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Abstract. In this paper, we study the existence of torqued and anti-torqued vector fields on the hyperbolic
ambient spaceHn. Although there are examples of proper torqued vector fields on open subsets ofHn, we
prove that there is not a proper torqued vector field globally defined on Hn. Similarly, we have another
non-existence result for anti-torqued vector fields as long as their conformal scalar is a non-constant function
satisfying certain conditions. When the conformal scalar is constant, some examples of anti-torqued vector
fields are provided.

1. Introduction

Let (M, ⟨, ⟩) be a Riemannian manifold, ω a 1-form and f a smooth function on M. Let also V be a
nowhere zero smooth vector field on M. In 1944, Yano [26] introduced a wide class of smooth vector fields
known as torse-forming vector fields. A torse-forming vector fieldV is defined by the property that

∇
0
XV = f X + ω(X)V, ∀X ∈ X(M), (1)

where ∇0 is the Levi-Civita connection on (M, ⟨, ⟩). We call the 1-form ω and the function f the generating
form and conformal scalar (or potential function) ofV, respectively (see [3, 22]). Denote byW the dual vector
field to ω on M, i.e. ⟨W,X⟩ = ω(X), for every X ∈ X(M). We callW the generative ofV.

An immediate class among such vector fields appear whenω is particularly assumed to be a zero 1-form
on M, which we call concircular vector fields [24, 25]. This class has remarkable applications in Physics
[5, 14, 18–21]. Similarly, we have the class of recurrent vector fields when f is identically zero [9].

Another class of torse-forming vector fields is the proper ones, i.e., the generating form and conformal
scalar are nowhere zero. More clearly, this condition means that there is not an open subset of M such
that ω and f are identically zero. There are non-trivial examples of such vector fields in various ambient
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spaces. For every rotational hypersurface in the Euclidean n-dimensional space Rn with the axis passing
through the origin, the tangential part of the position vector field Φ is a proper torse-forming vector field
[8]. Another non-trivial example is on the hypersphere Sn−1 ofRn; if (x1, ..., xn) are the canonical coordinates
of Rn, thenV = e−x1 (∂1 − x1Φ),with ∂1 := ∂/∂x1, is a proper torse-forming vector field on Sn−1 [15].

In this paper, we are interested in two particular types of proper torse-forming vector fields, called
torqued and anti-torqued vector fields. In principle, these arise by emposing additional conditions on the
generativeW. IfV is a proper torse-forming vector field then these two types are defined based on whether
W is perpendicular or parallel toV.

More explicitly, Chen [6] defined a torqued vector field as a torse-forming vector fieldVwith ⟨V,W⟩ = 0
on M. It was proved that a twisted product of an open interval and a Riemannian (or Lorentzian) manifold
admits a torqued vector field (see [6]). Such vector fields were used to characterize Ricci solitons [7]. On
Einstein manifolds, every torqued vector field is proportional to a concircular vector field T by a smooth
function λ with Tλ = 0 [7]. In addition, Deshmukh et al. proved that there is not a torqued vector field
globally defined on the two standard simply-connected models of Riemannian space forms, the sphere Sn

and the Euclidean spaceRn [12]. In contrast, an example of such a vector field can be established on an open
subset of Rn with nowhere vanishing conformal scalar [12]. Yoldas et al. [27] showed that a characteristic
vector field of a Kenmotsu manifold cannot be torqued. Submanifolds of Kenmotsu manifolds were also
characterized by using the torqued vector fields [27].

The second type of proper torse-forming vector fields that we focus on is the anti-torqued vector fields
introduced by Deshmukh et al. [11] (see also [4]). These are proper torse-forming vector fields with
W = − fV on M, which is contrary to the case of torqued vector fields withW ⊥V on M. Denote by ν the
dual 1-form toV. Then, by (1), an anti-torqued vector fieldV fulfills

∇
0
XV = f (X − ν(X)V), ∀X ∈ X(M). (2)

Since an anti-torqued vector fieldV is nowhere zero on M, its dual ν is also nowhere vanishing. Therefore,
V is always proper as long as it is not parallel. In contrast, there are non-proper torqued vector fields that
are not parallel, e.g. concircular vector fields. In addition, there are anti-torqued vector fields V, where
V = ∇01, for some smooth function 1 on M, which is not valid for the torqued vector fields. Anti-torqued
vector fields are also known as concurrent-recurrent vector fields when f is particularly assumed to be
a nonzero constant [23]. The necessary and sufficient condition for a Riemannian manifold to carry an
anti-torqued vector field is that it is locally a warped product I ×λ F, where I is an open interval and F a
Riemannian manifold, as one can be seen in [2, Theorem 3.1] and [23, Theorem 3].

Assuming the existence of a vector field nowhere zero on Riemannian manifolds governs their geometry
and topology (see [2, 10–13, 15]). Motivated by this, first we study the problem of determining whether a
torqued vector field is globally defined on the third standard model Hn of Riemannian space forms. The
same problem is also considered for the anti-torqued case.

This paper is organized as follows. After giving the basic concepts in Section 2 related to Riemannian
(sub)manifolds, we provide non-trivial examples of torqued and anti-torqued vector fields in Section 3.
Moreover, we have a non-existence result for proper torqued vector fields on Riemannian manifolds as
long as they are of constant length (Proposition 3.2). In contrast, there exist other torse-forming vector
fields of constant length on Riemannian manifolds (Propositions 3.5 and 3.6). In Section 4, we prove
that a proper torqued vector field with a nowhere zero conformal scalar cannot be globally defined onHn

(Theorem 4.1). Similarly, when the conformal scalar is a non-constant function satisfying certain conditions,
there is not an anti-torqued vector field globally defined onHn (Theorem 4.2).

2. Preliminaries

Let (M, ⟨, ⟩) be a Riemannian manifold of dimension n, and let ∇0 the Levi-Civita connection of M. The
Riemannian curvature tensor is defined by

R(X,Y)Z = ∇0
X∇

0
YZ − ∇0

Y∇
0
XZ − ∇0

[X,Y]Z, X,Y,Z ∈ X(M),
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where [, ] is the bracket operation. Let Γ be a plane section of TpM with a given basis {x, y}. The sectional
curvature K(Γ) of Γ is defined by

K(x, y) =
⟨R(x, y)y, x⟩

⟨x, x⟩⟨y, y⟩ − ⟨x, y⟩2
.

A Riemannian manifoldMn(c) is called a space form if K is a constant c for every plane section at every
point. The standard simply-connected models of a Riemannian space formMn(c) are the Euclidean space
Rn =Mn(0), the sphere Sn =Mn(1) and the hyperbolic spaceHn =Mn(−1).

There are several models for the hyperbolic ambient space, two of them are utilized in this paper. Let
(x1, ..., xn) be the canonical coordinates of Rn. The first one is the upper half space modelHn = {(x1, ..., xn) ∈
Rn : xn > 0},which is endowed with the metric

⟨, ⟩ =
1
x2

n

n∑
i=1

dx2
i .

Let Rn+1
1 be the Lorentz-Minkowski space endowed with the canocial Lorentzian metric

⟨, ⟩ = −dx2
1 +

n+1∑
i=2

dx2
i .

Then, the second model that we concentrate on is the hyperboloid model

Hn = {P = (x1, ..., xn+1) ∈ Rn+1
1 : ⟨P,P⟩ = −1}.

Let N be a submanifold in a Riemannian manifold M. The Gauss formula is given by

∇
0
XY = ∇XY + h(X,Y), X,Y ∈ X(N),

where ∇ is the induced connection on N and h is the second fundamental form.

3. Some Examples and Results on Torqued and Anti-Torqued Vector Fields

LetV be a torqued vector field on a Riemannian manifold M, i.e.

∇
0
XV = f X + ω(X)V, ω(V) = 0,

for every X ∈ X(M). Assume that M is a twisted product I ×λ F, where I is an open interval and F a
Riemannian manifold, and µ is a smooth function on F. From [7], it is known that

V = λµ
∂
∂s
, s ∈ I,

is always a torqued vector field tangent to I, where s is the arc-length parameter of I.
If the ambient space M is a sphere or a Euclidean space, then such vector fields cannot be defined on M

globally [11, 12]. However, there are examples of proper torqued vector fields on open subsets of Euclidean
space (see [12, Example 1]) as well as of hyperbolic ambient spaces.

Example 3.1. We consider the hyperboloid model of Hn. If Φ : Hn
→ Rn+1

1 is the standard isometric immersion,
then by the Gauss formula we write

∇
0
XY = ∇XY + ⟨X,Y⟩Φ, X,Y ∈ X(Hn),
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where ∇0 stands for the Levi-Civita connection ofRn+1
1 and ∇ the induced one onHn. Set T = P0 + ⟨P0,Φ⟩Φ, where

P0 , 0 is a fixed vector field in Rn+1
1 . From [16], it follows that

∇XT = ⟨P0,Φ⟩X, ∀X ∈ X(Hn). (3)

Next, we consider the function

1 : M̃ ⊂Hn
→ R, (x1, ..., xn+1) 7→ 1(x1, ..., xn+1) =

x1

xn+1
,

where

M̃ = {(x1, ..., xn+1) ∈Hn : x1x2xn+1 , 0, x1 , xn+1}.

We set P0 = ∂2 andV = e1T . From (3), it follows that

∇XV = e1⟨P0,Φ⟩X + X(1)V, ∀X ∈ X(M̃).

Defining f := e1⟨P0,Φ⟩ and ω := d1, the above expression becomes

∇XV = f X + ω(X)V, ∀X ∈ X(M̃).

BecauseV(1) = 0, we conclude ω(V) = 0, which implies thatV is a torqued vector field on M̃. Next, we show that
V is a proper torqued vector field on M̃. The conformal scalar ofV is given by

f (x1, ..., xn+1) = x2ex1/xn+1 ,

which is clearly nowhere zero on M̃. Moreover, the generating form ofV is

ω =
1

xn+1
dx1 −

x1

x2
n+1

dxn+1 , 0 on M̃.

Consequently,V is proper torqued vector field on M̃.

On any Riemannian manifold, we have a non-existence result for a proper torqued vector field when it
is of constant length. See also [1, Theorem 3].

Proposition 3.2. A proper torqued vector field on a Riemannian manifold is never of constant length.

Proof. LetV be a torqued vector field on a Riemannian manifold M, i.e.

∇
0
XV = f X + ω(X)V, ω(V) = 0,

for every X ∈ X(M). By contradiction, assume that

0 = X(|V|) = f |V|−1
⟨X,V⟩ + |V|⟨X,W⟩, ∀X ∈ X(M),

whereW is generative ofV. Writing X =V and X =W, we see that f and ω are identically zero, which is
not possible.

LetV be an anti-torqued vector field on a Riemannian manifold M. If M is a Euclidean space, then there
are examples of V globally defined on M but not on a sphere (see [11]). Next we give an example of V
when M is the hyperbolic spaceHn.
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Example 3.3. In the upper-half space model ofHn, an orthonormal basis {e1, ..., en} can be chosen as

e j = xn∂ j, en = −xn∂n, j = 1, ...,n − 1.

The Levi-Civita connection gives, for i = 1, ...,n and j = 1, ...,n − 1,

∇
0
e j

en = e j, ∇
0
en

en = 0, ∇0
ei

e j = 0 (i , j), ∇0
e j

e j = −en.

It is easy to see that en is an anti-torqued vector field, namely

∇
0
Xen = X − ⟨X, en⟩en, ∀X ∈ X(Hn),

where the conformal scalar is identically 1.

Similarly to Example 3.1, on open subsets of Hn, we also may have other examples of anti-torqued
vector fields.

Example 3.4. As in Example 3.1, we consider the hyperboloid model ofHn. We introduce

1 : M̃ ⊂Hn
⊂ Rn+1

1 → R, (x1, ..., xn+1) 7→ 1(x1, ..., xn+1) =
1

xn+1
,

where

M̃ = {(x1, ..., xn+1) ∈Hn : xn+1 , 0}.

We set P0 = ∂n+1, T = P0 + ⟨P0,Φ⟩Φ = ∂n+1 + xn+1Φ, and V = 1T , where Φ is the position vector field of Rn+1
1 .

We will show thatV is an anti-torqued vector field on M̃. Let ∇ be the induced Levi-Civita connection onHn from
Rn+1

1 . Since we know that

∇XT = ⟨P0,Φ⟩X, ∀X ∈ X(Hn),

the following expression occurs

∇XV =
1

xn+1
⟨P0,Φ⟩X + X

( 1
xn+1

)
T , ∀X ∈ X(M̃),

or equivalently

∇XV = X + X
( 1

xn+1

)
T , ∀X ∈ X(M̃). (4)

A direct calculation gives

X
( 1

xn+1

)
= −

1
x2

n+1

⟨P0,X⟩.

Since ⟨Φ,X⟩ = 0 for every X ∈ X(Hn), we have

⟨P0,X⟩ = ⟨P0 + ⟨P0,Φ⟩Φ,X⟩ = ⟨T ,X⟩, ∀X ∈ X(Hn).

Writing in Equation (4), we obtain

∇XV = X −
〈 1

xn+1
T ,X

〉 ( 1
xn+1
T

)
, X ∈ X(M̃)

or equivalently

∇XV = X − ⟨V,X⟩V, ∀X ∈ X(M̃),

which implies thatV is an anti-torqued vector field on M̃ ⊂Hn with constant conformal scalar 1.
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In contrast to Proposition 3.2, there are examples of anti-torqued vector fields of constant length on a
Riemannian manifold M as in Example 3.3. Moreover, if an anti-torqued vector fieldV on M is of constant
length, then it must be a unit geodesic vector field. Recall that a smooth vector field T on a Riemannian
manifold is called a unit geodesic vector field if ∇0

T
T = 0. Hence, ifV is a non-parallel anti-torqued vector

field whose length is a nonzero constant, then we have

0 = X(|V|) = f |V|−1(1 − |V|2)⟨X,V⟩, ∀X ∈ X(M),

which implies |V| = 1. It then follows from (2) that ∇0
V
V = 0.

Therefore, we have proved

Proposition 3.5. An anti-torqued vector field of constant length on a Riemannian manifold is always a unit geodesic
vector field.

Notice that Proposition 3.5 is not valid for any proper torqued vector field V due to Proposition 3.2.
Moreover, otherwise it follows from (1) that

0 = ∇0
V
V = fV + ω(V)V,

or equivalently fV = 0, which is not possible. On the contrary, every proper torqued vector field is always
a non-trivial geodesic vector field whose potential function is the conformal scalar f ofV (see [13]).

A final conclusion regarding the torse-forming vector fields of constant length is the following.

Proposition 3.6. If a proper torse-forming vector fieldV on a Riemannian manifold is of constant length, then it is
parallel to the generative. Particularly, every unit torse-forming vector field is an anti-torqued vector field.

Proof. Let V be a torse-forming vector field on a Riemannian manifold M of constant length |V| > 0, and
let µ be the dual ofV. Using (1), we have

0 = ⟨∇0
XV,V⟩ = f ⟨X,V⟩ + |V|2ω(X), ∀X ∈ X(M),

or equivalently ω = −|V|−2 fµ. This means thatV is parallel to its generative. Moreover, if |V| = 1, then it
is an anti-torqued vector field.

4. Non-Existence Results on (Anti-)Torqued Vector Fields onHn

From [12], we know that there are no proper torqued vector fields globally defined on a sphere and on a
Euclidean ambient space. In this section, we establish a similar non-existence result for those vector fields
on the other standard complete simply-connected model of Riemannian space forms, more precisely on
hyperbolic spaces.

Theorem 4.1. There is not a proper torqued vector field globally defined on Hn with a conformal scalar f that is
nowhere zero.

Proof. The proof is by contradiction. Suppose that V is a proper torqued vector field globally defined on
Hn. Then, we have

∇
0
XV = f X + ω(X)V, ω(V) = 0, ∀X ∈ X(M). (5)

By assumption, the conformal scalar f is nowhere zero onHn. Denote byW the generative ofV which is
dual to the generating form ω. Since ω(V) = 0, we conclude thatV ⊥W. The curvature tensor ofHn is

R(X,Y)V = ⟨X,V⟩Y − ⟨Y,V⟩X, ∀X,Y ∈ X(Hn). (6)
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From (5), it follows that

R(X,Y)V = ∇0
X( f Y + ω(Y)V) − ∇0

Y( f X + ω(X)V) − f [X,Y] − ω([X,Y])V
= {−Y( f ) + fω(Y)}X + {X( f ) − fω(X)}Y + dω(X,Y)V.

By (6) and the above equation, we have

⟨X,V⟩Y − ⟨Y,V⟩X = {−Y( f ) + fω(Y)}X + {X( f ) − fω(X)}Y + dω(X,Y)V. (7)

Since this identity holds for every X,Y ∈ X(Hn), so does a linearly independent triple {X,Y,V}. Then, it
must be dω = 0. By (7), we conclude

⟨X,V⟩ = X( f ) − fω(X), ∀X ∈ X(Hn),

which implies

⟨X,V−∇ f + fW⟩ = 0, ∀X ∈ X(Hn),

or equivalently

∇ f =V + fW.

Suppose that ∇ f (p) = 0, for some point p ∈ X(Hn). Since f is nowhere zero, it follows that f (p) , 0, and
henceV andW would be linearly dependent at p, which contradicts the fact thatV ⊥W. Consequently,
we are able to suppose that ∇ f (p) , 0, for every point p ∈Hn. Then, f :Hn

→ R is a submersion and every
level set Σx = f−1

{ f (p)} is a compact submanifold of dimension n − 1 (see [17]). Introduce a vector field
T ∈ X(Hn)

T (p) =
∇ f (p)

⟨∇ f (p),∇ f (p)⟩
, p ∈Hn.

It is direct to observe that T ( f ) = 1 and so the local one-parameter group of local transformations {φt} of T
satisfies

T (φt(p)) = f (p) + t, t ∈ R. (8)

Using escape Lemma (see [17]) and expression (8), we understand that T is a complete vector field and {φt}

is one-parameter group of transformations ofHn.We next define a smooth function

1 : R × Σx →H
n, 1(t, q) = φt(q).

Notice that

φt1 ◦ φt2 = φt1+t2 , t1, t2 ∈ R.

Then, for every q ∈Hn, we can find a parameter t ∈ R and a point φt(q) = q′ ∈ Σx with q = φ−t(q′), yielding
that 1(−t, q′) = q. Also, if 1(t1, q1) = 1(t2, q2), then

φt1 (q1) = φt2 (q2) (9)

and expression (8) gives

f (q1) + t1 = f (q2) + t2.

Due to q1, q2 ∈ Σx and t1, t2 ∈ R, we see that f (q1) = f (q2) and t1 = t2, namely from (9) it follows q1 = q2.
Hence 1 is a one-to-one and onto mapping with its inverse

1−1(q) = (−t, q′) = (−t, φt(q)).

Consequently, we observe that R × Σx is diffeomorphic to Hn, implying Σx is diffeomorphic to Hn−1.
This is not possible because Σx is a compact subset ofHn.
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Although there is no an anti-torqued vector field globally defined on a sphere (see [11]), there are exam-
ples in Euclidean and hyperbolic ambient spaces, as mentioned in Section 3. Moreover, in 3-dimensional
setting, if the metric of a Riemannian manifold admitting an anti-torqued vector field with constant confor-
mal scalar is Ricci soliton (or gradient Ricci almost soliton), then it is of constant negative curvature [23].
However, as long as the conformal scalar is a non-constant function satisfying certain conditions, we obtain
a non-existence result for globally defined anti-torqued vector fields onHn.

Theorem 4.2. There is not an anti-torqued vector field globally defined onHn whose conformal scalar is non-constant
and nowhere takes values −1, 0, or 1.

Proof. By contradiction suppose thatV is an anti-torqued vector field onHn. Using (2), we have

R(X,Y)V = −{Y( f ) + f 2ν(Y)}X + {X( f ) + f 2ν(X)}Y + {−X( f )ν(Y) + Y( f )ν(X) + dν(X,Y)}V.

By (6) and the above equation, we have

⟨X,V⟩Y − ⟨Y,V⟩X = −{Y( f ) + f 2ν(Y)}X + {X( f ) + f 2ν(X)}Y
+{−X( f )ν(Y) + Y( f )ν(X) + dν(X,Y)}V.

Assume that {X,Y,V} is a linearly independent set. Then, using ν(X) = ⟨X,V⟩,

X( f ) +
(

f 2
− 1
)
ν(X) = 0,

Y( f ) +
(

f 2
− 1
)
ν(Y) = 0,

−X( f )ν(Y) + Y( f )ν(X) + dν(X,Y) = 0,

for every X,Y ∈ X(Hn). Obviously, we have dν = 0 and

∇ f = (1 − f 2)V.

By the hypothesis, f is non-constant and so we may assume ∇ f (p) , 0 for every p ∈ Hn such that
f (p) , ±1. The proof can be completed by following the same way as in that of Theorem. 4.1.
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[16] P. Lucas, J. A. Ortega-Yagües, Concircular hypersurfaces and concircular helices in space forms, Mediterr. J. Math. 20(6) (2023), Art. no.

320.
[17] J. M. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, 218. Springer-Verlag, New York, 2003.
[18] C. A. Mantica, L. G. Molinari, On the Weyl and Ricci tensors of generalized Robertson-Walker space-times, J. Math. Phys. 57(10) (2016),

Art. no. 102502.
[19] C. A. Mantica, L. G. Molinari, Generalized Robertson-Walker space times, a survey, Int. J. Geom. Methods Mod. Phys. 14(03) (2017),

Art. no. 1730001.
[20] C. A. Mantica, L. G. Molinari, Twisted Lorentzian manifolds: a characterization with torse-forming time-like unit vectors, Gen. Relativ.

Gravit. 49 (2017), Art. no. 51.
[21] C. A. Mantica, L. G. Molinari, A note on concircular structure space-times, Commun. Korean Math. Soc. 34(2) (2019), 633-635.
[22] A. Mihai, I. Mihai, Torse forming vector fields and exterior concurrent vector fields on Riemannian manifolds and applications, J. Geom.

Phys. 73 (2013), 200–208.
[23] D. M. Naik, Ricci solitons on Riemannian manifolds admitting certain vector field, Ricerche Mat. 73(1) (2024), 531–546.
[24] A. A. Shaikh, On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J. 43(2) (2003),

305–314.
[25] K. Yano, Concircular geometry I. Concircular transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195–200.
[26] K. Yano, On torse-forming direction in a Riemannian space, Proc. Imp. Acad. Tokyo 20 (1944), 340–345.
[27] H. I. Yoldas, S. E. Meric, E. Yasar, On submanifolds of Kenmotsu manifold with torqued vector field, Hacet. J. Math. Stat. 49(2) (2020),

843–853.


