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Abstract. In this paper, we study the existence of torqued and anti-torqued vector fields on the hyperbolic
ambient space H". Although there are examples of proper torqued vector fields on open subsets of IH", we
prove that there is not a proper torqued vector field globally defined on H". Similarly, we have another
non-existence result for anti-torqued vector fields as long as their conformal scalar is a non-constant function
satisfying certain conditions. When the conformal scalar is constant, some examples of anti-torqued vector
fields are provided.

1. Introduction

Let (M, (,)) be a Riemannian manifold, w a 1-form and f a smooth function on M. Let also V be a
nowhere zero smooth vector field on M. In 1944, Yano [26] introduced a wide class of smooth vector fields
known as torse-forming vector fields. A torse-forming vector field V is defined by the property that

VeV = FX +0(X)V, VX eXM), (1)

where V? is the Levi-Civita connection on (M, (, )). We call the 1-form w and the function f the generating
form and conformal scalar (or potential function) of V, respectively (see [3, 22]). Denote by W the dual vector
field to w on M, i.e. (W, X) = w(X), for every X € X(M). We call ‘W the generative of V.

An immediate class among such vector fields appear when w is particularly assumed to be a zero 1-form
on M, which we call concircular vector fields [24, 25]. This class has remarkable applications in Physics
[5, 14, 18-21]. Similarly, we have the class of recurrent vector fields when f is identically zero [9].

Another class of torse-forming vector fields is the proper ones, i.e., the generating form and conformal
scalar are nowhere zero. More clearly, this condition means that there is not an open subset of M such
that w and f are identically zero. There are non-trivial examples of such vector fields in various ambient
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spaces. For every rotational hypersurface in the Euclidean n-dimensional space IR"” with the axis passing
through the origin, the tangential part of the position vector field ® is a proper torse-forming vector field
[8]. Another non-trivial example is on the hypersphere §"~1 of R"; if (x1, ..., x,,) are the canonical coordinates
of R*, then V = ¢ (d1 — x1P), with d; := d/dxy, is a proper torse-forming vector field on $"1[15].

In this paper, we are interested in two particular types of proper torse-forming vector fields, called
torqued and anti-torqued vector fields. In principle, these arise by emposing additional conditions on the
generative W. If V is a proper torse-forming vector field then these two types are defined based on whether
W is perpendicular or parallel to V.

More explicitly, Chen [6] defined a torqued vector field as a torse-forming vector field V with (V, W) =0
on M. It was proved that a twisted product of an open interval and a Riemannian (or Lorentzian) manifold
admits a torqued vector field (see [6]). Such vector fields were used to characterize Ricci solitons [7]. On
Einstein manifolds, every torqued vector field is proportional to a concircular vector field 7~ by a smooth
function A with 7A = 0 [7]. In addition, Deshmukh et al. proved that there is not a torqued vector field
globally defined on the two standard simply-connected models of Riemannian space forms, the sphere 5"
and the Euclidean space IR" [12]. In contrast, an example of such a vector field can be established on an open
subset of R” with nowhere vanishing conformal scalar [12]. Yoldas et al. [27] showed that a characteristic
vector field of a Kenmotsu manifold cannot be torqued. Submanifolds of Kenmotsu manifolds were also
characterized by using the torqued vector fields [27].

The second type of proper torse-forming vector fields that we focus on is the anti-torqued vector fields
introduced by Deshmukh et al. [11] (see also [4]). These are proper torse-forming vector fields with
W = —fV on M, which is contrary to the case of torqued vector fields with ‘W L V on M. Denote by v the
dual 1-form to V. Then, by (1), an anti-torqued vector field V fulfills

VoV = f(X—v(X)V), VX e XM). )

Since an anti-torqued vector field V is nowhere zero on M, its dual v is also nowhere vanishing. Therefore,
V is always proper as long as it is not parallel. In contrast, there are non-proper torqued vector fields that
are not parallel, e.g. concircular vector fields. In addition, there are anti-torqued vector fields V, where
YV = VY, for some smooth function g on M, which is not valid for the torqued vector fields. Anti-torqued
vector fields are also known as concurrent-recurrent vector fields when f is particularly assumed to be
a nonzero constant [23]. The necessary and sufficient condition for a Riemannian manifold to carry an
anti-torqued vector field is that it is locally a warped product I x, F, where [ is an open interval and F a
Riemannian manifold, as one can be seen in [2, Theorem 3.1] and [23, Theorem 3].

Assuming the existence of a vector field nowhere zero on Riemannian manifolds governs their geometry
and topology (see [2, 10-13, 15]). Motivated by this, first we study the problem of determining whether a
torqued vector field is globally defined on the third standard model H" of Riemannian space forms. The
same problem is also considered for the anti-torqued case.

This paper is organized as follows. After giving the basic concepts in Section 2 related to Riemannian
(sub)manifolds, we provide non-trivial examples of torqued and anti-torqued vector fields in Section 3.
Moreover, we have a non-existence result for proper torqued vector fields on Riemannian manifolds as
long as they are of constant length (Proposition 3.2). In contrast, there exist other torse-forming vector
fields of constant length on Riemannian manifolds (Propositions 3.5 and 3.6). In Section 4, we prove
that a proper torqued vector field with a nowhere zero conformal scalar cannot be globally defined on H"
(Theorem 4.1). Similarly, when the conformal scalar is a non-constant function satisfying certain conditions,
there is not an anti-torqued vector field globally defined on IH" (Theorem 4.2).

2. Preliminaries

Let (M, {,)) be a Riemannian manifold of dimension 7, and let V° the Levi-Civita connection of M. The
Riemannian curvature tensor is defined by

RX,V)Z=V3VWZ -VIVSZ -V Z, XY, Z € ¥(M),
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where [, ] is the bracket operation. Let I be a plane section of T,M with a given basis {x, y}. The sectional
curvature K(I') of I is defined by

(R(x, y)y, x)

Ko = ot m -

A Riemannian manifold IM"(c) is called a space form if K is a constant ¢ for every plane section at every
point. The standard simply-connected models of a Riemannian space form IM"(c) are the Euclidean space
R" = IM"(0), the sphere $" = M"(1) and the hyperbolic space H" = M"(-1).

There are several models for the hyperbolic ambient space, two of them are utilized in this paper. Let
(x1, ..., x,) be the canonical coordinates of IR". The first one is the upper half space model H" = {(x1, ..., x,) €
IR" : x,, > 0}, which is endowed with the metric

1y o
(Y= ) dd
Yn i3
Let R7*! be the Lorentz-Minkowski space endowed with the canocial Lorentzian metric

()= —dx% + fdx?.
i=2
Then, the second model that we concentrate on is the hyperboloid model
H" = {P = (x1, ..., Xy11) € RI* 1 (P, P) = —1}.
Let N be a submanifold in a Riemannian manifold M. The Gauss formula is given by
VY =VxY +h(X,Y), X Y€ X(N),

where V is the induced connection on N and & is the second fundamental form.

3. Some Examples and Results on Torqued and Anti-Torqued Vector Fields
Let V be a torqued vector field on a Riemannian manifold M, i.e.
VoV = fX+ 0(X)V, w(V)=0,

for every X € X(M). Assume that M is a twisted product I X, F, where I is an open interval and F a
Riemannian manifold, and p is a smooth function on F. From [7], it is known that

(V:Ay%, sel,

is always a torqued vector field tangent to I, where s is the arc-length parameter of 1.

If the ambient space M is a sphere or a Euclidean space, then such vector fields cannot be defined on M
globally [11, 12]. However, there are examples of proper torqued vector fields on open subsets of Euclidean
space (see [12, Example 1]) as well as of hyperbolic ambient spaces.

Example 3.1. We consider the hyperboloid model of H". If ® : H" — R*! is the standard isometric immersion,
then by the Gauss formula we write

VOY = VXY +(X, )@, X, Y € X(H"),
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where VO stands for the Levi-Civita connection of ]R’lq+1 and V the induced one on IH". Set T~ = Py + (Py, ®)D, where
Py # 0 is a fixed vector field in R"*'. From [16], it follows that

VT = (Po, )X, VX e X(H"). 3)

Next, we consider the function

— X1
g : M - H” - R/ (xll s x7‘1+1) = g(xl/ a4 x?’l+1) = ’
n+1

where
M = {(x1, .., X1) € H" : X120%0041 # 0,X1 # X1 ).

We set Py = dp and V = 9T . From (3), it follows that
VxV = e/(Py, ®)X + X(9)V, VX € X(M).

Defining f := e9(Py, ®) and w := dg, the above expression becomes
ViV = fX +0(X)V, VX e XM).

Because V(g) = 0, we conclude a)((V)~: 0, which implies that V is a torqued vector field on M. Next, we show that
V is a proper torqued vector field on M. The conformal scalar of V is given by

f(x1/ [ er—l) = xzexl/x”*'l,

which is clearly nowhere zero on M. Moreover, the generating form of V is

1

X1 ~
dx, — z—dx,,+1 # 0 on M.
Xn+1

n+l

w =

Consequently, V is proper torqued vector field on M.

On any Riemannian manifold, we have a non-existence result for a proper torqued vector field when it
is of constant length. See also [1, Theorem 3].

Proposition 3.2. A proper torqued vector field on a Riemannian manifold is never of constant length.
Proof. Let V be a torqued vector field on a Riemannian manifold M, i.e.

VeV = FX +o(X)V, o(V)=0,
for every X € X(M). By contradiction, assume that

0= X(VI) = FIVITUX, V) + VKX, W), VX eXM),

where ‘W is generative of V. Writing X = V and X = ‘W, we see that f and w are identically zero, which is
not possible. [

Let V be an anti-torqued vector field on a Riemannian manifold M. If M is a Euclidean space, then there
are examples of V globally defined on M but not on a sphere (see [11]). Next we give an example of V
when M is the hyperbolic space IH".
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Example 3.3. In the upper-half space model of IH", an orthonormal basis {es, ..., e,} can be chosen as
ej=x,0j, e =-Xy0y, j=1,.,n-1

The Levi-Civita connection gives, fori=1,..,nand j=1,..,n -1,
Vg]_en =e, Vie,=0, Viej=0(#j), Vg]_e]- = —e,.

It is easy to see that e, is an anti-torqued vector field, namely
Voen = X — (X, enden, VX € X(H"),

where the conformal scalar is identically 1.

Similarly to Example 3.1, on open subsets of H", we also may have other examples of anti-torqued
vector fields.

Example 3.4. As in Example 3.1, we consider the hyperboloid model of H". We introduce
1

4
Xn+1

g: M cH"c ]I{?Fl - R/ (xll (Y xn+1) = g(xll ey xn+1) =

where
M = {(x1, o Xp41) € H" : X041 # O},

We set Py = dy1, T = Py + (Po, P)P = dps1 + X411 D, and V = g7, where @ is the position vector field of ]R;‘*l.

We will show that V is an anti-torqued vector field on M. Let V be the induced Levi-Civita connection on H" from
R"*1. Since we know that

VxT =(Py, P)X, VX e X(H"),
the following expression occurs

1

Xn+1

VX(V =

(Po, D)X + X( L )T, VX € X(M),
Xn+1
or equivalently

1

Xn+1

ViV = X + X( )T, VX € X(M). @)

A direct calculation gives

x( ! ):—%(Po,m.

Xn+1 el

Since (D, X) = 0 for every X € X(IH"), we have
<P0/ X> = <P0 + <P0! q)>q)/ X> = <T/ X>I VX € %(Hn)

Writing in Equation (4), we obtain

VX(V=X—< ! T,X>( ! T), X € X(M)

Xn+1 Xn+1

or equivalently
VxV =X~ (V,X)V, VXeXM),

which implies that V is an anti-torqued vector field on M c H" with constant conformal scalar 1.
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In contrast to Proposition 3.2, there are examples of anti-torqued vector fields of constant length on a
Riemannian manifold M as in Example 3.3. Moreover, if an anti-torqued vector field V on M is of constant
length, then it must be a unit geodesic vector field. Recall that a smooth vector field 7 on a Riemannian
manifold is called a unit geodesic vector field if V?r’/" = 0. Hence, if V is a non-parallel anti-torqued vector
field whose length is a nonzero constant, then we have

0=X(V) = AV (A = [VPX, V), VX € ¥(M),

which implies |'V| = 1. It then follows from (2) that V?V‘V =0.
Therefore, we have proved

Proposition 3.5. An anti-torqued vector field of constant length on a Riemannian manifold is always a unit geodesic
vector field.

Notice that Proposition 3.5 is not valid for any proper torqued vector field V due to Proposition 3.2.
Moreover, otherwise it follows from (1) that

0=V,V = fV +w(V)V,

or equivalently fV = 0, which is not possible. On the contrary, every proper torqued vector field is always
a non-trivial geodesic vector field whose potential function is the conformal scalar f of V (see [13]).
A final conclusion regarding the torse-forming vector fields of constant length is the following.

Proposition 3.6. If a proper torse-forming vector field V on a Riemannian manifold is of constant length, then it is
parallel to the generative. Particularly, every unit torse-forming vector field is an anti-torqued vector field.

Proof. Let V be a torse-forming vector field on a Riemannian manifold M of constant length [V| > 0, and
let 1 be the dual of V. Using (1), we have

0=(V3V, V)= (X, V) +|VP,w(X), YXeIZM),
or equivalently w = —|V|2 fu. This means that V is parallel to its generative. Moreover, if ['V| = 1, then it
is an anti-torqued vector field. O
4. Non-Existence Results on (Anti-)Torqued Vector Fields on H"

From [12], we know that there are no proper torqued vector fields globally defined on a sphere and on a
Euclidean ambient space. In this section, we establish a similar non-existence result for those vector fields
on the other standard complete simply-connected model of Riemannian space forms, more precisely on
hyperbolic spaces.

Theorem 4.1. There is not a proper torqued vector field globally defined on H" with a conformal scalar f that is
nowhere zero.

Proof. The proof is by contradiction. Suppose that V is a proper torqued vector field globally defined on
H". Then, we have

VeV = X +0o(X)V, @(V)=0, YXeXM). (5)

By assumption, the conformal scalar f is nowhere zero on IH". Denote by ‘W the generative of V which is
dual to the generating form w. Since w(V) = 0, we conclude that V L “W. The curvature tensor of H" is

R YY)V =(XWV)Y -, V)X, VXY eX(H"). (6)
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From (5), it follows that
RX, Y)V = VY(fY + o(Y)V) = VU(fX + oX)V) - fIX, Y] - 0([X, YV
= [=Y(f) + fFoWIX + (X() — fo(XNY + dw(X, Y)V.
By (6) and the above equation, we have
X, VY = (V)X = (<Y(f) + fo(V)X + (X() = faoXNY +dw(X, Y)V. 7)

Since this identity holds for every X,Y € X(IH"), so does a linearly independent triple {X,Y,V}. Then, it
must be dw = 0. By (7), we conclude

(X, V)= X(f) - fo(X), YXeX(H,
which implies

X, V-Vf+fW)y=0 VXeXMH"),
or equivalently

Vf=V+ fW.

Suppose that Vf(p) = 0, for some point p € X(H"). Since f is nowhere zero, it follows that f(p) # 0, and
hence V and ‘W would be linearly dependent at p, which contradicts the fact that V L ‘W. Consequently,
we are able to suppose that Vf(p) # 0, for every point p € IH". Then, f : H" — R is a submersion and every
level set , = f1{f(p)} is a compact submanifold of dimension 1 — 1 (see [17]). Introduce a vector field
T € X(H")

Vf(p)
(VEp), Vi)

It is direct to observe that 7 (f) = 1 and so the local one-parameter group of local transformations {¢;} of 7~
satisfies

T(pip) = fp) +1, tER (8)

Using escape Lemma (see [17]) and expression (8), we understand that 7 is a complete vector field and {¢;}
is one-parameter group of transformations of IH". We next define a smooth function

T(p) = € H".

g R % Zx - H"’ g(t’ q) = (pt(q)
Notice that
Pt © Pty = Pty+tyr t1,t € R

Then, for every g € H", we can find a parameter t € R and a point ¢(q) = ¢’ € X, with g = p_(g'), yielding
that g(—t,q’) = q. Also, if g(t1,q1) = g(t2,q2), then

P (1) = ¢n(q2) )
and expression (8) gives
flqn) + 1= f(g2) + L.

Due to q1,92 € Ly and t,f; € R, we see that f(g1) = f(2) and t; = t, namely from (9) it follows q; = g».
Hence g is a one-to-one and onto mapping with its inverse

7@) = (-t,9) = (-t :(q)).

Consequently, we observe that R X X, is diffeomorphic to H", implying X, is diffeomorphic to H".
This is not possible because X, is a compact subset of H". [
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Although there is no an anti-torqued vector field globally defined on a sphere (see [11]), there are exam-
ples in Euclidean and hyperbolic ambient spaces, as mentioned in Section 3. Moreover, in 3-dimensional
setting, if the metric of a Riemannian manifold admitting an anti-torqued vector field with constant confor-
mal scalar is Ricci soliton (or gradient Ricci almost soliton), then it is of constant negative curvature [23].
However, as long as the conformal scalar is a non-constant function satisfying certain conditions, we obtain
a non-existence result for globally defined anti-torqued vector fields on H".

Theorem 4.2. There is not an anti-torqued vector field globally defined on IH" whose conformal scalar is non-constant
and nowhere takes values —1,0, or 1.

Proof. By contradiction suppose that V is an anti-torqued vector field on IH". Using (2), we have
RX V)V = ~{Y(f) + frWIX +{X(f) + v + {=X(Hv(Y) + Y(FHu(X) +dv(X, VIV
By (6) and the above equation, we have
XV = V)X = ~{Y(f) + FrOIX + (X(f) + FrX)hY
H=X()rY) + Y(/)ir(X) + dv(X, Y)}V.
Assume that {X, Y, V} is a linearly independent set. Then, using v(X) = (X, V),

X(f)+(f2 - 1)vx) =0,

Y() + (2 - 1)v(¥) =0,
=X(HHiv(Y) + Y(f)v(X) +dv(X, Y) =0,
for every X, Y € X(IH"). Obviously, we have dv = 0 and

Vf=(1-fV.

By the hypothesis, f is non-constant and so we may assume Vf(p) # 0 for every p € H" such that
f(p) # £1. The proof can be completed by following the same way as in that of Theorem. 4.1. [
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