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Abstract. The eccentric distance sum and degree distance have been well-studied in the past several
years. More recently, many authors have considered the relationships between several distance-based
graph invariants. Hua et al. [9] investigated the relationship between the eccentric distance sum ξd(G) and
the degree distance D′(G) of a graph G. In this paper, we give some further results on ξd(G)−D′(G). Firstly,
we determine upper and lower bounds on ξd(G) − D′(G) among general connected graphs in terms of the
number of cut edges, and characterize the corresponding extremal graphs. Meanwhile, we identify the
extremal graphs of given girth 1 having the minimum and maximum ξd(G)−D′(G). Secondly, we consider
the extremal problems among bipartite graphs on ξd(G) − D′(G) in terms of matching number. And then
we characterize the extremal bipartite graphs with diameter d having minimum ξd(G) −D′(G).

1. Introduction

In this paper, we only consider finite, undirected and simple graphs. Let G be a graph with vertex set V(G)
and edge set E(G). The eccentricity of a vertex v in a graph G is defined to be ϵG(v) = max{dG(u, v)|u ∈ V(G)}.
The diameter d of G is defined to be d = max{ϵG(v)|v ∈ V(G)}. In a graph G which has at least one cycle, the
length of a shortest cycle is called its 1irth.

The well-known Wiener index W(G) of a grpah G is one of the most studied topological indices which was
first introduced by Wiener [26]. It is the summation of distances between all unordered pairs of vertices of
G. Many modifications of Wiener index were introduced and studied in literature. Gutman [7] and Nikolič
[18] introduced the modified Wiener indices. Vukičević [24] studied the variable Wiener indices.

The Wiener index is also extensively investigated elsewhere, and several recent papers indicate a wide
variety of topics studied with respect to the Wiener index. Gupta et al. [5] introduced a graph invariant,
namely eccentricity distance sum, as an eccentricity weighted version of the Wiener index. In addition,
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Dobrynin and Gutman [4] introduced another graph invariant, namely de1ree distance, as a degree weighted
version of the Wiener index.

The eccentricity distance sum of graph G is defined as:

ξd(G) =
∑

{u,v}⊆V(G)

(ϵG(u) + ϵG(v))dG(u, v) =
∑

v∈V(G)

ϵG(v)DG(v),

and the degree distance of G is defined as:

D′(G) =
∑

{u,v}⊆V(G)

(dG(u) + dG(v))dG(u, v) =
∑

v∈V(G)

dG(v)DG(v),

where DG(v) =
∑

u∈V(G) dG(u, v).
The eccentricity distance sum is a novel graph invariant for predicting biological and properties. Re-

cently, Yu et al. [27] characterized the extremal unicyclic graphs with girth 1 having the minimum and
second minimum eccentricity distance sum. Hua, Xu and Shu [11] obtained the sharp lower bound on the
eccentricity distance sum among cacti of order n . Geng et al. [8] characterized the extremal trees of order
n and domination number γ having the minimal/maximal eccentricity distance sum. Miao, Cao, and Pang
[16] considered the similar questions. Miao et al. [17] determined the extremal trees in terms of domination
number γ having the maximum eccentricity distance sum, where 4 ≤ γ ≤ ⌈ n

3 ⌉.
As mentioned above, the degree distance can be viewed as a degree weighted version of the Wiener

index. Ilić et al.[15] obtained the degree distance of partial Hamming graphs. Ilić, Stevanović, Feng, Yu,
and Dankelmann [14] determined the extremal graphs with the minimum and maximum degree distance
among unicyclic and bicyclic graphs. Hou et al. [12] characterized the extremal unicyclic graphs with
maximum degree distance. Du and Zhou [3] determined the maximum degree distance among unicyclic
graphs in terms of maximum degree. Tomescu [20–22] and Bucicovschi [1] characterized the extremal
graphs having minimum degree distance. Dankelmann et al. [2] gave an asymptotically sharp upper
bound of the degree distance of graphs in terms of order and diameter.

As we all known, the eccentricity distance sum and the degree distance can be viewed as two weighted
versions of the Wiener index. A natural question arises: How to compare the difference between them?

More recently, Hua, Wang, and Hu [9] investigated the relationship between the eccentric distance sum
and the degree distance. They established several sufficient conditions for a connected graph to have a
larger/smaller eccentric distance sum than degree distance, respectively. They also investigated extremal
problems on the difference between those two graph invariants. Zhang, Meng, and Wu [29] presented
upper and lower bounds on ξd(G)−D′(G) among all connected graphs with given connectivity (resp. edge
number and matching number), and characterized the corresponding extremal graphs.

Motivated by [10, 13, 28], in this paper, we give some further results on ξd(G) − D′(G). This paper is
organized as follows. In section 2, we introduce some basic definitions and lemmas which will be used in the
following sections. In section 3, we determine the upper and lower bounds on ξd(G)−D′(G) among general
connected graphs in terms of number of cut edges, and characterize the extremal graphs. Meaiwhile, we
consider the extremal graphs inG1n. In section 4, we consider the extremal problems among bipartite graphs
on ξd(G) − D′(G) in terms of matching number. And then we characterize the extremal bipartite graphs
with diameter d having minimum ξd(G) −D′(G). In the last section, we conclude our paper.

2. Preliminaries and lemmas

For a positive integer n we will use the notation [n] = {1, 2, ...,n}. For two subsets A and B of vertices
we write [A,B] for the set of edges uv ∈ E(G) with u ∈ A and v ∈ B. An induced subgraph G[Y] is the
subgraph of G whose vertex set is Y and whose edge set consists of all edges of G which have both ends
in Y. If V(G1) ∩ V(G2) = ∅, we denote by G1 ∪ G2 the graph which consists of two components G1 and
G2. The join of G1 and G2, denoted by G1 ∨ G2, is the graph with vertex set V (G1)

⋃
V (G2) and edge set

E (G1)
⋃

E (G2)
⋃
{uv : u ∈ V (G1) , v ∈ V (G2)}. A matching of G is a subset of mutually independent edges
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of G. For a graph G, the matching number β(G) is the maximum cardinality among the independent sets of
edges in G. A cut edge of a connected graph is one whose deletion results in a disconnected graph.

Throughout this paper we use Pn,Sn,Cn,Kn and Kn to denote the path graph, star graph, cycle graph,complete
graph, and independence set on n vertices, respectively.

In what follows, we give some lemmas which will be used frequently in the proof of main results.

Lemma 2.1. [9] Let G be a connected graph with at least three vertices.
(a) If G � Kn, then ξd(G) −D′(G) > ξd(G + e) −D′(G + e), where e ∈ E(Ḡ);
(b) If G has an edge e not being a cut edge, then ξd(G) −D′(G) < ξd(G − e) −D′(G − e).

Lemma 2.2. [9] Suppose that G0 is a connected graph and u is any one vertex in G0. Let G ( resp., G′ ) be a graph
obtained by identifying the vertex u of G0 with a pendent vertex (resp., the maximum degree vertex) of the star
Ss+2(s ≥ 1). Then

ξd(G) −D′(G) > ξd (G′) −D′ (G′) .

Lemma 2.3. [13] Let G be a connected graph on n. For any v ∈ V(G), it holds

εG(v) ≤ n − dG(v).

Moreover, all equalities hold together if and only if G � P4 or Kn − iK2(0 ≤ i ≤ ⌊ n
2 ⌋), where for each i,Kn − iK2 is the

graph obtained by removing i independent edges from G.

Lemma 2.4. [9] Let T be a tree of order n. Then

(n − 1)2
≤ ξd(T) −D′(T) ≤


25n4

96
−

5n3

6
+

17n2

24
−

n
6

if n is even

25n4

96
−

5n3

6
+

31n2

48
−

n
6
+

3
32

if n is odd

where the left-hand side equality holds if and only if G � Sn, while the right-hand side equality holds if and only if
G � Pn.

3. General connected graphs with given parameters

In this section we will give the bounds on ξd(G)−D′(G) in terms of girth 1, and characterize the extremal
graphs. Meanwhile, we consider the extremal graphs with girth 1.

Let B1n be the set of all connected graphs of order n with girth 1. In this subsection, we characterize the
extremal graphs having upper and lower bounds on ξd(G) −D′(G) in B1n.

3.1 Extremal graphs with regard to ξd(G) −D′(G) in B1n
Denote by C(n, 1) the graph obtained by connecting a vertex of a cycle C1 with a pendent vertex of a

path Pn−1. We give a lemma which will be used frequently in the proofs of following theorems.

Lemma 3.1. Let G ∈ B1n. Then

ξd(G) −D′(G) ≤ ξd(C(n, 1)) −D′(C(n, 1)),

the equlity holds if and only if G � C(n, 1).

Proof. Let G(∈ G1n) be a connected graph having maximum ξd(G)−D′(G). By Lemma 2.1, we conclude that
G is a unicyclic graph with girth 1. In fact, by definition , we know that the value of ξd(G)−D′(G) increases
when one deletes edges in the graph G. Thus, G must be a unicyclic graph. Let C1 be the induced cycle
of G. The hypothesis of G with maximum ξd(G) − D′(G) implies that the value ξd(G) − D′(G) reaches its
maximum when the graph G contains as few edges as possible. Considering that the graph G contains as
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few edges as possible, we conclude that G−E(C1) contains as few edges as possible. That is, G−E(C1) must
be a union of some trees. It implies that G − E(C1) is a forest.

Let V(C1) = {v1, v2, ..., v1}. Denote by Tvi the component in G − E(C1) containing vi for i ∈ [1]. Without
loss of generality, suppose |Tvi | ≥ 2 for i ∈ [t], where t ≤ 1.

Replace the cycle C1 in G by a copy of K1 and denote it by v0. Then G becomes a tree T with |T| = n−k+1.
By Lemma 2.4, we can obtain a new tree T0 � Pn−k+1 with the special vertex v0, such that ξd(T0) −D′(T0) >
ξd(T) −D′(T). Then, we replace the vertex v0 ∈ T0 by the cycle C1. Denote this new graph by G1. We have
ξd(G1) −D′(G1) > ξd(G) −D′(G).

The graph G1 is a connected graph constructed from C1 by attaching some paths to each vi ∈ C1 for
i ∈ [2], where 2 ≤ 1. Let G1 = G(m1,m2), where mi is the number of pendent paths attaching to ith vertex of
the cycle C1 for i ∈ [2].

The remaining proof of this lemma is similar to Theorem 3.16 [29], and we omit it. □

If 1 = 3, then we get the following result easily.

Theorem 3.2. Let G ∈ B3
n. Then

ξd(Kn) −D′(Kn) ≤ ξd(G) −D′(G) ≤ ξd(C(n, 3)) −D′(C(n, 3)),

where the left-hand side equality holds if and only if G � Kn, while the right-hand side equality holds if and only if
G � C(n, 3). Moreover, ξd(Kn) −D′(Kn) = −n3 + 3n2

− 2n.

Proof. By Lemma 3.1, it is easy to see that the upper bound is achieved. By Lemma 2.1, we know that the
graphs with minimum ξd(G) − D′(G) by adding some edges to a graph shch that the resulting graph is in
B

3
n. Thus, the extremal graph with minimum ξd(G) −D′(G) must be Kn.

Lemma 3.3. [23] Let G be a connected graph with |E(G)| > 1
4 |V(G)|2. Then G contains at least one triangle.

Lemma 3.4. Let G be a connected triangle-free graph of order n ≥ 4. Then

ξd(G) −D′(G) ≥ ξd(K⌊ n
2 ⌋,⌈

n
2 ⌉

) −D′(K⌊ n
2 ⌋,⌈

n
2 ⌉

),

the equality holds if and only if G � K⌊ n
2 ⌋,⌈

n
2 ⌉

.
Moreover, ξd(K⌊ n

2 ⌋,⌈
n
2 ⌉

) −D′(K⌊ n
2 ⌋,⌈

n
2 ⌉

) = 2n(4 − n)(n − 1) − 2(4 − n)
⌊

n2

4

⌋
.

Proof. Let G be a connected triangle-free graph with minimum ξd(G) − D′(G). If there exists a vertex
v ∈ V(G) of degree n − 1, then ϵG(v) = 1. Since G is triangle-free, it is easy to see that G � K1,n−1. In the
following, we suppose that, for all vertices v ∈ V(G), dG(v) ≤ n − 2. It implies that ϵG(v) ≥ 2, for each vertex
v ∈ V(G). By the definition of ξd(G) −D′(G), we have

ξd(G) −D′(G) =
∑

v∈V(G)

(ϵG(v) − dG(v))DG(v)

≥

∑
v∈V(G)

(ϵG(v) − n + 2)DG(v) (as dG(v) ≤ n − 2)

≥

∑
v∈V(G)

(2 − n + 2)
[
dG(v) + 2(n − 1 − dG(v))

]
(as ϵG(v) ≥ 2)

= 2n(4 − n)(n − 1) − (4 − n)
∑

v∈V(G)

dG(v)

= 2n(4 − n)(n − 1) − 2(4 − n)|E(G)|

≥ 2n(4 − n)(n − 1) − 2(4 − n)
⌊n2

4

⌋
. (by Lemma 3.3)
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We check the equality condition. The three inequalities are equalities if and only if ϵG(v) = 2 for all
v ∈ V(G), and |E(G)| =

⌊
n2

4

⌋
hold together. Combining the hypothesis G is triangle-free and the condition

ϵG(v) = 2 for all v ∈ V(G), we know that G is a complete bipartite graph. Suppose that G � Ka,b, where
1 ≤ a ≤ ⌊ n

2 ⌋ , and a+b = n. Considering the well-known Turán Theorem, we obtain that K⌊ n
2 ⌋,⌈

n
2 ⌉

is the unique

triangle-free graph with exactly
⌊

n2

4

⌋
edges. In what follows, we show that K⌊ n

2 ⌋,⌈
n
2 ⌉

is the unique complete
bipartite graph with minimum value of ξd(K⌊ n

2 ⌋,⌈
n
2 ⌉

) − D′(K⌊ n
2 ⌋,⌈

n
2 ⌉

). It is sufficient to prove the following
Claim.
Claim. ξd(Ka,n−a) −D′(Ka,n−a) decreases strictly in a for a ∈ [1, ⌊ n

2 ⌋].
Proof of Claim. For a ∈ [2, ⌊ n

2 ⌋], we have
ξd(Ka,n−a) −D′(Ka,n−a) = a[2 − (n − a)][n − a + 2(a − 1)] + (n − a)(2 − a)[a + 2(n − a − 1)]

= 3na2
− 3n2a + 4n2

− 4n.
Define a real function f (x) = 3nx2

− 3n2x + 4n2
− 4n in x with x ∈ [2, ⌊ n

2 ⌋]. Since f ′(x) = 6nx − 3n2
≤ 0 in

the interval [2, ⌊ n
2 ⌋], f (x) is a strictly decreasing function in x for x ∈ [2, ⌊ n

2 ⌋]. That is, ξd(K2,n−2)−D′(K2,n−2) >
ξd(K3,n−3) −D′(K3,n−3) > · · · > ξd(K⌊ n

2 ⌋,⌈
n
2 ⌉

) −D′(K⌊ n
2 ⌋,⌈

n
2 ⌉

).
Next, we compare ξd(K2,n−2) −D′(K2,n−2) and ξd(K1,n−1) −D′(K1,n−1).
[ξd(K2,n−2) −D′(K2,n−2)] − [ξd(K1,n−1) −D′(K1,n−1)] = −3n2 + 10n − 1 < 0. (as n ≥ 4)

This completes the proof of Claim 1. □
By Lemma 3.1 and 3.4, it is immediate to get the following theorem.

Theorem 3.5. Let G(∈ B4
n) be a connected graph of order n(≥ 4). Then

ξd(K⌊ n
2 ⌋,⌈

n
2 ⌉

) −D′(K⌊ n
2 ⌋,⌈

n
2 ⌉

) ≤ ξd(G) −D′(G) ≤ ξd(C(n, 4)) −D′(C(n, 4)),

where the left-hand side equality holds if and only if G � K⌊ n
2 ⌋,⌈

n
2 ⌉

, while the right-hand side equality holds if and only
if G � C(n, 4). Moreover, ξd(K⌊ n

2 ⌋,⌈
n
2 ⌉

) −D′(K⌊ n
2 ⌋,⌈

n
2 ⌉

) = 2n(4 − n)(n − 1) − 2(4 − n)
⌊

n2

4

⌋
.

Lemma 3.6. [8] If G ∈ B5
n, then |E(G)| ≤ 1

2 n
√

n − 1.

Theorem 3.7. Let G(∈ B5
n) be a connected graph of order n. Then ξd(G)−D′(G) ≥ 2n(4−n)(n−1)−n(4−n)

√
n − 1.

Proof. Let G(∈ B5
n) be a connected graph with minimum ξd(G) −D′(G). If there exists a vertex v ∈ V(G) of

degree n − 1, then ϵG(v) = 1. Thus, G � K1,n−1. It is easy to see that ξd(K1,n−1) − D′(K1,n−1) = n2
− 2n + 1. In

what follows, we suppose that, for all vertices v ∈ V(G), dG(v) ≤ n − 2. It implies that ϵG(v) ≥ 2, for each
vertex v ∈ V(G). By the definition of ξd(G) −D′(G), we have

ξd(G) −D′(G) =
∑

v∈V(G)

(ϵG(v) − dG(v))DG(v)

≥

∑
v∈V(G)

(ϵG(v) − n + 2)DG(v) (as dG(v) ≤ n − 2)

≥

∑
v∈V(G)

(2 − n + 2)
[
dG(v) + 2(n − 1 − dG(v))

]
= 2n(4 − n)(n − 1) − (4 − n)

∑
v∈V(G)

dG(v)

= 2n(4 − n)(n − 1) − 2(4 − n)|E(G)|

≥ 2n(4 − n)(n − 1) − n(4 − n)
√

n − 1. (by Lemma 3.6)

Since n ≥ 5, it is easy to check that n2
− 2n + 1 > 2n(4 − n)(n − 1) − n(4 − n)

√
n − 1.□

Theorem 3.8. Let G(∈ B5
n) be a connected graph of order n. Then

ξd(G) −D′(G) ≤ ξd(C(n, 4)) −D′(C(n, 4)).
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3.2 Extremal graphs with regard to ξd(G) −D′(G) in terms of cut edges
LetAk

n be the set of connected graphs of order n and with k(> 0) cut edges. By Lemma 1.1, adding (resp.
deleting) edges will decrease (resp. increase) the value of ξd(G) −D′(G). For any graph G without any cut
edge, it is easy to see that Cn and Kn have the maximal and minimal value of ξd(G) −D′(G). It is natural to
ask what are the maximal and minimal values of ξd(G) −D′(G), where G ∈ Ak

n.
Let K(n, k) be a graph obtained by identifying one vertex of Kn−k with the center of Sk+1. In what follows,

we give two theorems to determine the extremal graphs inAk
n, 1 ≤ k ≤ n−6, and calculate the corresponding

value of ξd(G) −D′(G), respectively.

Theorem 3.9. Let G be a graph (∈ Ak
n) with 1 ≤ k ≤ n − 6. Then

ξd(G) −D′(G) ≥ ξd(K(n, k)) −D′(K(n, k)),

with equality holding if and only if G � K(n, k).
Moreover, ξd(K(n, k)) −D′(K(n, k)) = −n3 + 4n2 + kn2 + k2n − 4n − k3

− 3k2
− 2k + 1.

Proof. Let G ∈ Ak
n be a graph minimizing the ξd(G)−D′(G) with k cut edges. Let E0 be exactly the set of cut

edges of G with |E0| = k.
Claim 1. G − E0 =

⋃k+1
i=1 Kni , where

∑k+1
i=1 ni = n with ni ≥ 1 and ni , 2 for i ∈ [k + 1].

Indeed, if there exists a component in G − E0 that is not a complete subgraph. Then, we can obtain a
new graph G1 from G by adding some edges in this component. Obviously, G1 ∈ A

k
n. By Lemma 2.1, we

have ξd(G1) − D′(G1) < ξd(G) − D′(G). This is a contradiction to the choice of G. we complete the proof of
this claim.

Replace every complete subgraph Kni for i ∈ [k + 1] by a copy of K1. Then G can be viewed as
a tree T with |T| = k + 1. By Lemma 2.4, we can obtain a new tree T0 � Sk+1 with central vertex v,
such that ξd(T0) − D′(T0) ≤ ξd(T) − D′(T). This means that the star-like structure G has minimum value
ξd(G) −D′(G). Suppose that the vertex v in T0 corresponds to a complete graph Kn j in G, where j ∈ [k + 1].
Let V(Kn j ) = {w1,w2, ...,wn j }. Now, we replace every vertex u ∈ T0\{v} by the corresponding complete graph
Kni for i ∈ [k + 1]\{ j}. That is, this graph is a star-like connected graph by replacing every vertex of a star
with a complete subgraph Kni for i ∈ [k + 1]. Denote this resulting graph by G2. According to the above
argument, we have ξd(G2) −D′(G2) ≤ ξd(G) −D′(G).

In what follows, we choose G2 with ξd(G2) −D′(G2) as small as possible.
Let Knl be a pendent complete graph, and let xyl be an edge connecting Knl and Kn j with x ∈ Kn j , yl ∈ Knl ,

where l ∈ [k + 1] \ { j}. Construct a graph G3 from G2 by deleting all edges {ylz|z ∈ Knl \ {yl}}, and adding
all edges {wz|z ∈ Knl \ {y},w ∈ Kn j }. For every i ∈ [k − 1] \ { j}, we use the similar above-method to obtain a
graph G4, which is a connected graph by attaching n − k pendent vertices to a complete graph Kn−k. Next,
we prove that G3 have smaller value ξd(·) −D′(·) than G2.
Claim 2. ξd(G2) −D′(G2) > ξd(G4) −D′(G4)
Proof of Claim 2. Consider the difference between ξd(G2) −D′(G2) and ξd(G4) −D′(G4).

[ξd(G2) −D′(G2)] − [ξd(G4) −D′(G4)]

=
( k+1∑

i=1,i, j

∑
u∈V(Kni \{yi})

+

k+1∑
i=1,i, j

∑
u=yi

+
∑

u∈V(Knj )

)
(εG2 (u) − dG2 (u))DG2 (u)

−

( ∑
v∈V(Kn−k)

(εG4 (u) − dG4 (u))DG4 (u) + 2k(2n + k − 4)
)

=

k+1∑
i=1,i, j

(ni − 1)(6 − ni)(5n − 4ni − 2n j − k − 1) +
k+1∑

i=1,i, j

(4 − ni)(4n − 3ni − 2n j − k − 1)

+ n j(4 − n j)(3n − ni − 2n j − k − 7) − (n − k)(3 − n + k)(n + k − 1) − 2k(2n + k − 4)
> k(n1 − 1)(6 − nk)(5n − 6nk − k − 1) + k(4 − nk)(4n − 5nk − k − 1)
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+ n1(4 − nk)(3n − 3nk − k − 7) − (n − k)(3 − n − k − 1) − 2k(2n + k − 4)

> n2 + (k2
− 5)n1nk + k(16nk − 10n1) + (3k + 6kn1 − k)n2

k + 12k
> 0

Let G4 = G(m1,m2, ...,mt), where mi is the number of pendent vertices adjacent to ith vertex of the graph
Kn j for i ∈ [t] with

∑t
i=1 mi = k. Suppose that m1 ≥ m2 ≥ · · · ≥ mt.

Claim 3. G � K(n, k)
Proof of Claim 3. According to the definition of graph G(m1,m2, ...,mt), we know that G(

∑t
i=1 mi, 0, ..., 0) �

K(n, k). Let G4 = G(m1,m2, ...,mt), and G5 = G(m1 + 1,m2, ...,mt − 1). Next, we consider the difference of
ξd(G4) −D′(G4) and ξd(G5) −D′(G5).

[(ξd(G4) −D′(G4)] − [ξd(G5) −D′(G5)]

=
∑

v∈V(G4)

(εG4 (v) − dG4 (v))DG4 (v) −
∑

v∈V(G5)

(εG5 (v) − dG5 (v))DG5 (v)

= 2mt(2n −mt + k − 1) + 2m1(2n −m1 + k − 1) + (3 − n + k −mt)(n −mt + k − 1)
+ (3 − n + k −m1)(n −m1 + k − 1) − 2(mt − 1)(2n − (mt − 1) + k − 1)
− 2(m1 + 1)(2n − (m1 + 1) + k − 1) − (3 − n + k − (mt − 1))(n − (mt − 1) + k − 1)
− (3 − n + k − (m1 + 1))(n − (m1 + 1) + k − 1)
= 2m1 − 2mt + 2 (as m1 ≥ mt)
> 0.

Repeating the above several times, we obtain that ξd(·) − D′(·) decreases by the following graph op-
erations, namely, G(m1,m2, ...,mt) → G(m1 + 1,m2, ...,mt − 1) → · · · → G(m1 + mt,m2, ..., 0) → · · · →

G(
∑t

i=1 mi, 0, ..., 0) � K(n, k).
We complete the proof of this Theorem. □

4. Bipartite graphs with given parameters

4.1 Extremal bipartite graphs with regard to ξd(G) −D′(G) in terms of matching number

Let Dβn be the class of all bipartite graphs of order n with matching number β. In this section, we give
the lower bound on the ξd(G) − D′(G) of all connect graphs G ∈ Dβn. The corresponding extremal graph is
determined.

Theorem 4.1. Let G be a connected graph inDβn, then
ξd(G) −D′(G) ≥ ξd(Kβ,n−β) −D′(Kβ,n−β),

with equality if and only if G � Kβ,n−β.Moreover, ξd(Kβ,n−β) −D′(Kβ,n−β) = 4n2
− 3βn2 + 3β2n − 4n.

Proof. By a simple calculation, it is easy to see that

ξd(Kβ,n−β) −D′(Kβ,n−β)
= β(2 − n + β)(n − β + 2(β − 1)) + (n − β)(2 − β)(β + 2(n − β − 1))

= 4n2
− 3βn2 + 3β2n − 4n.

Choose G inDβn such that the value of ξd(G)−D′(G) is as small as possible. Let X,Y be the bipartition of
the vertex set ofDβn, and let M be a maximal matching of G. Suppose |X| ≥ |Y| ≥ β, X0 = X ∩ V(G[M]), and
Y0 = Y∩V(G[M]). Note that |X0| = |Y0| = β. As we all known that β ≤ ⌊ n

2 ⌋, we consider two cases according
to the value of β.
Case 1. β = ⌊ n

2 ⌋. In this case, it is easy to see that |X| = ⌈ n
2 ⌉,Y = ⌊

n
2 ⌋. By Lemma 2.1, we find that the value of
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ξd(G) −D′(G) of a graph G decreases by adding edges between the sets X and Y. Thus, the extremal graph
is just Kβ,n−β.
Case 2. β < ⌊ n

2 ⌋. According to Lemma 2.1, if |Y| = β, the extremal graph is Kβ,n−β. In what follows, we assume
that |Y| > β. Note that [X\X0,Y\Y0] = ∅. Otherwise, if [X\X0,Y\Y0] , ∅, we can find a new matching M∪{e}
of G, where e ∈ [X\X0,Y\Y0]. This contradicts the maximality of M.

We obtain a new graph G1 from G by adding all possible edges between the sets X0 and Y0, X0 and Y\Y0,
Y0 and X\X0, respectively. We have ξd(G1) −D′(G1) < ξd(G) −D′(G). Let n1 = |Y\Y0|,n2 = |X\X0|. Suppose
n1 ≤ n2. Let M0 be a subset of matching of Kβ,β induced by G1[X0 ∪ Y0], and let |M0| < β. The matching
numbers of G1[X0 ∪Y\Y0] and G1[Y0 ∪X\X0] are both at least β− |M0|. Then, the matching number of G1 is
|M0| + 2(β − |M0|) = β + (β − |M0|) ≥ β + 1. Hence, G1 < D

β
n and G1 , G. We construct a new graph G2 from

G1 by deleting and adding edges, (see Fig.2), which satisfies [X0,Y\Y0] = ∅, and G2[Y0 ∪ (Y\Y0)] = Kn1,β .
Claim 1. G2 � Kβ,n−β. It is routine to check that ξd(G1) − D′(G1) > ξd(G2) − D′(G2). It is easy to see that
V(G1) = V(G2) = X0 ∪ (X\X0) ∪ Y0 ∪ (Y\Y0). For all vertices x ∈ X \ X0(resp. y′ ∈ Y0, x′ ∈ X0, y ∈ Y \ Y0), we
have

(εG1 (x) − dG1 (x))DG1 (x) = (3 − β)(3β + 3n1 + 2n2 − 2), (εG2 (x) − dG2 (x))DG2 (x) = (2 − β)(3β + 2n1 + 2n2 −

2), (εG1 (y′)−dG1 (y′))DG1 (y′) = (2−n2−β)(3β+2n1+n2−2), (εG2 (y′)−dG2 (y′))DG2 (y′) = (2−n1−n2−β)(3β+n1+
n2 − 2), (εG1 (x′)− dG1 (x′))DG1 (x′) = (2−n1 − β)(3β+ 2n2 +n1 − 2), (εG2 (x′)− dG2 (x′))DG2 (x′) = (2− β)(3β+ 2n1 +
2n2−2), (εG1 (y)−dG1 (y))DG1 (y) = (3−β)(3β+3n2+2n1−2), (εG2 (y)−dG2 (y))DG2 (y) = (2−β)(3β+2n2+2n1−2).

Now, consider the difference of ξd(G1) −D′(G1) and ξd(G2) −D′(G2).[
ξd(G1) −D′(G1)

]
−

[
ξd(G2) −D′(G2)

]
=
∑

v∈V(G)

[
(εG1 (v) − dG1 (v))DG1 (v) − (εG2 (v) − dG2 (v))DG2 (v)

]
=
( ∑

v∈X\X0

+
∑
v∈Y0

+
∑
v∈X0

+
∑

v∈Y\Y0

)[
(εG1 (v) − dG1 (v))DG1 (v) − (εG2 (v) − dG2 (v))DG2 (v)

]
= n2

[
(3 − β)(3β + 3n1 + 2n2 − 2) − (2 − β)(3β + 2n1 + 2n2 − 2

]
+ β
[
2 − n2 − β)(3β + 2n1 + n2 − 2) − (2 − n1 − n2 − β)(3β + n1 + n2 − 2)

]
+ β
[
(2 − n1 − β)(3β + 2n2 + n1 − 2) − (2 − β)(3β + 2n1 + 2n2 − 2)

]
+ n1

[
(3 − β)(3β + 3n2 + 2n1 − 2) − (2 − β)(3β + 2n2 + 2n1 − 2)

]
= 10n1n2 − 2n2 − 2n1 + 3n1β + 3n2β + 2n2

1 + 2n2
2

= 2n2
1 + 2n2

2 + 10n1n2 + (3β − 2)(n2 + n1)
> 0.

This implies that G2 � Kβ,n−β.
Combining the Case 1 and Case 2, we complete the proof of this theorem.

X

Y

X\X0X0

Y \Y0 Y0

G1 G2

X

Y

X0

Y0Y \Y0

X\X0
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Fig.2. G2 obtained from G1 by deleting red edges and adding blue edges

4.2 Extremal bipartite graphs with regard to ξd(G) −D′(G) in terms of diameter

Let F d
n be the class of all bipartite graphs of order n with diameter d.

Let G ∈ F d
n , and let d be the diameter of G. Then, there exist two vertices u and v in G, such that

dG(u, v) = d. The shortest path connecting u and v, denoted by Pu,v(= Pu=u0,u1,...,ud=v), is called diametral path.
Let Vi = {w ∈ V(G)|dG(u,w) = i}, and let ni = |Vi| for i ∈ [d] ∪ {0}. Clearly, n0 = 1. Then, we get a partition
V(G) =

⋃d
i=0 Vi such that ui ∈ Vi for i ∈ [d] ∪ {0}.

Lemma 4.2. [4] For any graph E ∈ F d
n with the above partition of VG,G [Vi] induces an empty graph (i.e. containing

no edge) for each i ∈ {0, 1, . . . , d}.

Define a graph G∗(resp. G∗∗) that corresponds to d being odd(resp. even) as extremal graph in the
following theorem. Those two graphs can be constructed by the following way.

Recall that Pu,v(= Pu=u0,u1,...,ud=v) of length d is a diametral path. The graph G1 can be constructed
from Pu,v by replacing u d−1

2
and u d+1

2
with K

⌊
n−d+1

2 ⌋
and K

⌈
n−d+1

2 ⌉
, respectively. That is, V d−1

2
= V(K

⌊
n−d+1

2 ⌋
)

and V d+1
2
= V(K

⌈
n−d+1

2 ⌉
). We obtain the graph G∗ from G1 by adding edges such that induced subgraphs

G∗[{u d−3
2
},V d−1

2
](G∗[V d−1

2
,V d+1

2
] and G∗[V d+1

2
, {u d+3

2
}]) are all complete bipartite subgraphs.

The graph G2 can be constructed from Pu,v by replacing u d−2
2

(u d
2

and u d+2
2

), with K
⌊

n−d+2
4 ⌋

( K
⌈

n−d+2
2 ⌉

and

K
⌈

n−d+2
4 ⌉

), respectively. That is, V d−2
2
= V(K

⌊
n−d+2

4 ⌋
), V d

2
= V(K

⌈
n−d+2

2 ⌉
) and V d+2

2
= V(K

⌈
n−d+2

4 ⌉
). We obtain the graph

G∗∗ from G2 by adding edges such that induced subgraphs G∗∗[{u d−4
2
},V d−2

2
],G∗∗[V d−2

2
,V d

2
], G∗∗[V d

2
,V d+2

2
] and

G∗∗[V d+2
2
, {u d+4

2
}] are all complete bipartite subgraphs.

Lemma 4.3. Let d, d′,n, and i are all positive integers, and d > d′. Let ni(resp. n′i ) be positive integers for i ∈ [d](resp.
[d′]). Let ni ≥ n′i for any i ∈ [d′], and

∑d
i ni =

∑d′
i n′i = n − 1. Then

d∑
i

i · ni >
d′∑
i

i · n′i .

Proof. Define a function f (n1,n2, ...,nd) =
∑d

i=1 i ·ni. For some j ∈ [d− 1], we consider the difference between
f (n1,n2, ...,n j, ...,nd) and f (n1,n2, ...,n j + 1, ...,nd − 1).

f (n1,n2, ...,n j, ...,nd) − f (n1,n2, ...,n j + 1, ...,nd − 1)

= (
d∑

i,i, j,d

i · ni + d · nd + j · n j) − (
d∑

i,i, j,d

i · ni + d · (nd − 1) + j · (n j + 1))

= d − j > 0.

From the above, we find that the function f (n1,n2, ...,n j, ...,nd) decreases when the pair (n j,nd) changes by
the following chain (n j,nd)→ (n j + 1,nd − 1)→ · · · → (n j + nd, 0).

Now, let n′i = ni for i ∈ [d] \ { j, d}, n′j = n j + nd , and d′ = d − 1. We complete the proof of this lemma.

Theorem 4.4. Let G is in F d
n with minimum value of ξd(G) −D′(G).

(I) If d = 2, then G � K⌊ n
2 ⌋,⌈

n
2 ⌉
.

(II) If d ≥ 3, then G � G∗ for odd d and G � G∗∗ for even d.

Proof. Let G ∈ F d
n be a connected bipartite graph with bipartition (U,V) such that the value of ξd(G)−D′(G)

is as small as possible.
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(I) If d = 2. By Lemma 2.1, we know that adding edges will decrease the value of ξd(G) −D′(G), then G
must be a complete graph. Let G � Kn−t,t, where min{t,n − t} ≥ 2. Let |U| = n − t, |V| = t. Then we can easily
calculate the value of ξd(G) −D′(G) as following.

For each vertex u(resp. v) in U(resp. V), we have (εG(u) − dG(u))DG(u) = (2 − t)(2n − t − 2), and
(εG(v) − dG(v))DG(v) = (2 − n + t)(n + t − 2).

Thus

ξd(Kn−t,t) −D′(Kn−t,t)

=
(∑

w∈U

+
∑
w∈V

)
(εKn−t,t (w) − dKn−t,t (w))DKn−t,t (w)

= (n − t)(2 − t)(2n − t − 2) + t(2 − n + t)(n + t − 2)

= 3nt2
− 3n2t + 4n2

− 4n.

Define a function f (x) = 3nx2
− 3n2x + 4n2

− 4n, which is a real function in x. f (x) reaches its minimum
value when x = n

2 .
If n is odd, that is, t = n−1

2 or n+1
2 , then ξd(Kn−t,t) −D′(Kn−t,t) ≥ − 3

4 n3 + 4n2
−

13
4 n.

If n is even, that is, t = n
2 , then ξd(Kn−t,t) −D′(Kn−t,t) ≥ − 3

4 n3 + 4n2
− 4n.

Combining above two cases, we have G � K⌊ n
2 ⌋,⌈

n
2 ⌉

.

(II) Recall that |Vi| = ni for i ∈ [d]
⋃
{0}. We first give two claims.

Claim 1. G[Vi
⋃

Vi+1] � Kni,ni+1 for i ∈ [d − 1]
⋃
{0}, and |nd| = 1 for d ≥ 3.

Proof of Claim 1. By Lemma 4.2, E(G[Vi]) = ∅ for i ∈ [d]
⋃
{0}. Suppose that there exists some k ∈ [d−1]

⋃
{0}

such that G[Vk
⋃

Vk+1] � Knk ,nk+1 . So, we can obtain a new graph G′ by adding some edges between two sets
Vk and Vk+1. By Lemma 2.1, we get that ξd(G′) −D′(G′) < ξd(G) −D′(G). This contradicts the minimality of
ξd(G) −D′(G).

In what follows, we prove the second part of Claim 1. If |nd| ≥ 2, we choose a vertex w ∈ Vd\{ud}, and
add edge wx, where x ∈ Vd−3. Then, we get a new graph G′′ = G + wx with G′′ ∈ Bd

n. By Lemma 2.1, we
have ξd(G′′) −D′(G′′) < ξd(G) −D′(G). This contradicts to the choice of G. We complete the proof of Claim
1.
Claim 2. Let V(G) =

⋃d
i=0 Vi.

(a) If d is odd, then ni = 1 for i ∈ [d]
⋃
{0}\{ d−1

2 ,
d+1

2 }, and |n d−1
2
− n d+1

2
| ≤ 1.

(b) If d is even, then ni = 1 for i ∈ [d]
⋃
{0}\{ d−2

2 ,
d
2 ,

d+2
2 }, and n d

2
− (n d−2

2
+ n d+2

2
) ≤ 1.

Proof of Claim 2.(a) We only prove (a), and omit the proof of (b). Note that n0 = nd = 1. Since we can use
similar method to prove ni = 1 for i ∈ [d]

⋃
{0}\{ d−1

2 ,
d+1

2 }, it suffices to show that n1 = 1.
Indeed, if d = 3, the result is trivial. So, suppose d ≥ 5. If n1 ≥ 2, then choose u′1 ∈ V1\{u1} and let

G′ = G − u0u′1 + {u
′

1x|x ∈ V4}. Obviously,
∑d

i=4 ni ≥ d − 3 ≥ d − ⌈ d
2 ⌉ = ⌊

n
2 ⌋ > n0 = 1. In what follows, we

consider the difference between ξd(G) − D′(G) and ξd(G′) − D′(G′). For any vertex x ∈ V(G) ∩ V(G′), we
let ∆(x) = (εG(x) − dG(x))DG(x) − (εG′ (x) − dG′ (x))DG′ (x), ni

G(v) = |{w ∈ V(G)|dG(v,w) = i}|, and ni
G′ (v) = |{w ∈

V(G′)|dG′ (v,w) = i}|.
Firstly, we give a partition of G with

V(G) = V(G′) = {u} ∪ {u′1} ∪ ((V1\{u′1}) ∪ V2 ∪ V3) ∪ V4 ∪ (∪d
i=5Vi)

• For vertex u′1, we have εG(u′1)− dG(u′1) = d− n2 − 2, εG′ (u′1)− dG′ (u′1) = d− n2 − n4 − 3. So, εG(u′1) > εG′ (u′1).
Since DG(u′1) =

∑d−1
i=1 i · ni

G(v), and DG′ (u′1) =
∑d−3

i=1 i · ni
G′ (v), by Lemma 4.3, we have DG(u′1) > DG′ (u′1). Then,

∆(u′1) > 0.
Moreover,
∆(u′1) > 2(d − n2 − n4 − 3)(

∑d
i=4 ni − 1). (7)

• For vertex u, we have (εG(u) − dG(u))DG(u) = (d − n1)DG(u), (εG′ (u) − dG′ (u))DG′ (u) = (d − n1 + 1)DG′ (u).
We have

∆(u) = (d − n1)(DG(u) −DG′ (u)) −DG′ (u) > −2(d − n1) − n(n−1)
2 . (8)

• For each vertex v ∈ (V1\{u′1}) ∪ V2 ∪ V3, we have ∆(v) = 0. Then
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v∈(V1\{u′1})∪V2∪V3

∆(v) = 0 (9)
• For each vertex v ∈ V4, we have (εG(v) − dG(v))DG(v) = (d − 4 − n3 − n5)DG(v), (εG′ (v) − dG′ (v))DG′ (v) =
(d − 5 − n3 − n5)DG′ (v). So, ∆(v) > (d − 5 − n3 − n5)(DG(v) −DG′ (v)) > 2(d − 5 − n3 − n5). Then,∑

v∈V4
∆(v) > 2n4(d − 5 − n3 − n5) ≥ 2(d − 5 − n3 − n5). (10)

• For each vertex v ∈ ∪d
i=5Vi, we have DG(v) −DG′ (v) = 2. Since,

∆(x) >
{

2(d − i − ni−1 − ni+1) i f i ∈ {5, 6, ..., ⌊ d
2 ⌋}

2(i − ni−1 − ni+1) i f i ∈ {⌈ d
2 ⌉, ⌈

d
2 ⌉ + 1, ..., d}

We have∑
v∈∪d

i=5Vi
∆(v) >

(∑d−5
i=⌈ d

2 ⌉
+
∑d

i=⌈ d
2 ⌉

)
2i − 4

∑d
i=4 ni.

=
(3d−9)(d−9)

2 +
(d+1)(3d+1)

2 − 4
∑d

i=4 ni. (11)

Combining (7) − (11), we have

[ξd(G) −D′(G)] − [ξd(G′) −D′(G′)]

=
( ∑

v∈{u,u′1}

+
∑

v∈(V1\{u′1})∪V2∪V3

+
∑
v∈V4

+
∑

v∈∪d
i=5Vi

)
∆(v)

> 2(d − n2 − n4 − 3)(
d∑

i=4

ni − 1) − 2(d − n1) −
n(n − 1)

2

+ 2(d − 5 − n3 − n5) +
(3d − 9)(d − 9)

2
+

(d + 1)(3d + 1)
2

− 4
d∑

i=4

ni

> 0.

That is, ξd(G) −D′(G) > ξd(G′) −D′(G′). This is a contradiction to the choice of G. Hence, n1 = 1.
In what follows, we prove |n d−1

2
− n d+1

2
| ≤ 1 for n odd. Suppose that |n d−1

2
− n d+1

2
| ≥ 2, and n d−1

2
> n d+1

2
.

Choose a vertex v ∈ V d−1
2

. We construct a new graph G′′ from G by deleting all edges incident with v,
and moving v from V d−1

2
to V d+1

2
. Finally, add all edges between {v} and V d−1

2
∪ V d+3

2
. Let ∆(x) = (εG(x) −

dG(x))DG(x) − (εG′′ (x) − dG′′ (x))DG′′ (x). In what follows, we consider the difference between ξd(G) − D′(G)
and ξd(G′′) −D′(G′′). According to the first part of Claim 2(a), we give a partition of G with

V(G) = V(G′′) =
(
∪

d−5
2

i=0 {ui}
)
∪

(
∪

d
i= d+5

2
{ui}
)
∪ {u d−3

2
} ∪ {u d+3

2
} ∪

(
V n−1

2
\ {v}
)
∪ V n+1

2
∪ {v}.

• If i ∈ [ d−5
2 ] ∪ {0}, DG(ui) − DG′ (ui) = −1. If i ∈ [ d−5

2 ], εG(ui) − dG(ui) = εG′ (ui) − dG′ (ui) = d − i − 2. If i = 0,
εG(u0) − dG(u0) = εG′ (u0) − dG′ (u0) = d − 1. Then,∑

x∈∪
d−5

2
i=0 {ui}

∆(x) = −(1 +
∑d−2

i= d+1
2

i). (12)

• If i ∈ { d+5
2 ,

d+7
2 , ..., d}, DG(ui) −DG′ (ui) = 1. If i ∈ { d+5

2 ,
d+7

2 , ..., d − 1}, εG(ui) − dG(ui) = εG′ (ui) − dG′ (ui) = i − 2.
If i = d, εG(ud) − dG(ud) = εG′ (ud) − dG′ (ud) = d − 1. Then,∑

x∈∪d
i= d+5

2
{ui}
∆(x) = 1 +

∑d−2
i= d+1

2
i. (13)

• If i = d−3
2 , we have ∆(u d−3

2
) = −( d+3

2 − n d−1
2

) −DG(u d−3
2

) (14)

• If i = d−3
2 , we have ∆(u d+3

2
) = d+3

2 − n d+1
2
− 2 +DG(u d+3

2
) (15)

• For each vertex x ∈ (V d−1
2
\{v}), we have ∆(x) = d+1

2 − n d+1
2
− 2 +DG(x). Then,∑

x∈ d−1
2 \{v}

∆(x) = (n d−1
2
− 1)( d+1

2 − n d+1
2
− 2 +DG(x)). (16)

• For each vertex y ∈ V d+1
2

, we have ∆(y) = −( d+1
2 − n d−1

2
) −DG(y). Then,
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y∈ d+1

2
∆(y) = n d+1

2
(− d+1

2 + n d−1
2
−DG(y)). (17)

•For vertex v, we have∆(v) = ( d+1
2 −n d+1

2
−1)DG(v)−( d+1

2 −n d−1
2

)DG′′ (v).By Lemma 4.3, we have DG(v) > DG′′ (v).

Then, ∆(v) = ( d+1
2 − n d+1

2
− 1)DG(v) − ( d+1

2 − n d−1
2

)DG′′ (v) > (n d−1
2
− n d+1

2
− 1)DG′′ (v) > 0. That is, ∆(v) > 0. (18)

Combining (12) − (18), we have

[ξd(G) −D′(G)] − [ξd(G′′) −D′(G′′)]

=
( ∑

x∈
⋃ d−5

2
i=0 {ui}

+
∑

x∈
⋃d

i= d+5
2
{ui}

+
∑

x∈V d−1
2
\{v}

+
∑

x∈V d+1
2
\{v}

+
∑
x∈{v}

)
∆(x)

= −
(
1 +

d−2∑
i= d+1

2

i
)
+
(
1 +

d−2∑
i= d+1

2

i
)
−

(d + 3
2
− n d−1

2

)
−DG(u d−3

2
)

+
d + 3

2
− n d+1

2
− 2 +DG(u d+3

2
) + (n d−1

2
− 1)(

d + 1
2
− n d+1

2
− 2 +DG(x))

+ n d+1
2

(−
d + 1

2
+ n d−1

2
−DG(y)) + ∆(v)

> DG(u d+3
2

) −DG(u d−3
2

) + n d+1
2

(DG(x) −DG(y))

> 0.

In view of Claim 2(a), we know that n d−1
2
+ n d+1

2
= n − d + 1, and |n d−1

2
− n d+1

2
| ≤ 1. Then, we get that G � G∗.

This completes the proof.

5. Concluding remarks

In this paper, we give some further results on ξd(G) −D′(G). Firstly, we determine the upper and lower
bounds on ξd(G)−D′(G) among general connected graphs in terms of number of cut edges, and characterize
the extremal graphs. Meaiwhile, we consider the extremal graphs inB1n. Secondly, we consider the extremal
problems among bipartite graphs on ξd(G)−D′(G) in terms of matching number. And then we characterize
the extremal bipartite graphs with diameter d having minimum ξd(G) −D′(G).
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