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Abstract. The eccentric distance sum and degree distance have been well-studied in the past several
years. More recently, many authors have considered the relationships between several distance-based
graph invariants. Hua et al. [9] investigated the relationship between the eccentric distance sum &*(G) and
the degree distance D’(G) of a graph G. In this paper, we give some further results on &4(G) — D’(G). Firstly,
we determine upper and lower bounds on &%(G) — D’(G) among general connected graphs in terms of the
number of cut edges, and characterize the corresponding extremal graphs. Meanwhile, we identify the
extremal graphs of given girth g having the minimum and maximum &*(G) — D’(G). Secondly, we consider
the extremal problems among bipartite graphs on &4(G) — D’(G) in terms of matching number. And then
we characterize the extremal bipartite graphs with diameter d having minimum &9(G) — D'(G).

1. Introduction

In this paper, we only consider finite, undirected and simple graphs. Let G be a graph with vertex set V(G)
and edge set E(G). The eccentricity of a vertex v in a graph G is defined to be e¢(v) = max{dg(u, v)lu € V(G)}.
The diameter d of G is defined to be d = max{eg(v)lv € V(G)}. In a graph G which has at least one cycle, the
length of a shortest cycle is called its girth.

The well-known Wiener index W(G) of a grpah G is one of the most studied topological indices which was
first introduced by Wiener [26]. It is the summation of distances between all unordered pairs of vertices of
G. Many modifications of Wiener index were introduced and studied in literature. Gutman [7] and Nikoli¢
[18] introduced the modified Wiener indices. Vukicevi¢ [24] studied the variable Wiener indices.

The Wiener index is also extensively investigated elsewhere, and several recent papers indicate a wide
variety of topics studied with respect to the Wiener index. Gupta et al. [5] introduced a graph invariant,
namely eccentricity distance sum, as an eccentricity weighted version of the Wiener index. In addition,

2020 Mathematics Subject Classification. Primary 05C12; Secondary 05C70, 05C35.

Keywords. Eccentricity distance sum; degree distance; cut edges; matching number; diameter; girth.

Received: 06 December 2024; Revised: 01 April 2025; Accepted: 14 April 2025

Communicated by Paola Bonacini

Research supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region(NO:XQZX20240107) and Research
Foundation of China University of Petroleum Beijing at Karamay (NO.XQZX20240031), and for the second author by the Karamay
City-Innovative talent Project (NO:XQZX20240078).

* Corresponding author: Xin Wang

Email addresses: 2023592116@cupk. edu. cn (Wanping Zhang), xinwang2@bjtu. edu. cn (Xin Wang), 1606880885@qq . com (Guangdi
Huang)



W. Zhang et al. / Filomat 39:20 (2025), 7063-7075 7064

Dobrynin and Gutman [4] introduced another graph invariant, namely degree distance, as a degree weighted
version of the Wiener index.
The eccentricity distance sum of graph G is defined as:

G = ), (ea)+ec@)om,v)= Y ec©Delo),

{u,0}CV(G) veV(G)

and the degree distance of G is defined as:

D)= Y, (o) +dc@)ds(nv)= Y, de(@)Ds(),

{u,0}CV(G) veV(G)

where DG(U) = ZuEV(G) dG(u/ ’0).

The eccentricity distance sum is a novel graph invariant for predicting biological and properties. Re-
cently, Yu et al. [27] characterized the extremal unicyclic graphs with girth g having the minimum and
second minimum eccentricity distance sum. Hua, Xu and Shu [11] obtained the sharp lower bound on the
eccentricity distance sum among cacti of order n . Geng et al. [8] characterized the extremal trees of order
n and domination number y having the minimal/maximal eccentricity distance sum. Miao, Cao, and Pang
[16] considered the similar questions. Miao et al. [17] determined the extremal trees in terms of domination
number ) having the maximum eccentricity distance sum, where 4 <y <[%7].

As mentioned above, the degree distance can be viewed as a degree weighted version of the Wiener
index. Ili¢ et al.[15] obtained the degree distance of partial Hamming graphs. Ili¢, Stevanovi¢, Feng, Yu,
and Dankelmann [14] determined the extremal graphs with the minimum and maximum degree distance
among unicyclic and bicyclic graphs. Hou et al. [12] characterized the extremal unicyclic graphs with
maximum degree distance. Du and Zhou [3] determined the maximum degree distance among unicyclic
graphs in terms of maximum degree. Tomescu [20-22] and Bucicovschi [1] characterized the extremal
graphs having minimum degree distance. Dankelmann et al. [2] gave an asymptotically sharp upper
bound of the degree distance of graphs in terms of order and diameter.

As we all known, the eccentricity distance sum and the degree distance can be viewed as two weighted
versions of the Wiener index. A natural question arises: How to compare the difference between them?

More recently, Hua, Wang, and Hu [9] investigated the relationship between the eccentric distance sum
and the degree distance. They established several sufficient conditions for a connected graph to have a
larger/smaller eccentric distance sum than degree distance, respectively. They also investigated extremal
problems on the difference between those two graph invariants. Zhang, Meng, and Wu [29] presented
upper and lower bounds on £%(G) — D’(G) among all connected graphs with given connectivity (resp. edge
number and matching number), and characterized the corresponding extremal graphs.

Motivated by [10, 13, 28], in this paper, we give some further results on &(G) — D’(G). This paper is
organized as follows. In section 2, we introduce some basic definitions and lemmas which will be used in the
following sections. In section 3, we determine the upper and lower bounds on E4G)-D'(G) among general
connected graphs in terms of number of cut edges, and characterize the extremal graphs. Meaiwhile, we
consider the extremal graphs in G. In section 4, we consider the extremal problems among bipartite graphs
on &4(G) — D’(G) in terms of matching number. And then we characterize the extremal bipartite graphs
with diameter d having minimum &%(G) — D’(G). In the last section, we conclude our paper.

2. Preliminaries and lemmas

For a positive integer n we will use the notation [n] = {1,2, ..., n}. For two subsets A and B of vertices
we write [A, B] for the set of edges uv € E(G) with u € A and v € B. An induced subgraph G[Y] is the
subgraph of G whose vertex set is Y and whose edge set consists of all edges of G which have both ends
inY. If V(G1) N V(Gy) = 0, we denote by G; U G, the graph which consists of two components G; and
G,. The join of G; and G,, denoted by G V Gy, is the graph with vertex set V (G1) [ V (G;) and edge set
E(GI)UEG) Uluv:u eV (Gy),ve V(Gy)}). A matching of G is a subset of mutually independent edges
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of G. For a graph G, the matching number §(G) is the maximum cardinality among the independent sets of
edges in G. A cut edge of a connected graph is one whose deletion results in a disconnected graph.
Throughout this paper we use P,,, S, Cy, K, and K, to denote the path graph, star graph, cycle graph,complete
graph, and independence set on 1 vertices, respectively.
In what follows, we give some lemmas which will be used frequently in the proof of main results.

Lemma 2.1. [9] Let G be a connected graph with at least three vertices.
(a) If G % Ky, then £4(G) — D' (G) > (G + ) — D'(G + e), where e € E(G);
(b) If G has an edge e not being a cut edge, then £&4(G) — D’(G) < E%(G —e) = D'(G —e).

Lemma 2.2. [9] Suppose that Gy is a connected graph and u is any one vertex in Go. Let G ( resp., G’ ) be a graph
obtained by identifying the vertex u of Gy with a pendent vertex (resp., the maximum degree vertex) of the star
Ssi2(s = 1). Then

£4(G)-D'(G) > &(G) - D' (G).
Lemma 2.3. [13] Let G be a connected graph on n. For any v € V(G), it holds
ec(v) < n—dg(v).

Moreover, all equalities hold together if and only if G = Py or K, — iK»(0 < i < | 5 ]), where for each i, K, — iKj is the
graph obtained by removing i independent edges from G.

Lemma 2.4. [9] Let T be a tree of order n. Then

_25;14 - 5—113 + _17;12 -z if n is even
96 6 24 6
25n*  5m® 3m® n 3. .
96 "6 Tas 6 m UneoM
where the left-hand side equality holds if and only if G = S,,, while the right-hand side equality holds if and only if
G=P,

(n—1)> <&Y(T)-D'(T) <

3. General connected graphs with given parameters

In this section we will give the bounds on £4(G) — D’(G) in terms of girth g, and characterize the extremal
graphs. Meanwhile, we consider the extremal graphs with girth g.

Let B/ be the set of all connected graphs of order n with girth g. In this subsection, we characterize the
extremal graphs having upper and lower bounds on &4(G) — D'(G) in 8.

3.1 Extremal graphs with regard to &(G) — D'(G) in B,

Denote by C(n, g) the graph obtained by connecting a vertex of a cycle C, with a pendent vertex of a
path P,_;. We give a lemma which will be used frequently in the proofs of following theorems.

Lemma 3.1. Let G € B7. Then
£4G) - D'(G) < E(C(n, 9)) - D'(C(n, 9)),
the equlity holds if and only if G = C(n, g).

Proof. Let G(€ G) be a connected graph having maximum ENG) - D'(G). By Lemma 2.1, we conclude that
G is a unicyclic graph with girth g. In fact, by definition , we know that the value of £*(G) — D’(G) increases
when one deletes edges in the graph G. Thus, G must be a unicyclic graph. Let C, be the induced cycle
of G. The hypothesis of G with maximum &%(G) — D’(G) implies that the value £%(G) — D’(G) reaches its
maximum when the graph G contains as few edges as possible. Considering that the graph G contains as
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few edges as possible, we conclude that G — E(C,) contains as few edges as possible. That is, G — E(C,;) must
be a union of some trees. It implies that G — E(C,) is a forest.

Let V(Cy) = {v1,0,...,0,}. Denote by T, the component in G — E(C,) containing v; for i € [g]. Without
loss of generality, suppose |T,| > 2 for i € [t], where t < g.

Replace the cycle C, in G by a copy of K; and denote it by v9. Then G becomes a tree T with [T| = n—k+1.
By Lemma 2.4, we can obtain a new tree Ty = P,_4+; with the special vertex vy, such that E4NTy) — D'(To) >
&YT) — D'(T). Then, we replace the vertex vy € Ty by the cycle C,. Denote this new graph by G;. We have
&4G1) - D'(G1) > EG) - D' (G).

The graph G; is a connected graph constructed from C, by attaching some paths to each v; € C, for
i € [2], where 2 < g. Let G; = G(my,my), where m; is the number of pendent paths attaching to ith vertex of
the cycle C, fori € [2].

The remaining proof of this lemma is similar to Theorem 3.16 [29], and we omit it. O

If g = 3, then we get the following result easily.
Theorem 3.2. Let G € B5. Then
&(Ky) = D'(Ky) < E(G) - D'(G) < £'(C(n,3)) - D'(C(n,3)),

where the left-hand side equality holds if and only if G = K,,, while the right-hand side equality holds if and only if
G = C(n, 3). Moreover, &%(K,)) — D’ (K,,) = —n® + 3n® — 2n.

Proof. By Lemma 3.1, it is easy to see that the upper bound is achieved. By Lemma 2.1, we know that the
graphs with minimum &£%(G) — D’(G) by adding some edges to a graph shch that the resulting graph is in
B3. Thus, the extremal graph with minimum &4(G) - D’(G) must be K,,.

Lemma 3.3. [23] Let G be a connected graph with |E(G)| > iIV(G)IZ. Then G contains at least one triangle.
Lemma 3.4. Let G be a connected triangle-free graph of order n > 4. Then

£4G) = D'(G) = &(K 1) — D' (Kyzyr37)s
the equality holds if and only if G = K|z rz.

Moreover, (K 3 27) — D' (Ki3)137) = 2n(4 = m)(n = 1) = 2(4 = n) % |

Proof. Let G be a connected triangle-free graph with minimum &4(G) — D’(G). If there exists a vertex
v € V(G) of degree n — 1, then e;(v) = 1. Since G is triangle-free, it is easy to see that G = Kj 1. In the
following, we suppose that, for all vertices v € V(G), dg(v) < n — 2. It implies that ec(v) > 2, for each vertex
v € V(G). By the definition of &4G) - D'(G), we have

E(G)-D'(G) = ), (ec(0) —de(0)De(o)

veV(G)
> Z (eg(v) —n+2)Dg(v) (asdg(v) <n-2)
veV(G)
> Z (2-n+2)[de() +2(n -1 - de(v)] (as ec(v) 2 2)
veV(G)
= 2n(d—-n)n—-1)— (4 —n) Z do(v)

veV(G)
=2n(4—-n)(n—-1) - 2(4 — n)|[E(G)|

"2
>2n(d-n(n—-1)-2(4- n){ZJ. (by Lemma 3.3)
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We check the equality condition. The three inequalities are equalities if and only if eg(v) = 2 for all
v € V(G), and |[E(G)| = ["{J hold together. Combining the hypothesis G is triangle-free and the condition
ec(v) = 2 for all v € V(G), we know that G is a complete bipartite graph. Suppose that G = K,;, where
1<a<|5],anda+b = n. Considering the well-known Turdn Theorem, we obtain that K| 127 is the unique
triangle-free graph with exactly [”ZZJ edges. In what follows, we show that K|z 27 is the unique complete
bipartite graph with minimum value of éd(KLg 1) = D'(Kjzjreq). It is sufficient to prove the following
Claim.

Claim. &* (Kan-a) = D'(Kqn—q) decreases strictly ina fora € [1,[ 5 ]].

Proof of Claim. Fora € [2,]5]], we have

ENKop-a) = D'(Kyp-a) = al2 = (1 = @)][n —a +2(a = D] + (n - a)2 - a)[a + 2(n —a - 1)]
= 3na® — 3n%a + 4n* — 4n.

Define a real function f(x) = 3nx? — 3n%x + 4n* — 4n in x with x € [2,| 4 ]]. Since f’(x) = 6nx —3n* < 0in
the interval [2,| 5 |], f(x) is a strictly decreasing function in x for x € [2, 5]]. That s, éd(Kzrn_z) —-D'(Kyp-2) >
&4 (Kapn3) = D'(Kzpu3) > -+ > EU(K|nyraq) = D' (K ).

Next, we compare &"(Ky-2) = D' (Kpu-2) and &' (Kyn-1) = D' (K 1)

[£%(Ka,n-2) = D'(Kgn-2)] = [4(Ki,n1) = D' (Ky,u-1)] = =317 + 101 = 1 < 0. (as n > 4)

This completes the proof of Claim 1. O
By Lemma 3.1 and 3.4, it is immediate to get the following theorem.

Theorem 3.5. Let G(€ B}) be a connected graph of order n(> 4). Then
&K zpra) = D' (Kyzyrey) < £4G) - D'(G) < E%(C(n,4)) - D' (C(n, 4)),
where the left-hand side equality holds if and only if G = K|z, sy, while the right-hand side equality holds if and only
if G = C(n,4). Moreover, &(K ) 37) — D' (Ki3)547) = 2n(4 = m)(n = 1) = 2(4 = n)| % |
Lemma 3.6. [8] If G € B), then |E(G)| < nVn —1.

Theorem 3.7. Let G(€ B5) be a connected graph of order n. Then £&4(G)—D’(G) > 2n(4—n)(n—1)—n(4-n) Vn - 1.

Proof. Let G(€ 83) be a connected graph with minimum &9(G) — D’(G). If there exists a vertex v € V(G) of
degree n — 1, then eg(v) = 1. Thus, G = Kj,,—1. It is easy to see that éd(KLn_l) —~D'(Kyp1) =n*>-2n+1. In
what follows, we suppose that, for all vertices v € V(G), dg(v) < n —2. It implies that eg(v) > 2, for each
vertex v € V(G). By the definition of £%(G) — D’(G), we have

G -D'(G) = ) (e(0) - d6(®)Dc(o)

veV(G)

> ) (ec(®) - n+2)D(v) (as dg(0) < —2)
0eV(G)

> Y @-n+2)[ds() +2(n - 1-dg(v))]
0eV(G)

= 2n(d —n)(n—1)— (4 -n) Z dc(v)

veV(G)
=2n(4—-n)(n—1) - 2(4 — n)|[E(G)|
>2n(4-n)(n—-1)-n4-n)Vn-1. (by Lemma 3.6)
Since n > 5, it is easy to check that n? —2n+ 1> 2n(4 —n)(n— 1) —n(4 —n) Vn — 1.0
Theorem 3.8. Let G(€ B2) be a connected graph of order n. Then

&UG) - D'(G) < &4(C(n,4)) — D'(C(n, 4)).
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3.2 Extremal graphs with regard to &%(G) — D’(G) in terms of cut edges

Let AX be the set of connected graphs of order # and with k(> 0) cut edges. By Lemma 1.1, adding (resp.
deleting) edges will decrease (resp. increase) the value of £%(G) — D’(G). For any graph G without any cut
edge, it is easy to see that C, and K,, have the maximal and minimal value of £%(G) — D’(G). It is natural to
ask what are the maximal and minimal values of &4(G) — D’(G), where G € A-.

Let K(n, k) be a graph obtained by identifying one vertex of K,,_, with the center of Sy,;. In what follows,
we give two theorems to determine the extremal graphs in A, 1 < k < n—6, and calculate the corresponding
value of £&4(G) — D’(G), respectively.

Theorem 3.9. Let G be a graph (€ AX) with 1 <k <n — 6. Then
£(G) = D'(G) = &"(K(n, k) = D' (K(n, k),

with equality holding if and only if G = K(n, k).
Moreover, E4(K(n, k)) — D’ (K(n, k)) = —n® + 4n® + kn? + k*n — 4n — kK — 3k? — 2k + 1.

Proof. Let G € A: be a graph minimizing the &4G) — D'(G) with k cut edges. Let Ej be exactly the set of cut
edges of G with |Ey| = k
Claim 1. G — Eg = U] K,,,, where Y] n; = n with n; > 1 and n; # 2 fori € [k +1].

Indeed, if there exists a component in G — Ej that is not a complete subgraph. Then, we can obtain a
new graph G; from G by adding some edges in this component. Obviously, G; € AX. By Lemma 2.1, we
have £%(G;) — D'(Gy) < &4(G) — D’(G). This is a contradiction to the choice of G. we complete the proof of
this claim.

Replace every complete subgraph K, for i € [k + 1] by a copy of K;. Then G can be viewed as
a tree T with |T| = k + 1. By Lemma 2.4, we can obtain a new tree Ty = Si;; with central vertex v,
such that £%(Ty) — D’(Ty) < &U(T) — D’(T). This means that the star-like structure G has minimum value
&(G) — D’(G). Suppose that the vertex v in Ty corresponds to a complete graph Ky, in G, where j € [k +1].
Let V(Ky,) = {wy,wo, ..., Wy, }. Now, we replace every vertex u € Ty\{v} by the corresponding complete graph
K, for i € [k + 1]\{j}. That is, this graph is a star-like connected graph by replacing every vertex of a star
with a complete subgraph K,, for i € [k + 1]. Denote this resulting graph by G,. According to the above
argument, we have &%(Gy) — D'(G,) < £4G) — D'(G).

In what follows, we choose G, with £%(G,) — D’(G,) as small as possible.

Let Ky, be a pendent complete graph, and let xy; be an edge connecting K, and K,,; with x € Ky;;, y; € Ky,
where | € [k + 1]\ {j}. Construct a graph G3 from G, by deleting all edges {y;zlz € K,, \ {y/}}, and adding
all edges {wz|z € Ky, \ {y}, w € K;,;}. For every i € [k — 1] \ {j}, we use the similar above-method to obtain a
graph G4, which is a connected graph by attaching 1 — k pendent vertices to a complete graph K,,_;. Next,
we prove that G; have smaller value &%(-) — D’(-) than G,.

Claim 2. £%(Gy) — D'(G2) > &£%(Gy) = D'(Gy)
Proof of Claim 2. Consider the difference between £%(G,) — D’(G,) and &4(G4) — D’ (Gy).

[£9(Gy) - D'(G)] - [5”’(64) - D'(Gy)]
k+1

-( ) Z Z Yo+ Y Jecw - o)D)
i=1,i#j ueV(K,, vil i=1i#j u=yi uEV(Kn
Y (ecuw) - do,(0)Da, () + 2k(2n + k- 4)
veV(Ky—x)
k+1 k+1
= Z (i = 1)(6 — )(5n — 4n; — 20—k — 1) + 2 (4 — n;)(4n —3n; — 2n; -k — 1)
i1, i=Li%]

+nj@d-n)@Bn-n—2nj—k-7)—m-k)3-n+k)(n+k—-1)-2kQ2n +k - 4)
> k(g —1)(6 —ng)(5n —6nx —k — 1) + k(4 — ng)(4n — 5np —k — 1)
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+m(d—-n)Bn—-3n,—k-7)—(n—-k)3—-n—-k—-1)—2kQ2n + k — 4)
> n? + (kK = 5)nyny + k(16m; — 10m7) + (3k + 6kny — k)ni + 12k
>0

Let G4 = G(my, my, ...,m;), where m; is the number of pendent vertices adjacent to ith vertex of the graph
Ky, for i € [t] with Zle m; = k. Suppose that my > my > -+ - > m;.
Claim 3. G = K(n, k)
Proof of Claim 3. According to the definition of graph G(m,,m;, ..., m;), we know that G(Zf:1 m;,0,...,0) =
K(n, k). Let Gy = G(my,my,...,m;), and Gs = G(my + 1,my,...,m; — 1). Next, we consider the difference of
&4(Gy) — D'(Gy) and &4(Gs) — D'(Gs).

[(£%(G4) = D'(Ga)] - [£%(Gs) — D' (Gs)]

= Y (e6,(0) g, (@)D (@) — ) (e6,(2) — dc, (0))Des(0)
0eV(Gy) 0eV(Gs)

=2mQ2n—my+k—-1)+2mQn—-m +k-1)+QB-n+k—-m)n—my+k—-1)
+@B-n+k-m)n-m+k-1)-2m-1)2n—-(m —-1)+k-1)
-2m+1)2n-(m+1)+k-1)-CB-n+k—(m—-1))n—(m—-1)+k-1)
—-@B-n+k-(m+D)n—-(m+1)+k-1)

=2my —2m; + 2 (as mq = my)
> 0.

Repeating the above several times, we obtain that £%(-) — D’(-) decreases by the following graph op-
erations, namely, G(my,my, .., m;) — G(my + 1,my,...,my = 1) — - -+ = G(my + my,my,..,0) = -+ —
G(X!_, m;,0,...,0) = K(n, k).

We complete the proof of this Theorem. ]

4. Bipartite graphs with given parameters

4.1 Extremal bipartite graphs with regard to E%(G) — D'(G) in terms of matching number

Let Z)ﬁ be the class of all bipartite graphs of order n with matching number §. In this section, we give

the lower bound on the £%(G) — D’(G) of all connect graphs G € D, The corresponding extremal graph is
determined.

Theorem 4.1. Let G be a connected graph in Z)ﬁ, then
EUG) = D'(G) 2 EKpn-p) = D’ (Kgup),
with equality if and only if G = Kg,—g. Moreover, &(Kg u—g) — D’ (Kgu—p) = 4n* — 3pn?* + 36%n — 4n.

Proof. By a simple calculation, it is easy to see that

& (Kpn-p) — D' (Kpn—p)
=pR-n+p)n—p+2(B~1)+n—p)2~p)+2(n—p~1)
= 4n* — 3 + 3f%n — 4n.

Choose G in Z)ﬁ such that the value of £&4(G) — D’(G) is as small as possible. Let X, Y be the bipartition of
the vertex set of Z)ﬁ, and let M be a maximal matching of G. Suppose |X| > |Y| = B, Xo = X N V(G[M]), and
Yo = YN V(G[M]). Note that |Xo| = [Yo| = B. As we all known that < | 7], we consider two cases according
to the value of f.

Case 1. f = | 5]. In this case, it is easy to see that [X| = [5],Y = |5 |. By Lemma 2.1, we find that the value of
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&%(G) — D’(G) of a graph G decreases by adding edges between the sets X and Y. Thus, the extremal graph
is just Kg —g.
Case 2. g <ﬁL§J. According to Lemma 2.1, if |Y| = §, the extremal graph is K3 3. In what follows, we assume
that [Y]| > . Note that [X\ Xy, Y\Y¢] = 0. Otherwise, if [X\Xp, Y\Yo] # 0, we can find a new matching M U {e}
of G, where e € [X\ X, Y\Yo]. This contradicts the maximality of M.

We obtain a new graph G; from G by adding all possible edges between the sets Xy and Yy, Xo and Y\Y),
Yy and X\ X, respectively. We have ENGy) = D'(Gy1) < E4G) = D'(G). Let ny = |Y\Yol, 12 = | X\ Xol. Suppose
ny < ny. Let My be a subset of matching of Kgg induced by G1[Xp U Y], and let |Mo| < . The matching
numbers of G1[Xo U Y\Yy] and G1[Y( U X\Xo] are both at least § — [My|. Then, the matching number of G; is
Mol + 2(8 — IMol) = B+ (B — IMol) =  + 1. Hence, G; ¢ Z)ﬁ and G; # G. We construct a new graph G, from
G1 by deleting and adding edges, (see Fig.2), which satisfies [Xo, Y\Yo] = 0, and G»[Yo U (Y\Yq)] = Ky, 5 -
Claim 1. G, = Kp,g. It is routine to check that ENGy) = D'(Gy) > E4G,) — D'(Gy). It is easy to see that
V(G1) = V(G2) = Xo U (X\Xo) U Yo U (Y\Y)). For all vertices x € X \ Xo(resp. v’ € Yo,x' € Xo,y € Y \ Yp), we
have

(€6, (x) = dg,(x))Dg, (x) = 3 = B)BP + 3n1 + 21y — 2), (eg,(x) — dg,(x))Dg,(x) = 2= F)(BB + 2n1 + 2ny —
2), (ec,(y")—dc,(y")De,(y') = 2—n2—P)BB+2m +n2-2), (¢6,(y')—~dc,(y')Dc,(y') = 2—n1—n2—P)Bp+n1+
1y —2), (e,(x") —dg,(x"))Dg,(x") = 2 —n1—B)(BB + 2ny + n1 = 2), (e6,(x") —de,(x"))De,(x') = 2-B)(3p +2n1 +
212-2), (e6,(y)~de, ()Da, (v) = B—P)EB+3m2+2m~2), (e, () ~de,(N)Dea(y) = (2 B)(3B+2n2+2m -2

Now, consider the difference of £&4(G;) — D’(G;) and &4(G,) — D/(G»).

G - D'(G)] - [€(G2) - D'(Go)
= Y [(ec,(®) — 6, (@))Dg, (0) - (6, (0) - de, (0)De, (o)

0eV(G)

=( ). ) +Y.+ ) e ® - do, @)D, (0) - (6,(0) - de, (0) Do, ()]

veX\Xo veYy veXo wveY\Yo

= 1|3 = B)(3B + 31 + 2my — 2) — (2 = )(3F + 2 + 2my — 2|
+B[2= 12— BB+ 2y + 12— 2) = (2= 1y — ny = B3P + 1 + 1y = 2)]
+ B[@ = 11 = B)(BB + 21 + 1 = 2) = (2= BB + 2m + 25 — 2)]
+m|(3 = B)BB + 3y +2m —2) — (2 P)(3B + 21z + 2m — 2)]

= 10mny — 21y — 21y + 3mB + 3n2f + 207 + 213

= an + 2n§ + 10n1ny + (3B — 2)(ny + n1)
> 0.

This implies that G, = Kg ;.
Combining the Case 1 and Case 2, we complete the proof of this theorem.
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Fig.2. G obtained from G; by deleting red edges and adding blue edges

4.2 Extremal bipartite graphs with regard to E(G) — D'(G) in terms of diameter

Let 74 be the class of all bipartite graphs of order n with diameter d.

Let G € 7—',,‘1, and let d be the diameter of G. Then, there exist two vertices u# and v in G, such that
dg(u,v) = d. The shortest path connecting u and v, denoted by Py, (= Pu=yq u,..,u,=0), is called diametral path.
Let Vi = {w € V(G)ldg(u, w) = i}, and let n; = |Vy| for i € [d] U {0}. Clearly, nyp = 1. Then, we get a partition
V(G) = UL, V; such that u; € V; for i € [d] U {0}.

Lemma 4.2. [4] For any graph E € F¢ with the above partition of Vi, G [V,] induces an empty graph (i.e. containing
no edge) for eachi € {0,1,...,d}.

Define a graph G'(resp. G™) that corresponds to d being odd(resp. even) as extremal graph in the
following theorem. Those two graphs can be constructed by the following way.

Recall that P, ,(= Puzugu,.u=0) Of length d is a diametral path. The graph G; can be constructed
from P,, by replacing Uaa and Uan with KL” 1) and Krn 411, respectively. That is, Vi = V(K,x a1 )
and Vin = V(Krn a:17)- We obtain the graph G* from G; by adding edges such that 1nduced subgraphs
G* [{ud 3} Vi 1](G [Vd 1, Vm ] and G*[V,m {u i }]) are all complete bipartite subgraphs.

The graph Gy can be Constructed from P,, by replacing us2(1g and us2), with ELH_# i Er%ﬂz] and
E[ n=g2 1), respectively. That s, Vd%z = V(EL 12 s V% = V(Kr 12 1) and V% = V(E[ rz—d+2'|) We obtain the graph
G™ from G, by adding edges such that induced subgraphs G*[{u d2;4} 2], . ],G* [Vd 2, Vd] G**[V%, V%z ] and
G**[V%z Nttass }] are all complete bipartite subgraphs.

Lemma 4.3. Letd,d’, n,and iare all positive integers, and d > d’. Let n;(resp. n; ) be positive integers for i € [d](resp.
[d']). Let n; > n! for any i € [d'], and Z? n; = Zf/ n! =n—1. Then
d &
Zi-n,- >Zi-nl’..

i i

Proof. Define a function f(n1,ny, ..., ng) = Z, 11-n;. For some j € [d — 1], we consider the difference between
f(ni,ny, ..., nj,...,ng) and f(ny,ny, ..., nj+1,..,n5 = 1).

f(nl,nz, oy aeey Tld) - f(l’ll,nz, w1+ 1,.., 14— 1)

d d
:(Zi-ni+d-nd+j-nj)—(z inj+d-(ng—1)+j-(nj+1))
hitjd ii%jd

=d-j>0.

From the above, we find that the function f (nl, 1y, ..., Mj, ...,nz) decreases when the pair (1, ;) changes by
the following chain (nj,ns) = (nj + 1,15 — 1) - — (nj + ng,0).
Now, let n} = n; fori € [d] \ {j, dl}, n =nj+ng, and d’ =d —1. We complete the proof of this lemma.

Theorem 4.4. Let G is in F,! with minimum value of £&*(G) — D'(G).
(I) Ifd = 2, then G = KL%M%]'
(I) Ifd > 3, then G = G* for odd d and G = G™ for even d.

Proof. Let G € ¥, be a connected bipartite graph with bipartition (U, V) such that the value of £&(G) — D’(G)
is as small as possible.
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(I) If d = 2. By Lemma 2.1, we know that adding edges will decrease the value of £&4(G) — D’(G), then G
must be a complete graph. Let G = K,,_;;, where min{t,n —t} > 2. Let [U| = n —t,|V| = t. Then we can easily
calculate the value of £&4(G) — D’(G) as following.

For each vertex u(resp. v) in U(resp. V), we have (ec(u) — dg(u))Dg(u) = (2 —t)2n — t — 2), and
(66(v) = dc(v))Dg(v) = 2 —n+)(n + 1t -2).

Thus

ENKp-tr) = D' (Kot r)

=()+Y )ex, @) - di, @)Dk, , @)

wel weV
=m-HR-H2n—-t-2)+tR-n+tHn+t-2)
= 3nt* — 3n’t + 4n® — 4n.

Define a function f(x) = 3nx? — 3n%x + 4n® — 4n, which is a real function in x. f(x) reaches its minimum
value when x = 2

If nis odd, that is, t = 2 Lor 21 then &%(Ky—1) — D’ (Kyi- tt) > -3 4+ 4n? -

If nis even, that is, t = 7, then Ed(Kn i) — D (Kot ) = ——n + 4n —4n.
Combining above two cases, we have G = Kz rn.

(IT) Recall that |V} = n; for i € [d] | J{0}. We first give two claims.
Claim 1. G[V; U Vi;1] = Ky, fori € [d — 1] U{0}, and |ny4| = 1 ford > 3.
Proof of Claim 1. By Lemma 4.2, E(G[V;]) = 0 for i € [d] | J{0}. Suppose that there exists some k € [d—1] ({0}
such that G[ Vi | V1] # Ky ., - S0, we can obtain a new graph G’ by adding some edges between two sets
Vi and V1. By Lemma 2.1, we get that £4(G’) — D’(G") < £4(G) — D’(G). This contradicts the minimality of
&4(G) - D'(G).

In what follows, we prove the second part of Claim 1. If |n4] > 2, we choose a vertex w € V;\{u,}, and
add edge wx, where x € V;_3. Then, we get a new graph G” = G + wx with G” € 8. By Lemma 2.1, we
have £4(G”) — D'(G”) < &(G) — D’(G). This contradicts to the choice of G. We complete the proof of Claim
1.

Claim 2. Let V(G) = UL, V..

(a) If d is odd, then n; = 1 for i € [d] {0 }\{dT,

(b) If d is even, then n; = 1 for i € [d] U{0N{452, 4, &2}, and. ny — (n% +na2) < 1.

Proof of Claim 2.(a) We only prove (a), and omit thg proof of (b). Note that np = n; = 1. Since we can use
1 d+l

similar method to prove n; = 1 for i € [d] [J{0} {”%, -1, it suffices to show that n; = 1.

Indeed, if d = 3, the result is trivial. So, suppose d > 5. If n; > 2, then choose u] € Vi\{u;} and let

G = G — uguj + {ujx|x € V4}. Obviously, Zl JMi2d=-32>2d- |' 1=13] > no = 1. In what follows, we
consider the difference between &4(G) — D’(G) and Ed(Gf ) — D’(G). For any vertex x € V(G) N V(G'), we
let A(x) = (¢6(x) — dg(x))Dg(x) — (ec(x) — dg (x))De: (x), ni(v) = {w € V(G)ldg(v, w) = i}|, and n, (v) = [fw €
V(G )lde (v, w) =i}
Firstly, we give a partition of G with
V(G) = V(G') = {u} U {u}} U (Vi\{u[}) U V2 U V3) U Va U (UL V)
e For vertex 1], we have eG(ul) dc(u}) = d nz -2, ec(uy)— dG (“1) =d—ny—ny—3. So, eg(uy) > ec (uy).
Since Dg(u) = ):f i nG(v) and Dg:(u7) = Z i n ,(v), by Lemma 4.3, we have Dg(u]) > D¢ (u7). Then,
A(uf) > 0.
Moreover,
A@Wy) > 2(d = ny = ny = 3) (g mi = 1). @)
e For vertex u, we have (¢g(u) — dg(u))Dg(u) = (d — n1)Dg(u), (e (1) —de(u))De (1) = (d —ny + 1)Dg ().
We have n
A(u) = (d - m1)(De(u) — Do/ () = Do (u) > =2(d — my) — 252 (8)
e For each vertex v € (V1\{u]}) U V2 U V3, we have A(v) = 0. Then

%} and |1’ld 1 —1’ld+1| <1
d
27
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Looe(vi\iu huvauvs A©) =0 )
e For each vertex v € V4, we have (eg(v) — dg(v))Dg(v) = (d — 4 — n3 — n5)Dg(v), (¢6:(v) —dg (v))Dg (v) =
(d —=5—n3 —ns)D¢ (v). So, A(v) > (d — 5 —n3 — n5)(Dg(v) — Dg/(v)) > 2(d —5 — n3 — ns). Then,

Yovev, A@) > 2n4(d = 5 — 13 — n5) 2 2(d — 5 — n3 — ns). (10)
e For each vertex v € U?ZSVI-, we have D¢ (v) — D¢/ (v) = 2. Since,

A(x) >{ i((f__ rlz:lni_ilfl,-:lgliﬂ) z,lfleee g %Hgi}l,..., d)
We have
Toeut v, M©) > (L7 + Ty, J2i —4 XL e
_ Gd- 92)d 9) d+1)(23d+1 421':4 . (11)

Combining (7) — (11), we have

[£4G) - D'(G)] - [E1(G") - D'(G)]

( Z + Z + Z + Z )A(v)

veluy)  oe(Vi\uhuvaUVs  0eVs  peud v,
n(n 1)

>2(d - nz—n4—3)(an—l) 2(d —my) -

(3d-9)d—=9)  ([@d+1)@3d+1) _4ini

+2(d—5—1’13—7’15)+ > 5

> 0.

Thatis, &4G) - D'(G) > £4G’) — D’(G’). This is a contradiction to the choice of G. Hence, n; = 1.

In what follows, we prove |nd;21 - nd%ll < 1 for n odd. Suppose that Ind% - n%ll > 2, and Maa > Mas.
Choose a vertex v € V. We construct a new graph G” from G by deleting all edges incident with v,
and moving v from V%l to V%l . Finally, add all edges between {v} and V% U V%s . Let A(x) = (eg(x) —
dc(x))Dg(x) = (egr(x) — dg+(x))Der (x). In what follows, we consider the difference between &4(G) — D’(G)
and &4(G”) — D’(G”). According to the first part of Claim 2(a), we give a partition of G with

d=5

V(G) = V(G") = (U, ti}) U (UL s (i}) U futaa} U s} U (Vi \ f0]) U Vi U fo)

elfic [d 5] U { Dc(u ) — D¢ (u) =-1.Ifi e [d 5] éc(u) dc(ui) = EG/(MZ‘) —dcr(u,’) =d-i-2. Ifi=0,
ec(uo) — dc(uo) = ec/(uo) —do (Mo) d —1. Then,

Y & i }A(X) -1+xi: 1) (12)
xeul o fui
olfie (42,47, ,d), Do(ui) — Do(uw) = 1. If i € {52, &, d -1}, ec(;) — da(wi) = e (wi) — dor (i) = i = 2.
Ifi= d EG(Md) dc(ud) = &g (ud) dc (ud) =d-1. Then,

ZXEUd [u } A(x) — 1 + Z d+l i (13)
olfi=43 wehaveA(uds)——(d+3—nd;l)—Dc(u%) (14)
olfi= d23, we have A(u.m) = dﬁ — Tld+1 2+ DG(Md+3) (15)
e For each vertex x € (VdTl \{v}), we have Ax) = d” — M = 2 + Dg(x). Then,

Lrettyo A®) = (g — (4L - Meg =2+ Dc(x)). (16)

e For each vertex y € V%l, we have A(y) = —("%1 - nd%l) — D¢(y). Then,
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T yeist AQY) = e (~41 + 1y — Do(y)). (17)
e For vertex v, wehave A(v) = (d;rl —Man —1)DG(v)—("’l1—n o )Dg~(v). By Lemma 4.3, we have D¢ (v) > D¢ (v).

7
Then, A(v) = (4 - neg = 1)D(0) — (& —ny £1)De (v) > (ndT na — 1)Dgr(v) > 0. That is, A@®) > 0. (18)
Combining (12) — (18), we have

2

[£(G) - D'(G)] - [E4(G") - D'(G")]

(L + L + %+ % +Fho

erg{u,} XEU d+5 {ui} XEVd 1\w %\[‘0]
-2 d-2
; ) d+3
:—(1+ z)+(1+21)—( L) DG(T/[dS)
j=d£l i:% 2 2
d+3 g1
+ —2 d+1 -2+ DG(ud+3) + (nd 1= 1)(— _ Tl ., DG(X))

traa (T 4 iy~ Do) + A@)

> D(ttz) = Do(usz) + s (Do(x) = Do(y)
> 0.

In view of Claim 2(a), we know that Mat +Man =11 = d+1,and In%l - nL;l| < 1. Then, we get that G = G".
This completes the proof.

5. Concluding remarks

In this paper, we give some further results on &%(G) — D’(G). Firstly, we determine the upper and lower
bounds on £%(G) — D’(G) among general connected graphs in terms of number of cut edges, and characterize
the extremal graphs. Meaiwhile, we consider the extremal graphs in 8. Secondly, we consider the extremal
problems among bipartite graphs on &%(G) — D’(G) in terms of matching number. And then we characterize
the extremal bipartite graphs with diameter d having minimum &%(G) — D’(G).
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