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The existence of a {P,, Cs3, P5, 7 (3)}-factor based on the size or the
Ag-spectral radius of graphs

Xianglong Zhang?, Lihua You®"

#School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, P. R. China

Abstract. Let G be a connected graph of order n. A {P,,C;, P5, 7 (3)}-factor of G is a spanning subgraph
of G such that each component is isomorphic to a member in {P,, C3, Ps, 7 (3)}, where 7 (3) is a {1, 2, 3}-tree.
The A,-spectral radius of G is denoted by p,(G). In this paper, we obtain a lower bound on the size or
the A,-spectral radius for a € [0,1) of G to guarantee that G has a {P,, C3, P5, 7 (3)}-factor, and construct an
extremal graph to show that the bound on A,-spectral radius is optimal.

1. Introduction

Let G be an undirected simple and connected graph with vertex set V(G) and edge set E(G). The order
of G is the number of its vertices, and the size is the number of its edges.

Let G be a graph of order n with V(G) = {v1, vy, ..., v,}. The adjacency matrix of G is defined as A(G) = (a;}),
wherea;; = 1ifv;0; € E(G), and a;; = 0 otherwise. The degree diagonal matrix is the diagonal matrix of vertex
degrees of G, denoted by D(G). The signless Laplacian matrix Q(G) of G is defined by Q(G) = D(G)+A(G). The
largest eigenvalue of Q(G) is denoted by g(G). For any «a € [0, 1), Nikiforov[12] introduced the A,-matrix of
G as Ax(G) = aD(G) + (1 — a)A(G). It is easy to see that A,(G) = A(G) if @ = 0, and A,(G) = %Q(G) ifa = %
The eigenvalues of A,(G) are called the A,-eigenvalues of G, and the largest of them, denoted by p,(G), is
called the A,-spectral radius of G. More interesting spectral properties of A,(G) can be found in [7, 8, 12].

For a given subset S C V(G), the subgraph of G induced by S is denoted by G[S], and the subgraph
obtained from G by deleting S together with those edges incident to S is denoted by G — S. Let G and H be
two disjoint graphs. The union G U H is the graph with vertex set V(G) U V(H) and edge set E(G) U E(H).
The join G V H is derived from G U H by joining every vertex of G with every vertex of H by an edge.

A subgraph of a graph G is spanning if the subgraph covers all vertices of G. Let H be a set of connected
graphs. An H-factor of a graph G is a spanning subgraph of G, in which each component is isomorphic to
an element of H. An H-factor is also referred as a component factor.
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For a tree T, every vertex of degree 1 is a leaf of T. We denote the set of leaves in T by Leaf(T). An edge
of T incident with a leaf is called a pendant edge. A {1, 3}-tree is a tree with every vertex having degree 1
or 3. Let R be a {1, 3}-tree, T(3) be the set of trees Ty that can be obtained from R as follows (see [4]): T is
obtained from R by inserting a new vertex of degree 2 into every edge of R, and by adding a new pendant
edge to every leaf of R. Then the tree T is a {1,2, 3}-tree having |E(R)| + |Leaf(R)| vertices of degree 2 and
has the same number of leaves as R. The collection of such {1,2, 3}-trees Tr generated from all {1, 3}-trees R
is denoted by T(3), and any graph in T(3) is denoted by 7 (3).

More and more researchers have been studied the existence of different factors in graphs since 2000. Las
Vergnas [6] presented a sufficient and necessary condition for a graph having {K;; : 1 < j < k}-factor with

k > 2. Kano, Lu and Yu [3] showed that a graph has a {Kj 2, K1 3, Ks}-factor if it satisfies i(G - S) < Ig—' for every
S c V(G). Kano, Lu and Yu [4] proved that a graph has a {P,, C3, P5, 7 (3)}-factor if and only if it satisfies
i(G-9) < %ISI for all S ¢ V(G). Kano and Saito [5] proved that a graph G has a {K;; : m < | < 2m}-factor if
it satisfies i(G — S) < %ISI for every S C V(G). Zhang, Yan and Kano [14] gave a sufficient condition for a
graph G containing a {Kj ¢ : m < t < 2m — 1} U {Ky41}-factor. Chen, Lv and Li [2] provided a lower bound on
the size (resp. the spectral radius) of G to guarantee that the graph has a {P,,C,, : n > 3}-factor. Lv, Li and
Xu [9] derived a tight A,-spectral radius and distance signless Laplacian spectral radius for the existence
of a {Ky, Cyi41 1 1 2 1}-factor in a graph. Li and Miao [10] determined a sufficient condition about the size or
the spectral radius of G to contain $s,-factor and be $»,-factor covered graphs. Miao and Li [11] showed
a lower bound on the size or the spectral radius, and an upper bound on the distance spectral radius of G
to ensure that G has a {Kj; : 1 < j < k}-factor. Zhou, Zhang and Sun [17] established a relationship between
P.y-factor and A,-spectral radius of a graph. Zhang and You [15] showed sufficient conditions via the size
or the A,-spectral radius of graphs to ensure that a graph contains a {Kj », K 3, Ks}-factor. Zhou [16] got a
spectral radius condition on the existence of {P,, C3, Ps, 7 (3)}-factor in graphs.

Motived by [4, 16, 17] directly, it is natural and interesting to study some sufficient and necessary
conditions to ensure that a graph contains a {P,, C3, Ps, 7 (3)}-factor. In this paper, we focus on the sufficient
conditions via the size or the A,-spectral radius of graphs and obtain the following two results.

Theorem 1.1. Let G be a connected graph of order n > 5, and

(HEZ) +2, ifn>5andn ¢{6,8};
F(n) = {9, ifn=6;
18, ifn=8.

IfIE(G)| > E(n), then G has a {P,, C3, P5, T (3)}-factor.

Theorem 1.2. Let a € [0,1), p(x) = x> — (@ + D)n + & — 4)x> + (an® + (a? = 2a — )n — 2o + 1)x — a?n? + (502 —
3a +2)n — 10a* + 15a — 8, G be a connected graph of order n with n > f(a), where

20, ifael0,1];
fla) =425, ifae(3,3];
L +3, ifae (1)

If pa(G) > t(n), then G has a {P,, Cs, Ps, T (3)}-factor, where t(n) is the largest root of @(x) = 0.

Let a = 0 in Theorem 1.2, the main result of [16] via the spectral radius can be obtained, and let o = %,
we have the following corollary via the signless Laplacian spectral radius immediately.

Corollary 1.3. Let G be a connected graph of order n with n > 20. If g(G) > 2u(n), then G has a {P,, C3, P5, 7 (3)}-
factor, where p(n) is the largest root of 4x> — (6n — 14)x> + (2n* = 7Tn)x —n* + 7n— 6 = 0.
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2. Preliminaries
In this section, we introduce some useful definitions and lemmas.
Definition 2.1. [1]) Let M be a complex matrix of order n described in the following block form

My -+ My
M=| .
Mp -+ My

where the blocks M;j are n; X nj matrices forany 1 <i,j <landn =ny +---+mn. For 1 <1i,j <1, let q;; denote the
average row sum of Mjj, i.e. gjj is the sum of all entries in M;; divided by the number of rows. Then Q(M) = (q;)
(or simply Q) is called the quotient matrix of M. If, in addition, for each pair i, j, M;; has a constant row sum, i.e.,
Mijé,; = qijén,, then Q is called the equitable quotient matrix of M, where & = (1,1,---, 1)T € C, and C denotes the
field of complex numbers.

Let M be a real nonnegative matrix. The largest eigenvalue of M is called the spectral radius of M,
denoted by p(M).

Lemma 2.2. [13]) Let B be an equitable quotient matrix of M as defined in Definition 2.1, where M is a nonnegative
matrix. Then the eigenvalues of B are also eigenvalues of M, and p(B) = p(M).

Lemma 2.3. [12]) Let K;, be a complete graph of order n. Then p,(K,) =n — 1.
Lemma 2.4. [12]) If G is a connected graph, and H is a proper subgraph of G, then p,(G) > p.(H).

Lemma 2.5. (The Cauchy’s interlace theorem[1]) Let two sequences of real number, A1 > Ay > --- > A, and
M =12 > ...Mu-1, be the eigenvalues of symmetric matrix A and B, respectively. If B is a principal submatrix of A,
then the eigenvalues of B interlace the eigenvalues of A, i.e, Ay 2 2 Ay 2 - 2 My 2 Ayt 2 Myt 2 A

Let i(G) denote the number of isolated vertices of G. The following lemma gives a sufficient and
necessary condition for a graph containing a {P, C3, Ps, 7 (3)}-factor.

Lemma 2.6. [4]) A graph G has a {P,, C3, Ps, T (3)factor if and only if i(G — S) < 3|S| for all S € V(G).

3. The proof of Theorem 1.1

In this section, we prove Theorem 1.1, which gives a sufficient condition via the size of a connected
graph to ensure that the graph contains a {P,, C3, P5, 7 (3)}-factor.

Proof. Suppose to the contrary that G contains no {P,, C3, P5, 7 (3)}-factor. By Lemma 2.6, there exists a
nonempty subset S of V(G) satisfying i(G — S) > 3|S|.

Choose such a connected graph G of order n so that its size is as large as possible. With the choice
of G, the induced subgraph G[S] and every connected component of G — S are complete graphs, and
G=G[S]V(G-9).

Note that there is at most one non-trivial connected component in G — S. Otherwise, we can add
edges among all non-trivial connected components to get a bigger non-trival connected component, which
contradicts to the choice of G. For convenient, let |S| = s and (G — S) = i. We now consider the following
two possible cases.

Case 1. G — S has exactly one non-trivial connected component, say G;.

8.4 1 o .
55+ 5, ifsisodd;

2 o Now weshowi = | £]+1.
5s+1, ifsiseven.

In this case, let [V(G1)| = n; > 2. Obviously, i > I_%J+1 = {
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If i > | $] + 2, let H; be a new graph obtained from G by joining each vertex of G; with one vertex in
V(G - 5)\ V(G;1) by an edge. Then we have |[E(H;)| = |[E(G)| + 11 > |[E(G)|land i(H; = S) =i—-12> I_%J +1,a
contradiction with the choice of G. Hence i = | £ |+ 1byi> 3sand G = K V (Ky,, U (LZ] + 1DKy).
25s+32>5, ifsisodd
gs+3 > 8, ifsiseven

8<9, ifn=6
; ’ ly need show |E(G)| < ("32) + 2.
17<18, ifn=g, " Comyneedas ow [E@G) < ("))

Clearly, we have n = s + L%J +14m 2 { and |E(G)| = s(L%J +1)+ (”_L?_l).

Now we show |E(G)| < F(n). By (”;2) +2= {

Subcase 1.1. s is odd.

(n ; 2) +2 - |EG)| = %(s -1)(12n -21s-37) > %(s -1)(9s-7) > 0.

Therefore, |[E(G)| < (";2) + 2 for odd s, which is a contradiction.
Subcase 1.2. s is even.

-2 1 1 47
(” ) )+ 2 - |E(G)| = g(—21s2 ~ 265+ 1205 = 81 +32) > £(9(s - 2)2 +5)>0.

Therefore, |[E(G)| < (”;2) + 2 for even s, which is a contradiction.

Combining the above two subcases, we have |[E(G)| < F(n), a contradiction.

Case 2. G — S has no non-trivial connected component.

In this case, we prove i < | 3| + 2 firstly.

Ifi > | ¥ |+3, let H, be a new graph obtained from G by adding an edge between two vertices in V(G- S).
Clearly, i(H, — S) =i—2 > | 2] + 1 and H, — S has exactly one non-trivial connected component. Together
with |[E(G)| < |E(H3)|, we obtain a contradiction with the choice of G, which implies i = I_%J +lori= I_%J +2
byi> s.

Subcase 2.1. i =] + 1.

In this subcase, we have G = K, V (L2 ] + 1)K;). Therefore, n = s+ 2] +1, [E(G)| = () +s(|£]+1),s > 2
by n > 5, and

n-2 (s =1)(9s - 31), ifsisodd;
(s R CTCTR  PA oe
3(9s” —34s +24), ifsiseven.

If s is odd, we have |E(G)| < (*}?) + 2 for s > 5 (which implies n > 13), and |E(G)| = 2s*> = 18 for s = 3
(which implies n = 8).

If s is even, we have |[E(G)| < (";2) + 2 for s > 4 (which implies n > 11), and |E(G)| = 9 for s = 2 (which
implies nn = 6).

Combining the above arguments, we have |E(G)| < F(n) for all n > 5, a contradiction.

Subcase 2.2. i = |£] +2.

In this subcase, we have G = K, V ((I_%J +2)K1). Therefore, n = s + I_%J +2,|EG) = () + S(L%J +2),5>2
by n > 5, and

n—-2
( 2)+2—wmn={

If s is odd, we have |E(G)| < (";2) + 2 for s > 3 (which implies n > 9).

If s is even, we have |[E(G)| < (";?) + 2 for s > 2 (which implies n > 7).

Combining the above arguments, we have |E(G)| < F(n) for all n > 5, a contradiction.
By Case 1 and Case 2, we complete the proof. [

(s—=1)(9s—19), ifsisodd;
(952 — 225 + 16), if sis even.

oo ool
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4. The proof of Theorem 1.2

In this section, we prove Theorem 1.2, which presents a sufficient condition in terms of the A,-spectral
radius for a graph to contain a {P;, Cs, Ps, 7 (3)}-factor.

Proof. Suppose to the contrary that G does not contain a {P,, C3, P5, 7 (3)}-factor. By Lemma 2.6, there exists
a nonempty subset S of V(G) satisfying i(G — S) > 3|S|.

Choose such a connected graph G of order n so that its A,-spectral radius is as large as possible. Together
with Lemma 2.4 and the choice of G, the induced subgraph G[S] and every connected component of G - S
are complete graphs, and G = G[S] V (G - 5).

It is easy to see that G — S admits at most one non-trivial connected component. Otherwise, we
can construct a new graph G’ by adding edges among all non-trivial connected components to obtain a
bigger non-trivial connected component. Clearly, G is a proper subgraph of G’. According to Lemma 2.4,
Pa(G") > pa(G), which contradicts the choice of G. For convenient, let |S| = s and i(G - S) = i.

Now, we show Theorem 1.2 by considering the following two cases.

Case 1. G — S has exactly one non-trivial connected component.

In this case, G = K; V (Ky, UiK7), where ny = n—s—i> 2. Now we show i = [¥ ]+ 1.

Ifi > | 3] +2, then we construct a new graph G obtained from G by joining each vertex of K,, with one
vertex in iK; by an edge. It is obvious that i(G” — S) =i—1 > | %] + 1 and G is a proper subgraph of G".
According to Lemma 2.4, p,(G”) > p,(G), which contradicts with the choice of G. Therefore, i = I_%J +1,
G=K V(K oz (l£]+ 1K) by i > %, and the quotient matrix of A,(G) in terms of the partition
V(2] + 1K), V(K,_s 3 11), V(K)} can be written as

as 0 1-a)s
By = 0 n+(0¢s—s—|_%])—2 (1-a)s
I-a)(Z]1+1) Q-a)m-s-|E]-1) an-as+s-1

Then the characteristic polynomial of B; is

f3,(¥) = > — (@ + 1) + as — L%SJ —3)x?
—((an +s— 1)L3§J —an® —(@* + a)sn+ Qa+ Dn + 2a + 1)s — 2)x
—((20® - 3a + 1)L%SJ + 202 — 3a + 1) 1)
—((@* - 2a + 1)@]2 —(Qa? = 2a + 1)n — 3a* + 5a — 3)%)
+a*n® — (Ba? —a + 1)n + 2a% - 2a + 2)s.

By Lemma 2.2, p,(G) is the largest root of fg,(x) = 0, say, fz,(pa(G)) = 0. Let 1 = pa(G) > 2 > 13 be the
three roots of fp,(x) =0and Q = diag(l_%] +1,n—s— I_%J —1,5). It is easy to check that

Q?B,Q?
as 0 A-a)s:(Z]+1)2

= 0 n+(as—-s—1¥)-2 (A-asin-s-1¥]-1)2

A-ws2(31+1D: (1-a)si(n-s-1%]-1)

NI=

an—as+s—1
is symmetric, and contains

as 0
0 n+(as—-s—1%)-2
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as a submatrix. Since Q%Bl Q’% and B; admit the same eigenvalues, according to Lemma 2.5, we get

_3, ifsisodd,
as<msnlas—s-13)-2< "7y LIEO @
2 n—>5, ifsiseven.

Subcase 1.1. s is odd.

Let p(x) = x> — ((a + \)n+a—4)x> + (an® + (¢® —2a— 1)n - 2a+ 1)x — a’n® + (5> = 3a + 2)n — 10a* + 15a — 8,
7(n) be the largest root of p(x) = 0, G, = K1 V (Kj—3 U 2Kj). Clearly, G = G, when s = 1, fg,(x) = ¢(x) by
plugging s = 1 into (1), and 7(n) = p,(G,) by Lemma 2.2.

Since K,,—, is a proper subgraph of G,, by Lemmas 2.3-2.4 and (2), we have

T(n) = pa(GZ) > pa(Kn—Z) =n-3>mn. 3)

Subcase 1.1.1. s = 1.

In this subcase, we have p,(G) = p,(Gz) = 7(n), which contradicts with p,(G) > 7(n).
Subcase 1.1.2. s > 3.

In this subcase, G G, and fg, (x) # @(x). By (1) and ¢(t(n)) = 0, we have

f3,(T(m)) = fp,((m)) = p(t(n)) = _411(5 = DH(z(n)), (4)

where H(x) = (4a — 6)x? + (—4a’n + 2an + 6s + 8a + 2)x + 4a’n? — (12a% — 12a + 6)sn — (200 — 12 + 8)n +
(2102 - 36a +15)s® + (37a% — 60t +29)s + 40a2 — 60ax + 32, its axis of symmetry is x = — =HCn2ant6st8at2 Noyy

2(4a—6)
we show p,(G) < 7(n), and we obtain a contradiction with p,(G) > 7(n).
Subcase 1.1.2.1. 0 < a < g
Firstly, we show H(t(n)) < H(n — 3).
By (3), we only need show —W < n -3, say, show g1(s) = 2(n — 3)(4a — 6) + (—4a’n + 2an +

6s + 8a +2) < 0.
Infact,byn:n1+gs+%2 §s+gand523,wehave

71(s) = (—4a? + 10a — 12)n — 16a + 65 + 38
2
< (—4(a - Z)z - f)(gs + g) —16a + 65 + 38
=5(-10a? + 25a — 24) — 10a* + 9a + 8
< 3(=10a% + 25a — 24) — 10a® + 9 + 8
<0.

By the above arguments and (3), we have H(z(n)) < H(n — 3).

On the other hand, by a direct calculation, we have H(n — 3) = (6a — 6)n” + (—12sa* + 12sa — 8a? — 10 +
30)n + (21a? — 36a + 15)s*> + (37a® — 60a + 11)s + 40a® — 48a — 28. Let P(n) = H(n — 3). Then the axis of
symmetry of P(x) is x = — ‘125"‘2+1§fg;f6“;‘100‘+30.

Now we show P(11) < 0. Let g»(s) = 2(3s + 3)(6a — 6) + (—=12sa® + 12sa — 8a® — 10a + 30). Thenby a < 3,
we have

92(s) = (=12a* + 42a — 30)s — 8a” + 20a

~ 7., 27 5, 25
= (126 - [P+ -8+ 3
9°7 72
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s 1 : e —125a%+1250—8a2~10a+30 _ 5 5 ; : : 5 5
which implies S t6a=6) < 35 + 3, and P(n) is monotonically decreasing when n > 3s + 3. Then

63 .2 71
_ 3542075 5 5545
by e el and n > 35 + 3, we have

P(n) < P(gs + g)

5 5 5 5
= (6 — 6)(55 + 5)2 + (—12sa® + 12sa — 8a% — 10a + 30)(§s + E)
+ (2102 — 36a + 15)s? + (37a% — 60a + 11)s + 400> — 48a — 28

63 71 45 19 ®)
= (—95% — 13s + 20)a® + (752 +20s — —)a -5 s+ 11s + >
25, 5 63 71, 45, 19
< Z2(—9s% — 135+ 20) + = +205s - =) — =2 +11s + —
_49( 9s 3s + 0)+7( 0 2) > s+2
1

= —45(22552 - 914s + 277).
If s > 5, then P(n) < 0 by (5).
If s = 3, then —=12” +1§(56“a Sg‘) —10a+30 — ‘44356;2f6‘§+30 <8<20< f(o) <ndueto0<a < 2. Hence,

Pn) < P(20) = —540a” +2368a — 1660 < 0, if0<a < iandn > f(a) =20
P(25) = —7600 + 3848 — 2860 < 0, if 1 <a <2andn> f(a) =25

Thus, we conclude that P(n) < 0 for s > 3. Combining the above arguments, by (5), we have fg (t(n)) =
), a

——(s — 1DH(t(n)) > ——(s -1)Hn -3) = —}I(s — 1)P(n) > 0, which implies p,(G) < ©(n) for s > 3 by (3
contradiction with pa(G) > 1(n).

Subcase 1.1.2.2. 2 <a<1

By (1), we have

fp,(n—=3) = 2(705 —5)(1 —a)s® + ((3a* — 3a)n — 4a® + 6a + 1)s*

3 3 .5 5 1 15 3, 39
+((2 2oz)n (a 2a+ 2)n 4a 3a + 4)s
3 3., 9 15
+(§0(— E)Tl —(Ea— 7)1’1—9.

Let W(s, n) = fp,(n — 3). Thus, we get

%
; 1) 9(7 a—5)(1 - a)s + 2((3a2 — 3a)n — 4a? +6a+1)
11 15 3
A R S B DA S - B 27
+((2 za)n (a > a+ ) 1% 3a + )

Since 2 <a <1,n > f(a) > & +3 > 7% By a simple computation, we have
oV(s,n)| 3 3 25 15 333 22 1
s T (2 > an* + (17a? > a > m— - + 276a

3 3 25 7 333 22 1
> (37290 “ T 2)(1 o) g T
_ 1 2
= 1_0()(333(% 647a” + 548a — 129)

>0,
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and

oV(s,n)
Js s=§n—1

1
= %((—608 +21a — 15)n? + (120a* — 265a + 115)n — 42502 + 600 — 175)

1 5 7 2 7
—((— 2la - 15)(—— 12 -2 115)(——
<50(( 6a” +21a 5)(l—a) + (120 65a + 5)(l—a)

— 4250 + 600 — 175)
1

"~ 50(1 — )
<0.

(42507 — 185a% — 786a — 105)

Then fp,(n—3) = W(s,n) > min{W¥(3, n), \I’(%n —1,n)} since the leading coefficient of W(s, 11) (when viewed
as a cubic polynomial of s) is positive, and 3 <s < 2n — 1.

By 2 <a<landn> f(a) > 1% +3> £, we have

W(3,n) = (3 - 3a)n’® + (24a* — 15a — 15)n — 180> + 288a — 72
7
1-a

> (3= 3a)(

1
T 1-a
>0,

7
) + (240 — 15a — 15)(m) —180a” + 288a — 72

(180a® — 30042 + 255a — 30)

and

2 1
‘I’(gn -1,n) = E((18a2 — 63 + 45)n° — (11502 — 530a + 505)n>

+ (7502 — 1025 + 1700)n + 250a% — 1750)

1

> —((18a% — 63a + 45)(%)3 — (11502 — 530a + 505)(%)2

125
7
+ (7502 — 10250 + 1700)( T

1
= m(zsoa4 — 102502 + 5650 + 4221 + 840)

> 0.

) + 25002 — 1750)

Therefore, we conclude that fg (1 —3) > min{W(3, n), ‘I’(%n —1,n)} > 0fors > 3. By (3), we have p,(G) < t(n)
for s > 3, which contradicts with p,(G) > t(n).

Subcase 1.2. s is even.

Let ¥(x) = ¥*—((@+1)n+2a—6)x*+(an®+(2a*-3a—1)n—4a—3)x—2a’*n*+(18a> - 14a+8)n—72a*+118a—56,
O(n) be the largest root of P(x) = 0, G3 = K; V (Kj—¢ U 4K;). Clearly, G = G3 when s = 2, fp (x) = {(x) by
plugging s = 2 into (1), and 0(n) = pa(G3) by Lemma 2.2.

Since Kj,_4 is a proper subgraph of G3, by Lemmas 2.3-2.4 and (2), we have

0(n) = pa(Gs) > pa(Ky-4) =1 =5 > 15. (6)

Subcase 1.2.1. s = 2.

In this subcase, we have p,(G) = p.(G3) = O(n). Now we prove O(n) < n —3 < t(n) to get the
contradiction.

By a direct computation, we have

Y(n - 3) = 2 - 2a)n* + (12a* — 6a — 10)n — 72a* + 112a — 20.
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Let Q(x) = (2 — 2a)x* + (12a% — 6a — 10)x — 72a* + 112a — 20. If a € [0, 2], then x = —m;jz-_%—)w < 8and
Q(x) is increasing when x > 20, so ¥(n — 3) = Q(n) > Q(20) = 168a2 — 808a + 580 > 0 when n > 20. If
a € (2,1), then —125‘(22‘_%‘)10 < £, and Q(n) is increasing when x > 1= +3 > =, so ¢(n — 3) = Q(n) >
QL) = Ra=1000490048 5 ) when i > 12 + 3.

Therefore, we get 8(n) < n — 3 by (1 — 3) > 0 and (6), then p,(G) = pa(G3) = O(n) < 7(n) by (3), which
contradicts with p,(G) > t(n).

Subcase 1.2.2. s > 4.
In this subcase, G # Gz and f3, (x) # ¥(x). By (1) and ¢(6(n)) = 0, we have

1
f,(6(m)) = f5,(0(n)) = p(0(n)) = =1 (s = 2)h(O(n)), )
where h(x) = (4a — 6)x> + (—4a’n + 2an + 6s + 8a + 10)x + 4a’n? — (12a% — 12a + 6)sn — (364> — 28a + 16)n +
(21a% — 36ar + 15)s? + (68a2 — 114a + 52)s + 144a? — 236a + 112, its axis of symmetry is x = —W.

Subcase 1.2.2.1. 0 < o < 2.

Firstly, we show h(6(n)) < h(n —5).

By (6), we only need show —W < n -5, say, show g3(s) = 2(n — 5)(4a — 6) + (—4a’n +2an +
6s + 8a + 10) < 0.

Infact,byn=n1+gs+12 %s+3andsz4,wehave

95(s) = (—4a* + 10a — 12)n — 32a + 65 + 70

5, 23,5
< (— —_ = —_ — (= —
< (—4(a ) )(2+3) 32a + 65+ 70

= 5(=10a* + 250 — 30) — 12a% — 20 + 34
< 4(-10a?% + 25a — 30) — 12a% — 20 + 34
< 0.

By the above arguments and (6), we have h(6(n)) < h(n - 5).

On the other hand, by a direct calculation, we have h(n —5) = (6a — 6)n? + (=12sa® + 12sa — 16a* — 14a +

54)n + (21a* — 36a + 15)s? + (68a% — 114a + 22)s + 144a> — 176a — 88. Let p(1n) = h(n — 5). Then the axis of

—12sa2+125a—16a%—14a+54
2(6a—6) :

symmetry of p(x) is x = —
Now we show p(n) < 0.
If s > 10, we take g4(s) = 2(3s + 3)(6a — 6) + (—125a® + 12sar — 16a* — 14 + 54). By a < 2, we have

g4(s) = (1202 + 42a — 30)s — 16a* + 22a + 18

B 7, 27 11, 409
= (—12(0[ - Z) + Z)S - 16(& - E) + E
BT

49 16
<0,

—12sa+12sa—16a%—14a+54

26a-0) < 25+ 3, and p(n) is monotonically decreasing when n > 3s + 3. Then

which implies —
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63 2
_ 58 —23s—-164 5 5
by N owiog > 7 2 and n > 3s + 3, we have

5

p(n) < P(ES +3)
= (6o — 6)(gs +3)2 + (=12sa” + 12sa — 16a* — 14a + 54)(25 +3)
+ (21a% = 36a + 15)s* + (68a% — 114a + 22)s + 144a® — 1760 — 88

63 45
= (—95* — 85 + 96)a® + (—52 — 235 — 164)a — —s2 + 675 + 20

2
SE( 9s? —85+96)+5(623 2 _23s —164)——55 + 675 + 20

1
—— (22552 — 22785 + 2360)
49
<0.

If s € {4,6,8}, then

11202 482a+54 .
— e toadiat 17, ifs =38,
_ —12sa® + 125 — 16a” — 14a + 54 _ ,885(%82154 <15, ifs=6
2(6a - 6) - 642(6a346) 54 )
= a +34aq+ : —
gt ¢ 1q, f = 4

For0 < a < i andn > f(a) = 20, we have

—2080% + 648a —272 <0,  ifs=8,
p(n) < p(20) = { —452a2 + 1404a — 736 < 0, ifs =6,
—52802 + 1872a — 1080 < 0, ifs =4

For 1 ;<ass 2 and 1 > f(a) = 25, we have

—768a2 +2408a — 1352 < 0, ifs =S8,
p(n) < p(25) = {-892a2 + 3044a — 1816 < 0, ifs =6,
—848a2 +3392a — 2160 < 0, ifs=4

7086

Thus, we conclude that p(n) < 0 for s > 4. Combining the above arguments, by (7), we have fg,(0(n)) =
—};(s - 2)h(6(n)) > —%(s —2h(n->5) = —%(s —2)p(n) = 0, which implies p,(G) < 0(n) < t(n) for s > 4 by (6), a

contradiction with p,(G) > t(n).
Subcase 1.2.2.2. 2 <a < 1.

By (1), we have
fp,(n—=5) = 2(70( —-5)(1 - a)s® + ((3a* = 3a)n — Eaz + 221a +2)s?
1 27
+ ((g — ga)n2 - (2a% - 29 + —)n 2a% —13a + 33)s

+ (3a = 3)n® — (150 — 27)n — 60.
Let O(s,n) = fg,(n — 5). Thus, we get

Bq)(s,n)_? 3 N2 2 13 o>
P 4(7a 5)(1 — a)s” +2((3a” — 3a)n S a

1 27
.,_((g_%a) 2 _ (2a? —?9(1 —)n 207 — 13a + 33).

21
+ 70{ + 2)5
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Since 2 <a <1,n > f(a) > = + 3 > ;. By a simple computation, we have
dD(s, n) 3 3 ., 5 29 27
—e | =G5 220" — - 5)n- —-131
%5 oy (2 Zoc)n + (22a S ) 306a” +503a — 13
3 3 7 » 29 27
>(5 == +(@2a" - —a-— )(1_ ) — 306a” + 503 — 131
1
= 12a° - 1310a” + 1065a — 304
2(1_[)()(6 o 310a” + 1065a — 304)
>0,
and
P
% = %((—603+21a—15)n2+(36a2—41a—55)n—454a2+34a+600)
s:%n—

1 2 7 2 2 7
< g5((=60% + 21a ~ 15)(7——)" + (360” ~ 41a = 55)(77—)

— 4540 + 34a + 600)
1
= ——(454a° — 236a* — - 52
50(1_(1)( 54a 36a“° — 559a — 520)
<0.
Then f, (n —5) = ®(s,n) > min{d(4, n), D(2 sn— s n) since the leading coefficient of ®(s, 1) (when viewed
as a cubic polynomial of s) is positive, and 4 <s < In-&

By2<a<landn> f(a)> ;= +3>—wehave

-a’

D(4,n) = (3 - 3a)n® + (40a* — 25a — 27)n — 448a* + 692 — 136

>3- 3a)( )2 + (4002 — 2500 — 27)(%) — 4480° + 6920 — 136
= 1T(448a — 860a® + 653 — 178)
>0,
and
CI)( n——=,n)= E((l&x — 63 + 45)n° — (212a° — 997 + 965)n*

+ (386a — 3806a + 6000)n + 2640 + 1896a — 11280)
7
- _ _r 3 2 _r 2
> 125((1804 63a + 45)( + 3)° — (212a” — 997a + 965)(1 _ +3)

+ (386a* — 38060 + 6000)(m +3) + 264a% + 1896 — 11280)
B 1

© 1251 - a)?
> 0.

(5500 — 48254 + 7496 — 2780)

Therefore, we conclude that fg,(n — 5) > min{®(4, n), CD(%n - g,n)} > 0 for s > 4. By (6), we have p,(G) <
O(n) < t(n) for s > 4, which contradicts p,(G) > (n).

Case 2. G — S has no non-trivial connected component.

In this case, G = K; V iK;. Now we show i = | ¥ ]+ 1ori= %] +2.

Ifi > | 3] + 3, then we create a new graph G’ by adding an edge between two vertices in iK;. Thus,
i(G”—S)=i-2>|%]|+1and G"” - S admits exactly one non-trivial connected component. Obviously, G is
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a proper subgraph of G’”’, and then p,(G) < p,(G"’) < t(n) by applying Case 1, a contradiction. Therefore,
i=[Z]+1ori=[¥|+2byi> 3.
Subcase 2.1. i =[] +1.

Obviously, n = s+ L%J +1, and the quotient matrix of A,(G) in view of the partition { V((L%J +1)K37), V(K;)}
equals to

as 1-a)s

By = (1—0()(|_%J+1) an—as+s—1)°

Then the characteristic polynomial of B; is
fr,(x) = x* — (an + 5 — 1)x + a’sn — (a® — 2a + l)sl_%] —(@*-a)s® —(@*—a)s—s
:xz—(an+s—1)x+(2a—1)s|_%J +as’+as—s,

and p,(G) is the largest root of f3,(x) = 0 by Lemma 2.2. By a simple computation, we have

an+s—1+ \/(zxn+s—1)2—4((2a—1)sL%J+asz+ocs—s)

8
Pa(G) = ) ®
Now we show p,(G) < n — 3. It follows from n = s + I_%J + 1 that
2 2 3s 2
Qn-3)-(an+s—-1)"—(an+s—-1) +4((2a—1)s|_EJ +as“+as—-s)
= (4 — 4a)n® — (45 + 20 — 12a)n + (8a — 4)5[% |+ 4as® + 4as + 85 + 24 )

_]9(1 - a)s* —4(=5a + 8)s + 5a + 15, if sis odd,
1901 - a)s? — 2(=7a +13)s + 8 + 8, if s is even.

Subcase 2.1.1. s is odd.
Let tl(s) 9(1 @)s? — 4(=5a + 8)s + 5a + 15. Then we obtain t;(9) = 456 — 544, t;(11) = 752 — 864a and

1 ( 519115;’)) = 550- a)( —400a? + 740cx + 584).
ince
20, ifw €0, 1],
5.1 : 15
7’l=§S+§Z 25, 1f0(€(§,7],
= +3, ifae(3,),
we have
A(—50+ 8 3<9<s, ifaE[O,;]
ASa+8) 4<11<s, 1fa€(2,7
2(9 - 9a) 19-54
Sion) = 5/ 1fa€(7,1),
and
£1(9) = 456 — 544a > 0, ifael0 ,;]
f1(s) = {t1(11) =752 — 864oz >0, ifae (2, 7]
(2= 5a) = (40002 + 7400 + 584) > 0, ifa e (,1).

5(1-a) 1 25(1—a)

Subcase 2.1.2. sis even.
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Let f5(s) = 9(1 — a)s? — 2(=7a + 13)s + 8a + 8. Then we obtain #,(8) = 376 — 456a, t,(10) = 648 — 752« and
b(3) = z=s;(—33602 + 484a + 776).

5(1-a)
ince
5 20, ifo €[0,1],
n=os+12 425, ifa ezl
= +3, ifae(31),
we have
Ta+13 3<8<s, ifael0,3],
A7a+13) 1y q0<s, ifac(l,?]
2(9 = 9a) 20-20) _ if 1
S S5 ifae31),
and
t2(8) = 376 — 456a > 0, ifaelo, ;1
t2(s) > {1,(10) = 648 — 752a > 0, ifae(, 2]
b)) = 55 (—33602 + 4840+ 776) > 0, ifa € (3,1).

Therefore, by (8), (9), ti(s) > 0 and tx(s) > 0, we have p,(G) <n —3.

Subcase 2.2. i = I_%J +2.

Obviously, n = s+ I_%SJ +2, and the quotient matrix of A,(G) in view of the partition { V((I_%SJ +2)K1), V(K;)}
equals to

as 1-a)s

Bs=la-a)(%+2) an-as+s—1)°

Then the characteristic polynomial of Bs is
fp,(x) = x% — (an +s—1)x + a’sn — (a® = 2a + 1)S|_%J —(a? — a)s? — (2a® = 3a +2)s
=x*—(an+s—1x+ Qa - 1)5|_%SJ +as® + (3a - 2)s,

and p,(G) is the largest root of f3,(x) = 0 by Lemma 2.2. By a simple computation, we have

an+s—1+ \/(zxn +5—1)2 —4(Qa — 1)s| 2] + as? + 3as — 2s)

10
pa(G) = 5 (10)
Now we show p,(G) < n — 3. It follows from n = s + I_%J + 2 that
2(n-3)—(an+s—-1))% — (an +s—1)* + 4(Q2a — 1)5L%J + as® + 3as — 2s)
= (4 — da)n® — (45 + 20 — 12a)n + (8a — 4)5[% |+ 4as® + 4as + 8s + 24 (1)

|91 - a)s* —4(-2a +5)s +9a + 3, if sis odd,
1901 - a)s? —2(—a + 7)s + 8a, if s is even.

Subcase 2.2.1. s is odd.
Let t5(s ) 9(1 @)s? — 4(—2a + 5)s + 9a + 3. Then we obtain #3(9) = 552 — 648a, t3(11) = 872 — 992 and

ty(Z238) = 52— (~264a” + 212a + 976).
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Since
20, if a € [0, 1]
5 3
TIZES-FEZ 25, 1f6¥€(2,7]
ﬁ+3, 1fa€(7,1),
we have
Moa s 5 2<9<s, ifael0,3],
2045 3 11<s, ifac(dd),
2(9 = 9a) 17-3a ~ 5
Sica) S ifae(3,1),
and
t3(9) = 552 — 648a > O, ifae[0,1],
t3(s) = {t3(11) = 872 = 992a > 0, 1foze(2,7]
b(3) = s (—2640% + 2120+ 976) > 0, ifa € (3,1).

Subcase 2.2.2. s is even.
Let t4(s) = 9(1 — a)s* — 2(—a + 7)s + 8a. Then we obtain 4(10) = 464 — 552a, t4(10) = 760 — 872« and
by (BB = (—184a? — 76a + 1184).

N\5(1-a)/ = 25(1-a)
ince
5 20, ifw €[0,1],
n=os+22 425, ifa e}zl
= +3, ifae(31),
we have
2<8<s, ifacl0}]
4(—2a +5)

3<10<s, 1f0¢e(2,7,

<
2(9 — 9a) _
ég?_g; <s, ifae (7,1),

and
t4(8) = 464 — 552a > 0, ifae[0,1],
ta(s) > {t4(10) = 760 — 872a > 0, ifae(3,2],
t(3) = g (—184% — 760 +1184) > 0, ifa € (3,1).

Therefore, by (10), (11), t3(s) > 0 and t4(s) > 0, we have p,(G) <n — 3.

Note that 7(n) > n — 3. Combining the above arguments, we conclude p,(G) < n — 3 < (1), which
contradicts p,(G) > t(n).

By Case 1 and Case 2, we complete the proof of Theorem 1.2. [J

5. Extremal graphs
In this section, we claim that the condition in Theorem 1.2 is best possible.

Theorem 5.1. Let « € [0,1), n, ©(n) be as in Theorem 1.2. Then po(Kq V (Ky—3 U2K1)) = 7(n), and Ky V (K,—3 U2K;)
contains no {Py, Cz, Ps, T (3)}-factor.

Proof. By the proof of Theorem 1.2, we have p,(K; V (K3 U 2K;)) = t(n). Let v be the vertex with the
maximum degree of K; V (K,,—3U2Kj). Set S = {v}, then we infer i(K; V (K;,—3 U2K;)=5) =2 > %|S|, By Lemma
2.6, the graph K V (K,-3 U 2K;) contains no {P,, C3, Ps, 7 (3)}-factor. Therefore, the bound on A,-spectral
radius established in Theorem 1.2 is sharp. O
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