since our sequences are not guaranteed to converge, we will
implement the method using the notion of elongation of sequences (for definition see [19]).

Lemma 3.3. If h, —, h then for any subsequence (hy,,), we have hy,, — ¢, h.

Proof. Let (t,) and (w,) be Cauchy sequences such that d(t,, w,) — 0 when n — oo, and (1) be an arbitrary
strictly increasing sequence of positive integers. If we define the sequences (x,) and (y,) as

Xp=t and y,=wr if m <n<m, ke,

where ny = 0, then it is clear that (x,) and (y,) are Cauchy sequences that d(x,, y,) — 0 when n — co. By
Cauchy alpha convergency of the sequence (%) to i, we have p(h,(x,,), h(y,)) — 0, so that p(hy, (x4,), B(yn,)) —
0 when n — oo. Since x,, =t and y,, = wy for all k € IN, we get p(h,, (t), h(wk)) — 0 when k — co. Hence,
the subsequence (h,,) is Cauchy alpha convergent to h. O
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4. Unifom alpha convergence

In this section, we will define a new mode of convergence guaranteed that the function it converges to
is uniformly continuous.

Definition 4.1. The sequence (h,) € sf is called uniform alpha convergent to the function h € YX on X if for
every sequence (t,) and (w,) of points of X with the property d(t,, w,) — 0, the sequence p(h,(t,), h(w,)) — 0.

If (h,) is uniform alpha convergent to & on X then we write h, =, h. We will use the notation c;‘f“(YX) to
denote set of all uniform alpha convergent sequences of functions in Y*:

= ) = {(hn) esi|IeYX, h, 3, h}.
Lemma 4.2. If h, =3, h then for any subsequence (h,,,), we have h, =3, h.

Proof. Let (t,) and (w,) be sequences such that d(t,,w,) — 0 when n — oo, (1;) be an arbitrary strictly
increasing sequence of positive integers and xy € X. We define the sequences (x,) and (y,) as follows:

te, n=Mng W, N =1
Xy 1= . and Yn = .
X9, otherwise X9, otherwise

Using the sequences (x,) and (y,), we get

(1) = d(te, wy), n=ng

ne ) = 0, otherwise.

with the property d(x,,y,) — 0. From the uniform alpha convergence of (h,) to h, which implies
p(hy(x,), h(y,)) — 0, we have p(hy, (xp,), h(y,,)) = 0 as k — oo. Since x,, = t; and y,, = wy for all k € N, we
get p(hy, (tx), h(wy)) — 0 when k — co. Hence, the subsequence (/,,) is uniform alpha convergent to . [

Theorem 4.3. Let (hy,) € sf and h € YX. Then the following assertions are equivalent:
i. The sequence (hy) is uniform alpha convergent to the function h on X.

ii. For every € > 0 there exists 6 = 6(g) > 0 and ny = np(e) € IN such that for every t,w € X with d(t, w) < 6 and
for all n > ng we have p (h,(t), h(w)) < e.

Proof. (ii = i) Let (t,) and (w,) be sequences such that d(t,, w,) — 0 when n — oo, and ¢ > 0 be given.
From the hypothesis, there exists 6 = d(¢) > 0 and 1y = np(¢) € IN such that for all t,w € X with d(t,w) < 6
and for all n > ny we have p (h,(t), h(w)) < €. From d(t,, w,) — 0, there exists 17 € IN such that for all n > 14
we have d (t,, w,) < 6. If we choose n* = max{ng, n1} then for all n > n* we have p (h,(t,), h(w,)) < €. That is
p(hu(ty), h(wy)) — 0.

(i = ii) Let h, =3, h. Assume that the condition fails i.e. there exists a number ¢ > 0 such that for all
k € N there exists a natural number n; > k and &, wy € X with d(t, wy) < % such that p (hy, (), h(wy)) > e.
Without loss of generality we can assume that the sequence (k,) is strictly increasing. Hence we have a
contradiction because of Lemma 4.2. [

Proposition 4.4. If h, =3, h then h € UC(YX).

Proof. Let ¢ > 0 be given. By uniform alpha convergence of (h,) to &, there exists 6 = 0(¢) > 0 and
no = no(e) € IN such that for every t,w € X with d(t,w) < 6 and for all n > ny we have p (h,(t), h(w)) < €/2.
Hence, we have

p (h(t), h(w)) < p (h(t), hy, (W) + p (hyy (W), K(w)) < €
forevery t,w € X with d(t,w) <o6. O
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Remark 4.5. (i) It can be easily seen that if the sequence of functions (h,) converges to a limit function that
is not uniformly continuous, then this convergence cannot be uniform alpha.

(ii) Even if not every h, is continuous, the convergence can still be uniform alpha. For example, let
hy : (-1,1) > R, hy(t) = 1/nif t > 0 and h,(t) = 2/n otherwise (n € IN). Even though every &, is not
continuous, h, =3, 0.

5. Relationships between modes of convergences

From the definitions, it is clear that the uniform alpha convergence is stronger than the Cauchy alpha
convergence:

Proposition 5.1. If hy =34 I then hy —cq h, that is ¢ C .

Just as in point-wise and uniform convergence, there is the following relationship between uniform
alpha and consequently Cauchy alpha and alpha convergence:

Proposition 5.2. If h, —¢, h then h, —, h, that is ci?‘ - c‘s‘f.

Proof. Let ty € X be any point and (t,) be a sequence in X such that d(t,,tp) — 0. By Cauchy alpha
convergence of (1) to h, we have p (h,(t,), h(to)) — 0O, since every convergent sequence is a Cauchy sequence.
Consequently h, =, h. O

By using Propositon 5.1, we have the following result.
Corollary 5.3. Ifh, =3, h then h, —, h.

Remark 5.4. The reverse implications of Proposition 5.1, Proposition 5.2 and Corollary 5.3 may not be true
i.e. there exist examples where

(i) A sequence is Cauchy alpha convergent but not uniformly alpha convergent.
(ii) A sequence is alpha convergent but not Cauchy alpha convergent.
(iii) A sequence is alpha convergent but not uniformly alpha convergent.

For (i) and (iii) consider h, : (0,1) — R, h,(t) = "”—‘tt for every n € IN, with standard metric. It is clear
1

that (h,) is both alpha and Cauchy alpha convergent to h(t) = ; on (0,1) but it lacks of uniform alpha

convergence. Indeed, let ¢ =1 and 0 > 0 be given. For each t € (0,1) and each n € IN, with t < min{26, 1}

andw = £, wehave |t —w| = |t — £| = § < 6, such that
n—-t 2 n+t
h,@) —h(w)|=|— - =| = >1=c
R I L R

For (ii) Assume thatf, : (0,1) = R, h,(t) = 1-ntif 0 < t < 1/nand h,(t) = 0 otherwise (n € IN). Although
the sequence (1) is alpha convergent to h(t) = 0 on (0, 1) but it lacks of Cauchy alpha convergence. Indeed
for the Cauchy sequences t, = w;, = % with |t, — w,| — 0 while |k, (t,) — W(w,)| =1 — % + 0.

Now, let us give the relationship between uniform alpha convergence and uniform convergence.
Proposition 5.5. Ifh, =3, h then h, =3 h, that is c"{* C c’;f.
Proof. Let ¢ > 0 be given. By uniform alpha convergence of (h,) to h, there exists 6 = 0(¢) > 0 and

ny = no(e) € IN such that for every t,w € X with d(t,w) < 6 and for all n > ny we have p (h,(t), h(w)) < e.
Here if we choose w = t then for all n > ng we have p (h,(t), h(t)) < e. O
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Remark 5.6. The reverse implication of Proposition 5.5 may not be true. Consider /1, : (0,1) = R, h,(t) = %
for every n € IN, with standard metric. It is clear that () is uniformly convergent to h(t) = % on (0,1) but

since h(t) = % is not uniformly continuous on (0, 1), it lacks of uniform alpha convergence on (0, 1).

Analogous to Lemma 2.2 (iii), we can write the following theorem:

Theorem 5.7. If h, =3 hand h € UC(YX) then h, =3, h.

Proof. Let € > 0 be given. By uniform convergence of (h,) to h, there exists 1y = np(e) € IN such that for all
n > ng and for all t € X we have p (h,(t), h(t)) < £/2. Also by uniform continuity of /i, there exists 6 = 6(¢) > 0
such that for all ¢, w € X with d(t, w) < 6 we have p (h(t), h(w)) < &/2. From here, we have

p (hu(t), h(w)) < p (ha(t), K(w)) + p (h(t), h(w)) < €.
for all n > ng and for all t,w € X with d(t,w) < 6. O

Remark 5.8. Even if (h,) is Cauchy alpha converges to a uniformly continuous function, the convergence
may not be uniform alpha therefore not uniformly. For example, let 1, : (0, ®0) — IR, defined by

hn(t):{n, t>n

t, t<n.

Itis clear that h, —, h, where h(t) = t. Obviously / is uniformly continuous on (0, o) while ki, 3, h. Hence
h, BB h.

Since the uniform limit of uniformly continuous functions is uniformly continuous, we have the follow-
ing result from the Theorem 5.7.

Proposition 5.9. If h, € UC(YX) for all n € N, and h,, =3 h then hy, =3, h.

Remark 5.10. The condition of uniform continuity in Proposition 5.9 can not be alleviated. Let#, : R — R,
ha(t) = 2. Tt is straightforward that (h,) is point-wise equicontinuous and uniformly convergent to the
function h(t) = * but it lacks of uniform alpha convergence from Proposition 4.4 because limit function is
not uniformly continuous.

Let us give a lemma that we will use in the proof of the next theorem without proof, since it is very clear.

Lemma 5.11. Let (t,) and (w,) are Cauchy sequences in X with property d(t,,w,) — 0. Then the sequence
(zn) = {t1, w1, t2, Wy, -+~ , ty, Wy, -+ -} is a Cauchy sequence.

Theorem 5.12. h, =3 hand h € CC(YX) then h, — 4 h.

Proof. Let (t,) and (w,) be arbitrary Cauchy sequences and ¢ > 0 be given. Since h, =3 h, there exists
ny = ny(¢) € N such that for all n > n; and for all t € X, we have p (h,(t), h(t)) < 5. By Cauchy continuity of
h and Lemma 5.11 there exists 1, = ny(¢) € IN such that for all n, m > ny, we have p (h(z,,), h(zx)) < 5. Hence
we have

p (h(tn), h(wy)) < P (hu(tn), h(tn)) + P (h(tn), h(wy)) < €
for all n > max{nq, nx}. O

Since the uniform limit of Cauchy continuous functions is Cauchy continuous, we have the following
result from the Theorem 5.12.

Corollary 5.13. Ifh, € CC(YX) for all n € N and h,, =3 h then h,, —, h.
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By imposing additional conditions such as compactness and totally boundedness on the domains of the
function sequences, it can be shown that the converse of the above-obtained propositions is true.

Theorem 5.14. Let X be a totally bounded set. If hy, —cq h then h, =3, h, that is ci?‘ = c;’f“
Proof. Let (h,) € ci? Assume that () ¢ o ie. there exist sequences (t,) and (w,) with d(t,, w,) — 0 such
that lim, .o p (h4(t,), h(w,)) # 0. Then, there exists ¢ > 0 such that for all k € IN there exists n; > k such

that p (hy, (ts,), h(wy,)) > e. Without loss of generality, we can assume that (1) is strictly increasing. From
the totally boundedness of the set X ensures the existence of Cauchy subsequences (tn;{) and (w,,;{) of the

sequences (t,,) and (wy,) [15]. Since d(t,, wy) — 0, from Lemma 3.3 we have p (hn;(tn;)/h(wn;)) — 0 when

I; 1—> oo which contradicts with the assumption. Consequently, the equality ¢ = ¢ii* holds by Proposition
A 0O

It is not sufficient for ¢f; = ¢i* equality to have the set X be totally bounded. Let us examine the example
below.

Example 5.15. Consider the example in Remark 5.4 (i), i, : (0,1) = R, h,(t) =1 -ntif 0 <t < 1/n and
h,(t) = 0 otherwise (n € IN). Although (h,) € Cir (hy) ¢ ¢, hence (h,) ¢ ¢

st/ sf °

By using Lemma 2.2 (i), (iii) and Theorem 5.7 with the fact contiunity of a function is uniform on compact
sets we have the following propositions.

Proposition 5.16. (i) Let X be a compact set. If hy, —, h then h, =3, h, that is c‘:f = cg‘;‘ = cﬁ‘f‘"
(ii) Let X be a compact set then ¢¢ . = ¢<% = ¢ = *4.
scf scf scf scf

An example of why the condition that the terms of sequences must be continuous functions should not
be removed from the Proposition 5.16 (ii) is given below.

Example 5.17. Let X = Ror X = [0,1]. h, : X —- Rand h,(t) = 0if 0 < t < 1/2 and h,(t) = 1 otherwise
(n € N). Then (hy) € ¢ but (h,) ¢ €G-

In the following, figures illustrating relationships between different types of convergence based on the
structure of the set X and the functions k, are given.

Remark 5.6
—
Proposition 5.5

Remark 5.6
——
—_—
Proposition 5.5

e ua
¢ ¢
sf scf
IS &S
Proposition 5.2 @ i Proposition 5.2
scf
/I II
Remark 5.4(ii) Remark 5.4(ii)

Figure 1: (h,) € sf Figure 2: (h,) € scf
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Proposition 5.16 (i)
—
—_—

Proposition 5.16 (ii)

ux
C: L
ST scf
Proposition 5.2 ca . Proposition 5.16 (ii) 6"}) cca
scf scf
Proposition 5.16 (i) Proposition 5.16 (i)
Figure 3: X compact and () € sf Figure 4: X compact and () € scf

6. Korovkin-type theorems

Let C(X) and UC(X) denote the spaces of continuous and uniformly continuous real-valued functions,
respectively, defined on a metric space X. Let B(X) denote the space of bounded functions defined on X. We
will be concerned with positive and linear operators defined on these spaces. The positivity of an operator
L is understood as the condition that for every positive function f, the function L(f) is also positive. Let
ex(t) = t5, where k € Ny := IN U {0} and t € R. For X = [a,b], we present the Korovkin’s Theorem to discuss
an approximation property of positive and linear operator sequences on C(X):

Theorem 6.1. [14] Let X = [a,b] and (L,) be a sequence of positive linear operators on C(X). If Ly(ex) =3 ex for
k=0,1,2 then L,(h) =3 h for all h € C(X).

Fort,x € X and r > 0, let d'(x) = [d(x, )]". We now state the Korovkin-type theorem for uniform alpha
convergence for metric spaces with using similar method in [1].

Theorem 6.2. Let X be a totally bounded set, and let (L,) be a sequence of positive linear operators on C(X). If the
conditions

(i) Ly(eo) Za €0 (i) L.(d)=,0
hold, then L, (h) =3, h for every h € UC(X).

Proof. Let h € UC(X) and € > 0 be given. Since & is uniformly continuous, there exists a 6 = 6(¢) > 0 such
that for every t, x € X satisfying d(f, x) < 6, we have

h(t) — h(x)| < %

Since h is uniformly continuous on the totally bounded set X, then h(X) C R is totally bounded, so is
bounded. Let M := sup,_y |i(t)|. Moreover, we have the inequality

|h(t) — h(x)] <2M < %dﬁ(x).

for d(t, x) > 6 and for r > 0. Thus, for every t,x € X

() = h(x)| < % + Z;\:Idﬁ. (1)
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holds. Since L;(ep) =3 €0, we have L,(ep) =3 ep, and there exists 1y = ng(e) € IN such that for every n > ny
and for all x € X,

€
L, (eg; x) — in{1, — .
|Ly(eo; x) — eg(x)| < mm{ 4M}
Similarly, since Ly(d)) =, 0, we have L,(d") =3 0, and there exists 11 = n1(€) € IN such that for every n > ny

and for all x € X,

€

¢,
L,(d,;x) < AN

By using the linearity and positivity properties with the inequality (1), we obtain
Ll = 0020 < 35 Laleor ) + et Ll ),
Thus, for every t,x € X with d(t, x) < 6 and n > max{ng, n1}, we have
|Ln(h; x) = h(t)] < |Ln(h; x) — h(x)| + [h(x) — h(t)]

< |Ln(h; x) = Lu(h(x); %)] + ILn(h(x); x) = h(x)] + |h(x) = h(D)]
< Lu(lh = h(x)l; x) + [h(x)] - L (e0; X) = eo()] + [h(x) — h(D)]
< $51Lu(e0; ) — eo(x)| + F La(d}; 1) + MILu(eo; X) = eo(x)] + 1(x) = h(D)] + 55
<5 1+B B L M-S+ E+ S =e

O

Remark 6.3. If X = [g, b] is equipped with the standard metric, the proof of Theorem 6.2 is easily seen with
the help of Proposition 5.5, Theorem 6.1 and Theorem 5.7.

Corollary 6.4. Let X be a totally bounded set, and let (L,,) be a sequence of positive linear operators on C(X). If the
conditions

(1) Lu(eo) =ca €0 (i) Lu(d)) >c 0
hold, then L, (h) — ¢, h for every h € CC(X).
Proof. Since the notion of Cauchy continuity of a function on a totally bounded set is equivalent to the

notion of uniform continuity, the proof of the corollary is easily obtained from Theorem 6.2 by considering
Theorem 5.14 and Proposition 5.1. [

Example 6.5. Let X = [0,1] and B,(l;x) = Y, (Z)h(%)xk(l — x)"*. Then for every h € UC([0,1]), the
sequence B, (h) uniformly alpha converges to / on [0, 1].
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