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Abstract. This paper investigates the existence of weak solution for a class of nonlinear singular elliptic
problem of Schrédinger type involving the p(x)-Laplacian operator in a bounded domain in RN. Under
certain additional assumptions on the nonlinearities, the corresponding functional satisfies the Palais-
Smale condition. Then, by applying the Mountain Pass Theorem, we can demonstrate the existence of
weak solution for the considered problem.

1. Introduction

Let Q be a smooth bounded domain in RN(N > 2), with a Lipschitz boundary denoted by dQ. In
this paper, we investigate the existence of weak solution of the following singularity elliptic problem of
Schrodinger type

—Aptt + = AV 1920+ pf () inQ,

[xl?
u=0 on 99,
where
o Apyu = div (IVuIP(X)‘ZVu), denotes p(x)-Laplacian operator
e f: QxR — Ris a Carathéodory function

e The potential V : O — IR is measurable and positive a.e. in {2
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e pand g are reals functions satisfying p(x), g(x) € C.(Q)
e A, u are the reals parameters
o 1 <s<p(x)<oo.

Problems with the p(x)-Laplacian operator is a significant topic in the theory of partial differential equations
and has been studied by many researchers [4-6, 13, 14, 16]. These issues arise from various fields of applied
mathematics and physics, such as elastic mechanics, electrorheological fluids, and image restoration.

The solution of elliptic problems with the p(x)-Laplacian without singularity has been studied by
several authors (see for example [1, 2, 17, 18]). In [8], the authors studied a type of singular elliptic problems
involving the p(x)-Laplacian operator, but with subcristal Sobolev-Hardy exponents.

The paper is divided into tree parts. In Section 2, We present basic results for Lebesgue-Sobolev variable
exponent spaces and the Mountain Pass Theorem, which we will use to address our problem. In Section 3,
we prove the existence of weak solutions for the problem (1), by presenting several lemmas.

2. Definitions and preliminary results

2.1. Generalized Lebesgue-Sobolev spaces

In this section, we present some definitions and properties of Lebesgue-Sobolev spaces with variable
exponents, commonly known as generalized Sobolev spaces (see for example [9, 11]). Let

Co(Q) ={p e C(Q) : p(x) > 1, for every x € Q.
For every p € C,(Q)), we define
pt = max {p(x) € Q} and p~ = min {p(x) € Q}.

We define the generalized Lebesgue space L'™(Q) by

Q) = {v Q- R, f lo(x)PPdx < oo}
Q

equipped with the Luxemburg norm

ol = inf (> 0 [ |72 Vx <),
Q

We define by L(€) the subset of L*(Q), of expression:
LY(Q) = {p e L*(Q) : inf essp > 1}.

We denote by modular p the quantity
p@zfmmm
Q

Proposition 2.1. [9, 11] If v € LF™(Q), then
1. 9llpey < 1(= 1;> 1) equivalent p(v) < 1(= 1;> 1).

2. if|[ollyey > 1, then ||v||Z(_x) < p() < ”U”Z(X)'

3. if [vllpery < 1, then ||v||Z(x) < p() < ”U”Z(;f)'



A. Oubaha et al. / Filomat 39:20 (2025), 7053-7062

Proposition 2.2. [9] (Hélder inequality) Let u € LF™(Q), v € L19(Q), p~ > 1 et q € LY(Q), then

‘ L u(x)o(x)dx

1 1
< (p_ + q_) ”qu(x)HU”q(x) < 2||u||p(x)||0”q(x)-

7055

)

Definition 2.3. [12] Let X be a real Banach space and 1 < s < N, we recall the classical Hardy'’s inequality, which

says that

()P

o P

1
dx < = f [Vo(x)Pdx, forallveX,
H Jq

<\
where H := (%) .
Remark 2.4. Subject to conditions 1 < p~ < p* < 400, we have
(a+by® <oyl (aP(X) + bp(x)).

The space W#® is defined by

WHP(Q) = {v (e)) (;97” e 'M(Q),

]

equipped with the norm
o1l = ollpe) + VOl
We denote by Wé’p (x)(Q) the closure of C;’(Q) in WP (Q)).
Proposition 2.5. [11] W*™(Q) is a reflexive and separable Banach.
Theorem 2.6. [3] For p,q € LY(Q), p(x) < g(x), we have
WLP(X)(Q) SN Wllq(X)(Q),

with continuous injection.

Let p* be the Sobolev critical exponent associated with p, of expression

Np(x)
. N=p0)
pr(x) =
+ooif p(x) = N.

Theorem 2.7. [3] Forp, g € C(Q), p~, ¢~ > 1, we have
q(x) < p*(x) forall x € Q.

In addition
WO (Q) — L10(Q),

with continuous and compact injection.

Theorem 2.8. [3] Ifp,q € C(Q) are such that 1 < p(x) < q(x) < p*(x), for all x € Q, then

erp(x)(Q) s 1@ (Q),

with continuous injection.

si p(x) <N,

)
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Proposition 2.9. [3, 11] (Poincaré inequality) If p~ > 1, then there exists a positive constant C such that
[0llpey < ClIVOllyeo, for all v e Wy"¥(Q).

In this paper, we will try to find a weak solution to the problem (1) in the following space
G = {p e WQ): plag =0]. 4)

The space G is a closed subspace of the separable and reflexive Banach space W™(Q) (see [9, 11]) , so G is
also separable and reflexive Banach space with the norm [[o||,x) = V0|

2.2. Nemytskii operator and Montain Pass Theorem
We started by defining the Nemytskii operator. Let v : Q — R and f € C(Q x RR).

e The operator N defined by
(No) () = flx, v(x))

is called the Nemytskii operator relative to f.

o If f: QX R — R, a Carathéodory function verifying
)
[f(x,s)| <a(x)+ blsl% foreverys € R,

with p, g € C.(Q), a € L19(Q), a(x) > 0 and b > 0, then the Nemytskii operator Ny of L'®(Q) in
LI®(Q) is a continuous and bounded operator.

Next, let X be a Banach space.
Definition 2.10. [10] Let ¢ : X — R.

(i) The sequence v, in X is called a Palais-Smale sequence of level ¢ denoted (PS). if

@ @y) > ¢ and ||Dq0 (v”)”x — 0.
(ii) We say that the functional ¢ satisfies the Palais-Smale condition at level c if every sequence of (PS). has a
convergent sub-sequence.

(iii) If @ € CY(X, R) satisfies the condition (PS)., then any accumulation point © of a sequence v, of (PS). is a critical
point of . Implicitly, we have Dp(0) = 0 and ¢(0) = c.

Consider the set I' of all paths connecting the origin to vy of X:

T={yec@o1,x), y0)=0, y)=u

and we put
=inf .
¢ = inf max P(y(s))
Theorem 2.11. [10] Assume that ¢ € CH(X,R), ¢(0) = 0 and satisfying the three conditions

1. There exists o,b > 0 such as ¢(v) 2 b for |[v||x = 0.
2. There exists vy € X with |[vollx > o and such that ¢ (vo) < 0.
3. @ satisfies the condition of (PS),.

Then c is a critical value of .
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3. Basic assumptions and main result

The present paper will be examined under the following hypotheses:

(M1) We assume that the functions p, g are continuous and satlsfy p(x) < N, along w1th l<p<p*<q <
g < p*(x).In particular, p proves that [p(x) — p(y)| < Iloglx 7 holds for [x — y| < 1 and x, y € RV,

(M) f:QXR — Ris a Carathéodory function of class C! (Q X R, R) such that

f(x,0)] < a0, forall (x,0) € QX R.

Here, a € L*®(Q) is non negative mesurable function with 5 1X) =1

(M3) Suppose that 0 < 0G(x,v) < vf(x,v), such that p* < 0 < g7, x € Q with G(x,v) = f f(x, t)dt.
0

(Ms) The potential V € L* (Q) N LA® (Q) is nonnegative and - =1.

ﬁ(x) q(x)
Now, we introduce the definition of a weak solution for (1).
Definition 3.1. v € G is a weak solution of (1), if forallu € G

| |s—2

L Vo™ =2VoVudx + M- A L V()™ 2oudx — L fx, v)udx =0

o P
The following theorem presents the main result of this paper.
Theorem 3.2. If the hypotheses (My)-(Ma) are satisfied, then the problem (1) has a weak solution in G forall A, p1 > 0.

Befor geving the proof of the main result, we need some results. First we define the energy functional
corresponding to problem (1) by

Pru(v) = —|VU|P(X)dx+ fou sd —f V(x)|z;|‘7(3‘)dx fpl—"(x,v)dx. (5)
) p(x) slx| a q() Q
We put
n() = f L vy, Aw) = [ 1
a px) ’ o skl

- @ q(x) —
o(v) L 70 [0]"¥dx, C(v) L uE(x, v)dx.

Moreover, by Proposition 2.1 we have the following result.
Proposition 3.3. Letv € Wé’p(x) and p,(v) := f [o(x)P¥dx. Then
Q
o [t <1(=1>1) = p(Vu]) <1(=1,>1)

dx

1 - 1 . [vf*
e If|lv]| > 1, then —|[v|IF < n@) + A(v) £ —||v|lP +f
If = 1(©) + Av) p= ST

1 . 1 - [0)°
e If|v|| <1, then —|[v|P < n(w) + A(w) < —||v|f +f d
If ||| er|| I n(v) (0) p_ll | o ShF

By [? ] and [7, Theorem 3.1], we have the following lemma.
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Lemma 3.4. The functional ¢, is well defined and C*(G, R). Moreover,

||52

" ix —f)\V(x)leq(x)2vudx—fyf(x,v)udx.
|x[* Q Q

<q03,#(v),u>= 5 Vol =2VoVudx + 5

By (M>) togheter with (M,), it is easy to see that ¢ . belongs to the topological dual of G.
Lemma 3.5. There exists positives constants ¢ and b such that ¢, ,(v) 2 b on |[v|,x) = o

Proof. By the Holder inequality, we get

LIF(x,v)ldef

= (%)
= 2 lalla [

| dx

(x) |q(X)
q(x) )

C1 q
< lallaollell],,

and
f | (( )) |”(‘>|dx<qg”V'|ﬁ<x>||v|qm|ﬁ'
< i_nvnﬁ(x)uvug}x)ﬁ«@
||V||ﬁ<x>||v||,,(x
where

i=+ if ol 2 1.

Using the above and Proposition 3.3, we obtain

- ® 4 |U|S) A Y™ e
P2,u(0) f(p( )IV off B dx fQ L]( )lvlq dx — fyF(x v)dx

2Mco 2uc
> —fIVvl”(")dx— 2| Vil ol pe L g Ilvllp(x

p)
2/\C2

— IVllswllv ol ”‘ZHa(Y)HUH

1
FII olf,

P pe) p(x)

1 i 2 ucy i
12 2 q
> p+||v||p(x)—( Vi + = - ||a||a<x>)||v||p(x),

where

izt if oy 2 1,

and ¢y, ¢; are positives constants.
So, for all A, u > 0 and v € G, with |[v]|,) = ¢, sufficiently small, there exists b > 0 such that

Pru() 2b>0.

O

Lemma 3.6. There exists vy € G with ||vg||pn) > 0 such that ¢ ,(vo) < 0.
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Proof. Choose vy € G, |lvolly) > 1. For t large enough we have

Pru (tvo)zf—IVtv PO dx + ] ——dx —f V(x) [tvo|™ dx — fyl—"(x,tvo)dx
a p) s|xf? () 0

and according to (3) and the Proposition 2.1, We obtain

1 f
Prp (tvg) =< Ff IVtooP® dax + | |Uolls

2)\ct X
2 o voll, + f Vool dx ~ f V() [ool™ dx
Q

t"’+ 1 2ActT
— |looll”, IIUoll —_— f V(x) [oo[™® dx.
P (x) P q* Q

dx —)L— V() |foo™™ dx
7" Ja

This yields ¢, ,, (tvg) — —o0, as t — +00 since

0< f V() fool™ dx < 2¢ Vil looll, -

O
Lemma 3.7. The functional ¢, satisfies the Palais-Smale condition (PS)., for any c € R.

Proof. Let (v,) be a (PS), sequence for the functional ¢, , in G i.e. ¢a, (v,) is bounded and (p’Ml (v,) = 0.

Then the sequence v, is bounded in G.
In fact, since ¢, , (v,) is bounded, we have

I Y Bt e ) (YW e
C1 2 Qau (vn) L( (x)| o + S dx LAq( ) [0, |7 dx — f#F(X,vn)dx
- pe) |[v]* ) _ f V(x) 4 f
= L(p( )IV Ul Sl dx o q( ) [0," dx — | uF(x,v,)dx

1 e B [0 g [ 1
> [ (g o = [ e [ i

<(Pj\ 1(vn)/vn> = f (|V nlp(x) | nl )dx_ f AV(X) |vn|q(x) dx — f ,Uf (.X,Un) vner
i+ |x[* Q Q

In addition

then
[0n°

1
Cr>— [ Vo,V dx+
PT Ja 0 |x|5

——dx ——f/\V(x)lvnlq(x)dx+ <(pM(vn) vn>

S
_ 1 o, - lv"lsd 4= f AV(X) [oa7® dix
Q 9 a sl 0 Ja
z(%—1)f|vUn|P<X>dx+(1—l)f [OnF 1
p 0)Ja s0/ Jq IxP

+(é — ql)f AV(x) [0,]7) dx + = <(pM, (0n), 0n>

By contradiction, we assume that (v,) is unbounded in G. In particular, for n to be large enough, we can
choose |[v,]| > 1. Therefore, there exists C3 > 0 in such a way that

~Calloullyy < {9}, @), 0n) < Calloullycy
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because ¢ ‘ (v,) = 0. To that end,

1 1 R 1 1 1
Ci == ==l Z— =) | AV [0," dx = =C3 oy,
1> (P+ Q)IIU Iy + (9 q_)fg (x) [0, dx 5 3 [0allye

1 1 o1
> (F - 5) l1nll, ey = 5C3 [0 lp) -
That implies a contradiction. Hence the sequence (v,) is bounded in G.

Thus, there exists a subsequence, again denoted by (v,,), which is weakly convergent to v in G. We will
prove that (v,) is strongly convergent to v in G. For this purpose, we have in mind the following equality

(9, (On) = P, (0), 0 —u) = 6)

M (@©a) =1 (©), 04 = 0) + (N (Vn) = N'(V), vy = V) = (6" (V) = 6 (v), 0 — V) = (T (Vu) = T'(V), vy — V).
Obviously, the left-hand term tends to zero for sufficiently large n. The first thing, we show is that
(T (vp) = C'(v),v, —v) > 0as n — oo.

Let B, be the ball in Q of radius r centered at the origin and B, = Q\ B,. In unbounded domains, we use
the well-known compactness argument. Roughly speaking, we write the following

(€ @) =00 =00 =| [ (F 00 = 05,00 00 =00
SfB (f(x,vn)—f(x,v))lvn—wdx

rUn) — ’ n — dx.

+fB;|f(xv) flx v)||v vl dx

Considering Theorem 2.8, together with the compact embedding W'#® (B,) < L/™ (B,), the first term on
the right-hand side of the above inequality vanishes as n — co. Conversely, the second term disappears as
r — o0. In fact, we have

fB |f (6 00) = fx,0)| o = 0l dx < 2] f (x,00) = F(5,0)] ) o0 = o, -

Due to (M), the Nemytskii operator is bounded. Hence, we obtain

f |f(x,v,,)—f(x,v)||vn—v|dx$ E
B, 2
On the other hand, we have

f |f (x, ) = f(x, v)| |, —vldx < f a(x) [0,P% + a(x) [0,FO 7 o] + a(@)[olP® + a(x)[olPO [,] dx
B, B;
€
< ~’
2

for r sufficiently large. Indeed,

p(x) €
f a@ oV dx < alacolon] | <%,
B p) 8

for r sufficiently large. Using Young’s inequality, we get

J

’
r

a(x) [o, PO Joldx < f a(x) (foaP® + [oP ) dx
B

< 2lalla (o0 + 17,1,

<

7

| m
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for r sufficiently large.
Similarly, according to r, we show that the last two terms are less than g.
Using the same reasoning, the following holds

(8 0 = (@), =) <A [ [V ol 20, = o2 o, — el
B,

+A f V) ([oal"® + 01" 20,0 + [pI"® + 0,10 0,0) dx
B,

< ”V(x) (|vn|q(x)—2 V, — |U|q(x)—20)||ﬁ(v) [on = Vllye)

+ C2||V(x)||r(x) (|vn|q(x)|q(x) + |'Z)|q(x))q(x))

<eg,
and
|Un|s_20n - |U|S_ZU

v, — Uldx
|l el

(N (vy) — N (0),v, —v) < f

B

dx

T
. f [oal® + [0 20,0 + [0 + [0, 20,0
B, x|

|Un |S_Zvn B |U|s_2u

=C 5 I[24,, — u”q(x)
el B
realrall (1ol + ol
el \ o 7
<¢

7

for n, v large enough.
The last step consists in using two elementary inequalities in RN, namely

(p = Dlv = YRl + D2 < (P20 = YP2Y) (v = X), plx) 2 2.

(p = Dlv = YR+ )2 < (2w = [YP2Y) (v = ), 1< plx) <2.
It follows from (6) that (¢’ (v,) — ¢’ (v), v, — v) = 0 when n — co.
Now if p(x) > 2, we obtain using the first inequality
227 fQ Vo, — Vo'® dx < L (IV0uP2 Vo, — [VolP®=2V0) (Vo, - Vo) dx — 0 when n — co.
On the contrary, if p(x) > 1 we must consider the two sets
U, ={xeQpm 22} V,={xeQ1<pE <2},
and then apply the first inequality to U, and the second inequality to V,. [

Proof of Theorem 3.2. Set
r= {7/ € C([0,11,6) : y(0) = 0, (1) = UO}

== inf 1)).
¢ := inf max @) . (y(£))

According to Lemma 3.5, Lemma 3.6 and Lemma 3.7, the energy functional ¢, , satisfies the geometric
conditions of the Mountain Pass theorem. Hence c is a critical value of ¢, , associated with a critical point
v € G, which is exactly a solution of (1).
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