

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The existence of a $\{P_2, C_3, P_5, \mathcal{T}(3)\}$ -factor based on the size or the A_{α} -spectral radius of graphs

Xianglong Zhanga, Lihua Youa,*

^a School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, P. R. China

Abstract. Let G be a connected graph of order n. A $\{P_2, C_3, P_5, \mathcal{T}(3)\}$ -factor of G is a spanning subgraph of G such that each component is isomorphic to a member in $\{P_2, C_3, P_5, \mathcal{T}(3)\}$, where $\mathcal{T}(3)$ is a $\{1, 2, 3\}$ -tree. The A_α -spectral radius of G is denoted by $\rho_\alpha(G)$. In this paper, we obtain a lower bound on the size or the A_α -spectral radius for $\alpha \in [0,1)$ of G to guarantee that G has a $\{P_2, C_3, P_5, \mathcal{T}(3)\}$ -factor, and construct an extremal graph to show that the bound on A_α -spectral radius is optimal.

1. Introduction

Let G be an undirected simple and connected graph with vertex set V(G) and edge set E(G). The *order* of G is the number of its vertices, and the *size* is the number of its edges.

Let G be a graph of order n with $V(G) = \{v_1, v_2, ..., v_n\}$. The adjacency matrix of G is defined as $A(G) = (a_{ij})$, where $a_{ij} = 1$ if $v_i v_j \in E(G)$, and $a_{ij} = 0$ otherwise. The degree diagonal matrix is the diagonal matrix of vertex degrees of G, denoted by D(G). The signless Laplacian matrix Q(G) of G is defined by Q(G) = D(G) + A(G). The largest eigenvalue of Q(G) is denoted by Q(G). For any $\alpha \in [0, 1)$, Nikiforov[12] introduced the A_{α} -matrix of G as $A_{\alpha}(G) = \alpha D(G) + (1 - \alpha)A(G)$. It is easy to see that $A_{\alpha}(G) = A(G)$ if $\alpha = 0$, and $A_{\alpha}(G) = \frac{1}{2}Q(G)$ if $\alpha = \frac{1}{2}$. The eigenvalues of $A_{\alpha}(G)$ are called the A_{α} -eigenvalues of G, and the largest of them, denoted by $P_{\alpha}(G)$, is called the P_{α} -spectral radius of G. More interesting spectral properties of $P_{\alpha}(G)$ can be found in $P_{\alpha}(G)$.

For a given subset $S \subseteq V(G)$, the subgraph of G induced by G is denoted by G[S], and the subgraph obtained from G by deleting S together with those edges incident to S is denoted by G - S. Let G and G be two disjoint graphs. The union $G \cup G$ is the graph with vertex set G induced by G and the subgraph obtained from $G \cup G$ is the graph with vertex set G induced by G and G induced by G and G induced by G is denoted by G and the subgraph obtained from $G \cup G$ is derived from $G \cup G$ by joining every vertex of G with every vertex of G by an edge.

A subgraph of a graph G is spanning if the subgraph covers all vertices of G. Let \mathcal{H} be a set of connected graphs. An \mathcal{H} -factor of a graph G is a spanning subgraph of G, in which each component is isomorphic to an element of \mathcal{H} . An \mathcal{H} -factor is also referred as a component factor.

2020 Mathematics Subject Classification. Primary 05C50; Secondary 05C35

Keywords. Size; { P_2 , C_3 , P_5 , $\mathcal{T}(3)$ }-factor; A_α -spectral radius

Received: 18 December 2024; Accepted: 03 April 2025

Communicated by Paola Bonacini

Research supported by the National Natural Science Foundation of China (Grant Nos. 12371347, 12271337) and the Hubei Provincial Natural Science Foundation and Huangshi of China (Grant No. 2025AFD006)

* Corresponding author: Lihua You

Email addresses: 2023021945@m.scnu.edu.cn (Xianglong Zhang), ylhua@scnu.edu.cn (Lihua You)

ORCID iDs: https://orcid.org/0009-0008-3628-729X (Xianglong Zhang), https://orcid.org/0000-0003-4503-694X (Lihua You)

For a tree T, every vertex of degree 1 is a leaf of T. We denote the set of leaves in T by Leaf(T). An edge of T incident with a leaf is called a pendant edge. A $\{1,3\}$ -tree is a tree with every vertex having degree 1 or 3. Let R be a $\{1,3\}$ -tree, $\mathbb{T}(3)$ be the set of trees T_R that can be obtained from R as follows (see [4]): T_R is obtained from R by inserting a new vertex of degree 2 into every edge of R, and by adding a new pendant edge to every leaf of R. Then the tree T_R is a $\{1,2,3\}$ -tree having |E(R)| + |Leaf(R)| vertices of degree 2 and has the same number of leaves as R. The collection of such $\{1,2,3\}$ -trees T_R generated from all $\{1,3\}$ -trees R is denoted by T(3), and any graph in T(3) is denoted by T(3).

More and more researchers have been studied the existence of different factors in graphs since 2000. Las Vergnas [6] presented a sufficient and necessary condition for a graph having $\{K_{1,j}:1\leq j\leq k\}$ -factor with $k\geq 2$. Kano, Lu and Yu [3] showed that a graph has a $\{K_{1,2},K_{1,3},K_5\}$ -factor if it satisfies $i(G-S)\leq \frac{|S|}{2}$ for every $S\subset V(G)$. Kano, Lu and Yu [4] proved that a graph has a $\{P_2,C_3,P_5,\mathcal{T}(3)\}$ -factor if and only if it satisfies $i(G-S)\leq \frac{|S|}{2}|S|$ for all $S\subset V(G)$. Kano and Saito [5] proved that a graph G has a $\{K_{1,l}:m\leq l\leq 2m\}$ -factor if it satisfies $i(G-S)\leq \frac{3}{2}|S|$ for every $S\subset V(G)$. Zhang, Yan and Kano [14] gave a sufficient condition for a graph G containing a $\{K_{1,l}:m\leq t\leq 2m-1\}\cup \{K_{2m+1}\}$ -factor. Chen, Lv and Li [2] provided a lower bound on the size (resp. the spectral radius) of G to guarantee that the graph has a $\{P_2,C_n:n\geq 3\}$ -factor. Lv, Li and Xu [9] derived a tight A_{α} -spectral radius and distance signless Laplacian spectral radius for the existence of a $\{K_2,C_{2i+1}:i\geq 1\}$ -factor in a graph. Li and Miao [10] determined a sufficient condition about the size or the spectral radius of G to contain $\mathcal{P}_{\geq 2}$ -factor and be $\mathcal{P}_{\geq 2}$ -factor covered graphs. Miao and Li [11] showed a lower bound on the size or the spectral radius, and an upper bound on the distance spectral radius of G to ensure that G has a $\{K_{1,j}:1\leq j\leq k\}$ -factor. Zhou, Zhang and Sun [17] established a relationship between $P_{\geq 2}$ -factor and A_{α} -spectral radius of graphs to ensure that a graph contains a $\{K_{1,2},K_{1,3},K_5\}$ -factor. Zhou [16] got a spectral radius condition on the existence of $\{P_2,C_3,P_5,\mathcal{T}(3)\}$ -factor in graphs.

Motived by [4, 16, 17] directly, it is natural and interesting to study some sufficient and necessary conditions to ensure that a graph contains a $\{P_2, C_3, P_5, \mathcal{T}(3)\}$ -factor. In this paper, we focus on the sufficient conditions via the size or the A_{α} -spectral radius of graphs and obtain the following two results.

Theorem 1.1. Let G be a connected graph of order $n \ge 5$, and

$$F(n) = \begin{cases} \binom{n-2}{2} + 2, & \text{if } n \ge 5 \text{ and } n \notin \{6, 8\}; \\ 9, & \text{if } n = 6; \\ 18, & \text{if } n = 8. \end{cases}$$

If |E(G)| > F(n), then G has a $\{P_2, C_3, P_5, \mathcal{T}(3)\}$ -factor.

Theorem 1.2. Let $\alpha \in [0, 1)$, $\varphi(x) = x^3 - ((\alpha + 1)n + \alpha - 4)x^2 + (\alpha n^2 + (\alpha^2 - 2\alpha - 1)n - 2\alpha + 1)x - \alpha^2 n^2 + (5\alpha^2 - 3\alpha + 2)n - 10\alpha^2 + 15\alpha - 8$, *G* be a connected graph of order n with $n \ge f(\alpha)$, where

$$f(\alpha) = \begin{cases} 20, & \text{if } \alpha \in [0, \frac{1}{2}]; \\ 25, & \text{if } \alpha \in (\frac{1}{2}, \frac{5}{7}]; \\ \frac{7}{1-\alpha} + 3, & \text{if } \alpha \in (\frac{5}{7}, 1). \end{cases}$$

If $\rho_{\alpha}(G) > \tau(n)$, then G has a $\{P_2, C_3, P_5, \mathcal{T}(3)\}$ -factor, where $\tau(n)$ is the largest root of $\varphi(x) = 0$.

Let $\alpha = 0$ in Theorem 1.2, the main result of [16] via the spectral radius can be obtained, and let $\alpha = \frac{1}{2}$, we have the following corollary via the signless Laplacian spectral radius immediately.

Corollary 1.3. Let G be a connected graph of order n with $n \ge 20$. If $q(G) > 2\mu(n)$, then G has a $\{P_2, C_3, P_5, \mathcal{T}(3)\}$ -factor, where $\mu(n)$ is the largest root of $4x^3 - (6n - 14)x^2 + (2n^2 - 7n)x - n^2 + 7n - 6 = 0$.

2. Preliminaries

In this section, we introduce some useful definitions and lemmas.

Definition 2.1. [1]) *Let M be a complex matrix of order n described in the following block form*

$$M = \begin{pmatrix} M_{11} & \cdots & M_{1l} \\ \vdots & \ddots & \vdots \\ M_{l1} & \cdots & M_{ll} \end{pmatrix}$$

where the blocks M_{ij} are $n_i \times n_j$ matrices for any $1 \le i, j \le l$ and $n = n_1 + \dots + n_l$. For $1 \le i, j \le l$, let q_{ij} denote the average row sum of M_{ij} , i.e. q_{ij} is the sum of all entries in M_{ij} divided by the number of rows. Then $Q(M) = (q_{ij})$ (or simply Q) is called the quotient matrix of M. If, in addition, for each pair i, j, M_{ij} has a constant row sum, i.e., $M_{ij}\vec{e}_{n_j} = q_{ij}\vec{e}_{n_i}$, then Q is called the equitable quotient matrix of M, where $\vec{e}_k = (1, 1, \dots, 1)^T \in C^k$, and C denotes the field of complex numbers.

Let M be a real nonnegative matrix. The largest eigenvalue of M is called the spectral radius of M, denoted by $\rho(M)$.

Lemma 2.2. [13]) Let B be an equitable quotient matrix of M as defined in Definition 2.1, where M is a nonnegative matrix. Then the eigenvalues of B are also eigenvalues of M, and $\rho(B) = \rho(M)$.

Lemma 2.3. [12]) Let K_n be a complete graph of order n. Then $\rho_{\alpha}(K_n) = n - 1$.

Lemma 2.4. [12]) *If G is a connected graph, and H is a proper subgraph of G, then* $\rho_{\alpha}(G) > \rho_{\alpha}(H)$.

Lemma 2.5. (The Cauchy's interlace theorem[1]) Let two sequences of real number, $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ and $\eta_1 \geq \eta_2 \geq \ldots \eta_{n-1}$, be the eigenvalues of symmetric matrix A and B, respectively. If B is a principal submatrix of A, then the eigenvalues of B interlace the eigenvalues of A, i.e., $\lambda_1 \geq \eta_1 \geq \lambda_2 \geq \cdots \geq \eta_{n-2} \geq \lambda_{n-1} \geq \eta_{n-1} \geq \lambda_n$.

Let i(G) denote the number of isolated vertices of G. The following lemma gives a sufficient and necessary condition for a graph containing a $\{P_2, C_3, P_5, \mathcal{T}(3)\}$ -factor.

Lemma 2.6. [4]) A graph G has a $\{P_2, C_3, P_5, \mathcal{T}(3)\}$ -factor if and only if $i(G - S) \leq \frac{3}{6}|S|$ for all $S \subseteq V(G)$.

3. The proof of Theorem 1.1

In this section, we prove Theorem 1.1, which gives a sufficient condition via the size of a connected graph to ensure that the graph contains a $\{P_2, C_3, P_5, \mathcal{T}(3)\}$ -factor.

Proof. Suppose to the contrary that G contains no $\{P_2, C_3, P_5, \mathcal{T}(3)\}$ -factor. By Lemma 2.6, there exists a nonempty subset S of V(G) satisfying $i(G-S) > \frac{3}{2}|S|$.

Choose such a connected graph G of order n so that its size is as large as possible. With the choice of G, the induced subgraph G[S] and every connected component of G - S are complete graphs, and $G = G[S] \vee (G - S)$.

Note that there is at most one non-trivial connected component in G - S. Otherwise, we can add edges among all non-trivial connected components to get a bigger non-trivial connected component, which contradicts to the choice of G. For convenient, let |S| = s and i(G - S) = i. We now consider the following two possible cases.

Case 1. G - S has exactly one non-trivial connected component, say G_1 .

In this case, let $|V(G_1)| = n_1 \ge 2$. Obviously, $i \ge \lfloor \frac{3s}{2} \rfloor + 1 = \begin{cases} \frac{3}{2}s + \frac{1}{2}, & \text{if } s \text{ is odd;} \\ \frac{3}{2}s + 1, & \text{if } s \text{ is even.} \end{cases}$ Now we show $i = \lfloor \frac{3s}{2} \rfloor + 1$.

If $i \ge \lfloor \frac{3s}{2} \rfloor + 2$, let H_1 be a new graph obtained from G by joining each vertex of G_1 with one vertex in $V(G-S) \setminus V(G_1)$ by an edge. Then we have $|E(H_1)| = |E(G)| + n_1 > |E(G)|$ and $i(H_1-S) = i-1 \ge \lfloor \frac{3s}{2} \rfloor + 1$, a contradiction with the choice of G. Hence $i = \lfloor \frac{3s}{2} \rfloor + 1$ by $i > \frac{3}{2}s$ and $G = K_s \vee (K_{n_1} \cup (\lfloor \frac{3s}{2} \rfloor + 1)K_1)$.

Clearly, we have
$$n = s + \lfloor \frac{3s}{2} \rfloor + 1 + n_1 \ge \begin{cases} \frac{5}{2}s + \frac{5}{2} \ge 5, & \text{if } s \text{ is odd} \\ \frac{5}{2}s + 3 \ge 8, & \text{if } s \text{ is even} \end{cases}$$
 and $|E(G)| = s(\lfloor \frac{3s}{2} \rfloor + 1) + \binom{n - \lfloor \frac{3s}{2} \rfloor - 1}{2}$.

Now we show $|E(G)| \le F(n)$. By $\binom{n-2}{2} + 2 = \begin{cases} 8 < 9, & \text{if } n = 6, \\ 17 < 18, & \text{if } n = 8, \end{cases}$ we only need show $|E(G)| \le \binom{n-2}{2} + 2$.

Subcase 1.1. *s* is odd.

$$\binom{n-2}{2} + 2 - |E(G)| = \frac{1}{8}(s-1)(12n-21s-37) \ge \frac{1}{8}(s-1)(9s-7) \ge 0.$$

Therefore, $|E(G)| \le {n-2 \choose 2} + 2$ for odd s, which is a contradiction.

$$\binom{n-2}{2} + 2 - |E(G)| = \frac{1}{8}(-21s^2 - 26s + 12ns - 8n + 32) \ge \frac{1}{8}(9(s - \frac{5}{9})^2 + \frac{47}{9}) > 0.$$

Therefore, $|E(G)| < \binom{n-2}{2} + 2$ for even s, which is a contradiction. Combining the above two subcases, we have $|E(G)| \le F(n)$, a contradiction.

Case 2. G - S has no non-trivial connected component.

In this case, we prove $i \le \lfloor \frac{3s}{2} \rfloor + 2$ firstly.

If $i \ge \lfloor \frac{3s}{2} \rfloor + 3$, let H_2 be a new graph obtained from G by adding an edge between two vertices in V(G - S). Clearly, $i(H_2 - S) = i - 2 \ge \lfloor \frac{3s}{2} \rfloor + 1$ and $H_2 - S$ has exactly one non-trivial connected component. Together with $|E(G)| < |E(H_2)|$, we obtain a contradiction with the choice of G, which implies $i = \lfloor \frac{3s}{2} \rfloor + 1$ or $i = \lfloor \frac{3s}{2} \rfloor + 2$ by $i > \frac{3}{2}s$.

Subcase 2.1. $i = \lfloor \frac{3s}{2} \rfloor + 1$.

In this subcase, we have $G = K_s \vee ((\lfloor \frac{3s}{2} \rfloor + 1)K_1)$. Therefore, $n = s + \lfloor \frac{3s}{2} \rfloor + 1$, $|E(G)| = \binom{s}{2} + s(\lfloor \frac{3s}{2} \rfloor + 1)$, $s \ge 2$ by $n \ge 5$, and

$$\binom{n-2}{2} + 2 - |E(G)| = \begin{cases} \frac{1}{8}(s-1)(9s-31), & \text{if } s \text{ is odd;} \\ \frac{1}{8}(9s^2 - 34s + 24), & \text{if } s \text{ is even.} \end{cases}$$

If *s* is odd, we have $|E(G)| \le {n-2 \choose 2} + 2$ for $s \ge 5$ (which implies $n \ge 13$), and $|E(G)| = 2s^2 = 18$ for s = 3(which implies n = 8).

If s is even, we have $|E(G)| < {n-2 \choose 2} + 2$ for $s \ge 4$ (which implies $n \ge 11$), and |E(G)| = 9 for s = 2 (which implies n = 6).

Combining the above arguments, we have $|E(G)| \le F(n)$ for all $n \ge 5$, a contradiction.

Subcase 2.2. $i = \lfloor \frac{3s}{2} \rfloor + 2$.

In this subcase, we have $G = K_s \vee ((\lfloor \frac{3s}{2} \rfloor + 2)K_1)$. Therefore, $n = s + \lfloor \frac{3s}{2} \rfloor + 2$, $|E(G)| = \binom{s}{2} + s(\lfloor \frac{3s}{2} \rfloor + 2)$, $s \ge 2$ by $n \ge 5$, and

$$\binom{n-2}{2} + 2 - |E(G)| = \begin{cases} \frac{1}{8}(s-1)(9s-19), & \text{if } s \text{ is odd;} \\ \frac{1}{8}(9s^2 - 22s + 16), & \text{if } s \text{ is even.} \end{cases}$$

If *s* is odd, we have $|E(G)| \le {n-2 \choose 2} + 2$ for $s \ge 3$ (which implies $n \ge 9$). If *s* is even, we have $|E(G)| \le {n-2 \choose 2} + 2$ for $s \ge 2$ (which implies $n \ge 7$).

Combining the above arguments, we have $|E(G)| \le F(n)$ for all $n \ge 5$, a contradiction.

By Case 1 and Case 2, we complete the proof. \Box

4. The proof of Theorem 1.2

In this section, we prove Theorem 1.2, which presents a sufficient condition in terms of the A_{α} -spectral radius for a graph to contain a $\{P_2, C_3, P_5, \mathcal{T}(3)\}$ -factor.

Proof. Suppose to the contrary that G does not contain a $\{P_2, C_3, P_5, \mathcal{T}(3)\}$ -factor. By Lemma 2.6, there exists a nonempty subset S of V(G) satisfying $i(G - S) > \frac{3}{2}|S|$.

Choose such a connected graph G of order n so that its A_α -spectral radius is as large as possible. Together with Lemma 2.4 and the choice of G, the induced subgraph G[S] and every connected component of G-S are complete graphs, and $G=G[S] \vee (G-S)$.

It is easy to see that G-S admits at most one non-trivial connected component. Otherwise, we can construct a new graph G' by adding edges among all non-trivial connected components to obtain a bigger non-trivial connected component. Clearly, G is a proper subgraph of G'. According to Lemma 2.4, $\rho_{\alpha}(G') > \rho_{\alpha}(G)$, which contradicts the choice of G. For convenient, let |S| = s and i(G - S) = i.

Now, we show Theorem 1.2 by considering the following two cases.

Case 1. G - S has exactly one non-trivial connected component.

In this case, $G = K_s \vee (K_{n_1} \cup iK_1)$, where $n_1 = n - s - i \ge 2$. Now we show $i = \lfloor \frac{3s}{2} \rfloor + 1$.

If $i \ge \lfloor \frac{3s}{2} \rfloor + 2$, then we construct a new graph G'' obtained from G by joining each vertex of K_{n_1} with one vertex in iK_1 by an edge. It is obvious that $i(G'' - S) = i - 1 \ge \lfloor \frac{3s}{2} \rfloor + 1$ and G is a proper subgraph of G''. According to Lemma 2.4, $\rho_{\alpha}(G'') > \rho_{\alpha}(G)$, which contradicts with the choice of G. Therefore, $i = \lfloor \frac{3s}{2} \rfloor + 1$, $G = K_s \lor (K_{n-s-\lfloor \frac{3s}{2} \rfloor - 1} \cup (\lfloor \frac{3s}{2} \rfloor + 1)K_1)$ by $i > \frac{3s}{2}$, and the quotient matrix of $A_{\alpha}(G)$ in terms of the partition $\{V((\lfloor \frac{3s}{2} \rfloor + 1)K_1), V(K_{n-s-\lfloor \frac{3s}{2} \rfloor - 1}), V(K_s)\}$ can be written as

$$B_1 = \begin{pmatrix} \alpha s & 0 & (1-\alpha)s \\ 0 & n + (\alpha s - s - \lfloor \frac{3s}{2} \rfloor) - 2 & (1-\alpha)s \\ (1-\alpha)(\lfloor \frac{3s}{2} \rfloor + 1) & (1-\alpha)(n-s-\lfloor \frac{3s}{2} \rfloor - 1) & \alpha n - \alpha s + s - 1 \end{pmatrix}.$$

Then the characteristic polynomial of B_1 is

$$f_{B_{1}}(x) = x^{3} - ((\alpha + 1)n + \alpha s - \lfloor \frac{3s}{2} \rfloor - 3)x^{2}$$

$$- ((\alpha n + s - 1)\lfloor \frac{3s}{2} \rfloor - \alpha n^{2} - (\alpha^{2} + \alpha)sn + (2\alpha + 1)n + (2\alpha + 1)s - 2)x$$

$$- ((2\alpha^{2} - 3\alpha + 1)\lfloor \frac{3s}{2} \rfloor + 2\alpha^{2} - 3\alpha + 1)s^{2}$$

$$- ((\alpha^{2} - 2\alpha + 1)\lfloor \frac{3s}{2} \rfloor^{2} - ((2\alpha^{2} - 2\alpha + 1)n - 3\alpha^{2} + 5\alpha - 3)\lfloor \frac{3s}{2} \rfloor$$

$$+ \alpha^{2}n^{2} - (3\alpha^{2} - \alpha + 1)n + 2\alpha^{2} - 2\alpha + 2)s.$$
(1)

By Lemma 2.2, $\rho_{\alpha}(G)$ is the largest root of $f_{B_1}(x)=0$, say, $f_{B_1}(\rho_{\alpha}(G))=0$. Let $\eta_1=\rho_{\alpha}(G)\geq \eta_2\geq \eta_3$ be the three roots of $f_{B_1}(x)=0$ and $Q=diag(\lfloor \frac{3s}{2}\rfloor+1,n-s-\lfloor \frac{3s}{2}\rfloor-1,s)$. It is easy to check that

$$Q^{\frac{1}{2}}B_{1}Q^{-\frac{1}{2}}$$

$$=\begin{pmatrix} \alpha s & 0 & (1-\alpha)s^{\frac{1}{2}}(\lfloor \frac{3s}{2} \rfloor + 1)^{\frac{1}{2}} \\ 0 & n + (\alpha s - s - \lfloor \frac{3s}{2} \rfloor) - 2 & (1-\alpha)s^{\frac{1}{2}}(n - s - \lfloor \frac{3s}{2} \rfloor - 1)^{\frac{1}{2}} \\ (1-\alpha)s^{\frac{1}{2}}(\lfloor \frac{3s}{2} \rfloor + 1)^{\frac{1}{2}} & (1-\alpha)s^{\frac{1}{2}}(n - s - \lfloor \frac{3s}{2} \rfloor - 1)^{\frac{1}{2}} & \alpha n - \alpha s + s - 1 \end{pmatrix}$$

is symmetric, and contains

$$\begin{pmatrix} \alpha s & 0 \\ 0 & n + (\alpha s - s - \lfloor \frac{3s}{2} \rfloor) - 2 \end{pmatrix}$$

as a submatrix. Since $Q^{\frac{1}{2}}B_1Q^{-\frac{1}{2}}$ and B_1 admit the same eigenvalues, according to Lemma 2.5, we get

$$\alpha s \le \eta_2 \le n + (\alpha s - s - \lfloor \frac{3s}{2} \rfloor) - 2 < \begin{cases} n - 3, & \text{if } s \text{ is odd,} \\ n - 5, & \text{if } s \text{ is even.} \end{cases}$$
 (2)

Subcase 1.1. *s* is odd.

Let $\varphi(x) = x^3 - ((\alpha + 1)n + \alpha - 4)x^2 + (\alpha n^2 + (\alpha^2 - 2\alpha - 1)n - 2\alpha + 1)x - \alpha^2 n^2 + (5\alpha^2 - 3\alpha + 2)n - 10\alpha^2 + 15\alpha - 8$, $\tau(n)$ be the largest root of $\varphi(x) = 0$, $G_2 = K_1 \vee (K_{n-3} \cup 2K_1)$. Clearly, $G \cong G_2$ when s = 1, $f_{B_1}(x) = \varphi(x)$ by plugging s = 1 into (1), and $\tau(n) = \rho_{\alpha}(G_2)$ by Lemma 2.2.

Since K_{n-2} is a proper subgraph of G_2 , by Lemmas 2.3-2.4 and (2), we have

$$\tau(n) = \rho_{\alpha}(G_2) > \rho_{\alpha}(K_{n-2}) = n - 3 > \eta_2. \tag{3}$$

Subcase 1.1.1. s = 1.

In this subcase, we have $\rho_{\alpha}(G) = \rho_{\alpha}(G_2) = \tau(n)$, which contradicts with $\rho_{\alpha}(G) > \tau(n)$.

Subcase 1.1.2. $s \ge 3$.

In this subcase, $G \ncong G_2$ and $f_{B_1}(x) \neq \varphi(x)$. By (1) and $\varphi(\tau(n)) = 0$, we have

$$f_{B_1}(\tau(n)) = f_{B_1}(\tau(n)) - \varphi(\tau(n)) = -\frac{1}{4}(s-1)H(\tau(n)), \tag{4}$$

where $H(x) = (4\alpha - 6)x^2 + (-4\alpha^2n + 2\alpha n + 6s + 8\alpha + 2)x + 4\alpha^2n^2 - (12\alpha^2 - 12\alpha + 6)sn - (20\alpha^2 - 12\alpha + 8)n + (21\alpha^2 - 36\alpha + 15)s^2 + (37\alpha^2 - 60\alpha + 29)s + 40\alpha^2 - 60\alpha + 32$, its axis of symmetry is $x = -\frac{-4\alpha^2n + 2\alpha n + 6s + 8\alpha + 2}{2(4\alpha - 6)}$. Now we show $\rho_{\alpha}(G) < \tau(n)$, and we obtain a contradiction with $\rho_{\alpha}(G) > \tau(n)$.

Subcase 1.1.2.1. $0 \le \alpha \le \frac{5}{7}$.

Firstly, we show $H(\tau(n)) < H(n-3)$.

By (3), we only need show $-\frac{-4\alpha^2n+2\alpha n+6s+8\alpha+2}{2(4\alpha-6)} < n-3$, say, show $g_1(s) = 2(n-3)(4\alpha-6) + (-4\alpha^2n+2\alpha n+6s+8\alpha+2) < 0$.

In fact, by $n = n_1 + \frac{5}{2}s + \frac{1}{2} \ge \frac{5}{2}s + \frac{5}{2}$ and $s \ge 3$, we have

$$g_1(s) = (-4\alpha^2 + 10\alpha - 12)n - 16\alpha + 6s + 38$$

$$\leq (-4(\alpha - \frac{5}{4})^2 - \frac{23}{4})(\frac{5}{2}s + \frac{5}{2}) - 16\alpha + 6s + 38$$

$$= s(-10\alpha^2 + 25\alpha - 24) - 10\alpha^2 + 9\alpha + 8$$

$$\leq 3(-10\alpha^2 + 25\alpha - 24) - 10\alpha^2 + 9\alpha + 8$$

$$< 0.$$

By the above arguments and (3), we have $H(\tau(n)) < H(n-3)$.

On the other hand, by a direct calculation, we have $H(n-3) = (6\alpha - 6)n^2 + (-12s\alpha^2 + 12s\alpha - 8\alpha^2 - 10\alpha + 30)n + (21\alpha^2 - 36\alpha + 15)s^2 + (37\alpha^2 - 60\alpha + 11)s + 40\alpha^2 - 48\alpha - 28$. Let P(n) = H(n-3). Then the axis of symmetry of P(x) is $x = -\frac{-12s\alpha^2 + 12s\alpha - 8\alpha^2 - 10\alpha + 30}{2(6\alpha - 6)}$.

Now we show P(n) < 0. Let $g_2(s) = 2(\frac{5}{2}s + \frac{5}{2})(6\alpha - 6) + (-12s\alpha^2 + 12s\alpha - 8\alpha^2 - 10\alpha + 30)$. Then by $\alpha \le \frac{5}{7}$, we have

$$\begin{split} g_2(s) &= (-12\alpha^2 + 42\alpha - 30)s - 8\alpha^2 + 20\alpha \\ &= (-12(\alpha - \frac{7}{4})^2 + \frac{27}{4})s - 8(\alpha - \frac{5}{4})^2 + \frac{25}{2} \\ &< -\frac{300}{49}s + \frac{25}{2} \\ &< 0, \end{split}$$

which implies $-\frac{-12s\alpha^2+12s\alpha-8\alpha^2-10\alpha+30}{2(6\alpha-6)} < \frac{5}{2}s + \frac{5}{2}$, and P(n) is monotonically decreasing when $n \ge \frac{5}{2}s + \frac{5}{2}$. Then by $-\frac{\frac{63}{2}s^2+20s-\frac{71}{2}}{2(-9s^2-13s+20)} > \frac{5}{7} \ge \alpha$ and $n \ge \frac{5}{2}s + \frac{5}{2}$, we have

$$P(n) \leq P(\frac{5}{2}s + \frac{5}{2})$$

$$= (6\alpha - 6)(\frac{5}{2}s + \frac{5}{2})^2 + (-12s\alpha^2 + 12s\alpha - 8\alpha^2 - 10\alpha + 30)(\frac{5}{2}s + \frac{5}{2})$$

$$+ (21\alpha^2 - 36\alpha + 15)s^2 + (37\alpha^2 - 60\alpha + 11)s + 40\alpha^2 - 48\alpha - 28$$

$$= (-9s^2 - 13s + 20)\alpha^2 + (\frac{63}{2}s^2 + 20s - \frac{71}{2})\alpha - \frac{45}{2}s^2 + 11s + \frac{19}{2}$$

$$\leq \frac{25}{49}(-9s^2 - 13s + 20) + \frac{5}{7}(\frac{63}{2}s^2 + 20s - \frac{71}{2}) - \frac{45}{2}s^2 + 11s + \frac{19}{2}$$

$$= -\frac{1}{49}(225s^2 - 914s + 277).$$
(5)

If $s \ge 5$, then P(n) < 0 by (5). If s = 3, then $-\frac{-12s\alpha^2 + 12s\alpha - 8\alpha^2 - 10\alpha + 30}{2(6\alpha - 6)} = -\frac{-44\alpha^2 + 26\alpha + 30}{2(6\alpha - 6)} < 8 < 20 \le f(\alpha) \le n$ due to $0 \le \alpha \le \frac{5}{7}$. Hence,

$$P(n) \le \begin{cases} P(20) = -540\alpha^2 + 2368\alpha - 1660 < 0, & \text{if } 0 \le \alpha \le \frac{1}{2} \text{ and } n \ge f(\alpha) = 20, \\ P(25) = -760\alpha^2 + 3848\alpha - 2860 < 0, & \text{if } \frac{1}{2} < \alpha \le \frac{5}{7} \text{ and } n \ge f(\alpha) = 25. \end{cases}$$

Thus, we conclude that P(n) < 0 for $s \ge 3$. Combining the above arguments, by (5), we have $f_{B_1}(\tau(n)) =$ $-\frac{1}{4}(s-1)H(\tau(n)) > -\frac{1}{4}(s-1)H(n-3) = -\frac{1}{4}(s-1)P(n) > 0$, which implies $\rho_{\alpha}(G) < \tau(n)$ for $s \ge 3$ by (3), a contradiction with $\rho_{\alpha}(G) > \tau(n)$.

Subcase 1.1.2.2. $\frac{5}{7} < \alpha < 1$.

By (1), we have

$$f_{B_1}(n-3) = \frac{3}{4}(7\alpha - 5)(1-\alpha)s^3 + ((3\alpha^2 - 3\alpha)n - 4\alpha^2 + 6\alpha + 1)s^2 + ((\frac{3}{2} - \frac{3}{2}\alpha)n^2 - (\alpha^2 - \frac{11}{2}\alpha + \frac{15}{2})n - \frac{3}{4}\alpha^2 - 3\alpha + \frac{39}{4})s + (\frac{3}{2}\alpha - \frac{3}{2})n^2 - (\frac{9}{2}\alpha - \frac{15}{2})n - 9.$$

Let $\Psi(s, n) = f_{B_1}(n-3)$. Thus, we get

$$\begin{split} \frac{\partial \Psi(s,n)}{\partial s} &= \frac{9}{4} (7\alpha - 5)(1-\alpha)s^2 + 2((3\alpha^2 - 3\alpha)n - 4\alpha^2 + 6\alpha + 1)s \\ &+ ((\frac{3}{2} - \frac{3}{2}\alpha)n^2 - (\alpha^2 - \frac{11}{2}\alpha + \frac{15}{2})n - \frac{3}{4}\alpha^2 - 3\alpha + \frac{39}{4}). \end{split}$$

Since $\frac{5}{7} < \alpha < 1$, $n \ge f(\alpha) > \frac{7}{1-\alpha} + 3 > \frac{7}{1-\alpha}$. By a simple computation, we have

$$\begin{split} \frac{\partial \Psi(s,n)}{\partial s}\bigg|_{s=3} &= (\frac{3}{2} - \frac{3}{2}\alpha)n^2 + (17\alpha^2 - \frac{25}{2}\alpha - \frac{15}{2})n - \frac{333}{2}\alpha^2 + 276\alpha - \frac{171}{2} \\ &> (\frac{3}{2} - \frac{3}{2}\alpha)(\frac{7}{1-\alpha})^2 + (17\alpha^2 - \frac{25}{2}\alpha - \frac{15}{2})(\frac{7}{1-\alpha}) - \frac{333}{2}\alpha^2 + 276\alpha - \frac{171}{2} \\ &= \frac{1}{2(1-\alpha)}(333\alpha^3 - 647\alpha^2 + 548\alpha - 129) \\ &> 0, \end{split}$$

and

$$\frac{\partial \Psi(s,n)}{\partial s} \Big|_{s=\frac{2}{5}n-1} = \frac{1}{50} ((-6\alpha^2 + 21\alpha - 15)n^2 + (120\alpha^2 - 265\alpha + 115)n - 425\alpha^2 + 600\alpha - 175)$$

$$< \frac{1}{50} ((-6\alpha^2 + 21\alpha - 15)(\frac{7}{1-\alpha})^2 + (120\alpha^2 - 265\alpha + 115)(\frac{7}{1-\alpha})$$

$$- 425\alpha^2 + 600\alpha - 175)$$

$$= \frac{1}{50(1-\alpha)} (425\alpha^3 - 185\alpha^2 - 786\alpha - 105)$$

$$< 0.$$

Then $f_{B_1}(n-3) = \Psi(s,n) \ge \min\{\Psi(3,n), \Psi(\frac{2}{5}n-1,n)\}$ since the leading coefficient of $\Psi(s,n)$ (when viewed as a cubic polynomial of s) is positive, and $3 \le s \le \frac{2}{5}n-1$.

By
$$\frac{5}{7} < \alpha < 1$$
 and $n \ge f(\alpha) > \frac{7}{1-\alpha} + 3 > \frac{7}{1-\alpha}$, we have

$$\Psi(3,n) = (3-3\alpha)n^2 + (24\alpha^2 - 15\alpha - 15)n - 180\alpha^2 + 288\alpha - 72$$

$$> (3-3\alpha)(\frac{7}{1-\alpha})^2 + (24\alpha^2 - 15\alpha - 15)(\frac{7}{1-\alpha}) - 180\alpha^2 + 288\alpha - 72$$

$$= \frac{1}{1-\alpha}(180\alpha^3 - 300\alpha^2 + 255\alpha - 30)$$

$$> 0,$$

and

$$\Psi(\frac{2}{5}n - 1, n) = \frac{1}{125}((18\alpha^2 - 63\alpha + 45)n^3 - (115\alpha^2 - 530\alpha + 505)n^2 + (75\alpha^2 - 1025\alpha + 1700)n + 250\alpha^2 - 1750)$$

$$> \frac{1}{125}((18\alpha^2 - 63\alpha + 45)(\frac{7}{1 - \alpha})^3 - (115\alpha^2 - 530\alpha + 505)(\frac{7}{1 - \alpha})^2 + (75\alpha^2 - 1025\alpha + 1700)(\frac{7}{1 - \alpha}) + 250\alpha^2 - 1750)$$

$$= \frac{1}{125(1 - \alpha)^2}(250\alpha^4 - 1025\alpha^3 + 565\alpha^2 + 4221\alpha + 840)$$

Therefore, we conclude that $f_{B_1}(n-3) \ge \min\{\Psi(3,n), \Psi(\frac{2}{5}n-1,n)\} > 0$ for $s \ge 3$. By (3), we have $\rho_{\alpha}(G) < \tau(n)$ for $s \ge 3$, which contradicts with $\rho_{\alpha}(G) > \tau(n)$.

Subcase 1.2. *s* is even.

Let $\psi(x) = x^3 - ((\alpha + 1)n + 2\alpha - 6)x^2 + (\alpha n^2 + (2\alpha^2 - 3\alpha - 1)n - 4\alpha - 3)x - 2\alpha^2 n^2 + (18\alpha^2 - 14\alpha + 8)n - 72\alpha^2 + 118\alpha - 56$, $\theta(n)$ be the largest root of $\psi(x) = 0$, $G_3 = K_2 \vee (K_{n-6} \cup 4K_1)$. Clearly, $G \cong G_3$ when s = 2, $f_{B_1}(x) = \psi(x)$ by plugging s = 2 into (1), and $\theta(n) = \rho_{\alpha}(G_3)$ by Lemma 2.2.

Since K_{n-4} is a proper subgraph of G_3 , by Lemmas 2.3-2.4 and (2), we have

$$\theta(n) = \rho_{\alpha}(G_3) > \rho_{\alpha}(K_{n-4}) = n - 5 > \eta_2.$$
 (6)

Subcase 1.2.1. s = 2.

In this subcase, we have $\rho_{\alpha}(G) = \rho_{\alpha}(G_3) = \theta(n)$. Now we prove $\theta(n) < n - 3 < \tau(n)$ to get the contradiction.

By a direct computation, we have

$$\psi(n-3) = (2-2\alpha)n^2 + (12\alpha^2 - 6\alpha - 10)n - 72\alpha^2 + 112\alpha - 20.$$

Let $\Omega(x) = (2-2\alpha)x^2 + (12\alpha^2 - 6\alpha - 10)x - 72\alpha^2 + 112\alpha - 20$. If $\alpha \in [0, \frac{5}{7}]$, then $x = -\frac{12\alpha^2 - 6\alpha - 10}{2(2-2\alpha)} < 8$ and $\Omega(x)$ is increasing when $x \ge 20$, so $\psi(n-3) = \Omega(n) \ge \Omega(20) = 168\alpha^2 - 808\alpha + 580 > 0$ when $n \ge 20$. If $\alpha \in (\frac{5}{7}, 1)$, then $-\frac{12\alpha^2 - 6\alpha - 10}{2(2-2\alpha)} < \frac{7}{1-\alpha}$, and $\Omega(n)$ is increasing when $x \ge \frac{7}{1-\alpha} + 3 > \frac{7}{1-\alpha}$, so $\psi(n-3) = \Omega(n) > \Omega(\frac{7}{1-\alpha}) = \frac{72\alpha^3 - 100\alpha^2 + 90\alpha + 8}{1-\alpha} > 0$ when $n \ge \frac{7}{1-\alpha} + 3$.

Therefore, we get $\theta(n) < n-3$ by $\psi(n-3) > 0$ and (6), then $\rho_{\alpha}(G) = \rho_{\alpha}(G_3) = \theta(n) < \tau(n)$ by (3), which contradicts with $\rho_{\alpha}(G) > \tau(n)$.

Subcase 1.2.2. $s \ge 4$.

In this subcase, $G \not\cong G_3$ and $f_{B_1}(x) \neq \psi(x)$. By (1) and $\psi(\theta(n)) = 0$, we have

$$f_{B_1}(\theta(n)) = f_{B_1}(\theta(n)) - \psi(\theta(n)) = -\frac{1}{4}(s-2)h(\theta(n)), \tag{7}$$

where $h(x) = (4\alpha - 6)x^2 + (-4\alpha^2n + 2\alpha n + 6s + 8\alpha + 10)x + 4\alpha^2n^2 - (12\alpha^2 - 12\alpha + 6)sn - (36\alpha^2 - 28\alpha + 16)n + (21\alpha^2 - 36\alpha + 15)s^2 + (68\alpha^2 - 114\alpha + 52)s + 144\alpha^2 - 236\alpha + 112$, its axis of symmetry is $x = -\frac{-4\alpha^2n + 2\alpha n + 6s + 8\alpha + 10}{2(4\alpha - 6)}$.

Subcase 1.2.2.1. $0 \le \alpha \le \frac{5}{7}$.

Firstly, we show $h(\theta(n)) < h(n-5)$.

By (6), we only need show $-\frac{-4\alpha^2n+2\alpha n+6s+8\alpha+10}{2(4\alpha-6)} < n-5$, say, show $g_3(s) = 2(n-5)(4\alpha-6) + (-4\alpha^2n+2\alpha n+6s+8\alpha+10) < 0$.

In fact, by $n = n_1 + \frac{5}{2}s + 1 \ge \frac{5}{2}s + 3$ and $s \ge 4$, we have

$$g_3(s) = (-4\alpha^2 + 10\alpha - 12)n - 32\alpha + 6s + 70$$

$$\leq (-4(\alpha - \frac{5}{4})^2 - \frac{23}{4})(\frac{5}{2} + 3) - 32\alpha + 6s + 70$$

$$= s(-10\alpha^2 + 25\alpha - 30) - 12\alpha^2 - 2\alpha + 34$$

$$\leq 4(-10\alpha^2 + 25\alpha - 30) - 12\alpha^2 - 2\alpha + 34$$

$$< 0.$$

By the above arguments and (6), we have $h(\theta(n)) < h(n-5)$.

On the other hand, by a direct calculation, we have $h(n-5) = (6\alpha - 6)n^2 + (-12s\alpha^2 + 12s\alpha - 16\alpha^2 - 14\alpha + 54)n + (21\alpha^2 - 36\alpha + 15)s^2 + (68\alpha^2 - 114\alpha + 22)s + 144\alpha^2 - 176\alpha - 88$. Let p(n) = h(n-5). Then the axis of symmetry of p(x) is $x = -\frac{-12s\alpha^2 + 12s\alpha - 16\alpha^2 - 14\alpha + 54}{2(6\alpha - 6)}$.

Now we show p(n) < 0.

If $s \ge 10$, we take $g_4(s) = 2(\frac{5}{2}s + 3)(6\alpha - 6) + (-12s\alpha^2 + 12s\alpha - 16\alpha^2 - 14\alpha + 54)$. By $\alpha \le \frac{5}{7}$, we have

$$g_4(s) = (-12\alpha^2 + 42\alpha - 30)s - 16\alpha^2 + 22\alpha + 18$$

$$= (-12(\alpha - \frac{7}{4})^2 + \frac{27}{4})s - 16(\alpha - \frac{11}{16})^2 + \frac{409}{16}$$

$$< -\frac{300}{49}s + \frac{409}{16}$$

$$< 0,$$

which implies $-\frac{-12s\alpha^2+12s\alpha-16\alpha^2-14\alpha+54}{2(6\alpha-6)} < \frac{5}{2}s+3$, and p(n) is monotonically decreasing when $n \ge \frac{5}{2}s+3$. Then

by $-\frac{\frac{63}{2}s^2-23s-164}{2(-9s^2-8s+96)} > \frac{5}{7} \ge \alpha$ and $n \ge \frac{5}{2}s+3$, we have

$$\begin{split} p(n) &\leq p(\frac{5}{2}s+3) \\ &= (6\alpha-6)(\frac{5}{2}s+3)^2 + (-12s\alpha^2 + 12s\alpha - 16\alpha^2 - 14\alpha + 54)(\frac{5}{2}s+3) \\ &+ (21\alpha^2 - 36\alpha + 15)s^2 + (68\alpha^2 - 114\alpha + 22)s + 144\alpha^2 - 176\alpha - 88 \\ &= (-9s^2 - 8s + 96)\alpha^2 + (\frac{63}{2}s^2 - 23s - 164)\alpha - \frac{45}{2}s^2 + 67s + 20 \\ &\leq \frac{25}{49}(-9s^2 - 8s + 96) + \frac{5}{7}(\frac{63}{2}s^2 - 23s - 164) - \frac{45}{2}s^2 + 67s + 20 \\ &= -\frac{1}{49}(225s^2 - 2278s + 2360) \\ &< 0. \end{split}$$

If $s \in \{4, 6, 8\}$, then

$$-\frac{-12s\alpha^2 + 12s\alpha - 16\alpha^2 - 14\alpha + 54}{2(6\alpha - 6)} = \begin{cases} -\frac{-112\alpha^2 + 82\alpha + 54}{2(6\alpha - 6)} < 17, & \text{if } s = 8, \\ -\frac{-88\alpha^2 + 58\alpha + 54}{2(6\alpha - 6)} < 15, & \text{if } s = 6, \\ -\frac{-64\alpha^2 + 34\alpha + 54}{2(6\alpha - 6)} < 14, & \text{if } s = 4. \end{cases}$$

For $0 \le \alpha \le \frac{1}{2}$ and $n \ge f(\alpha) = 20$, we have

$$p(n) \le p(20) = \begin{cases} -208\alpha^2 + 648\alpha - 272 \le 0, & \text{if } s = 8, \\ -452\alpha^2 + 1404\alpha - 736 < 0, & \text{if } s = 6, \\ -528\alpha^2 + 1872\alpha - 1080 < 0, & \text{if } s = 4. \end{cases}$$

For $\frac{1}{2} < \alpha \le \frac{5}{7}$ and $n \ge f(\alpha) = 25$, we have

$$p(n) \le p(25) = \begin{cases} -768\alpha^2 + 2408\alpha - 1352 < 0, & \text{if } s = 8, \\ -892\alpha^2 + 3044\alpha - 1816 < 0, & \text{if } s = 6, \\ -848\alpha^2 + 3392\alpha - 2160 < 0, & \text{if } s = 4. \end{cases}$$

Thus, we conclude that p(n) < 0 for $s \ge 4$. Combining the above arguments, by (7), we have $f_{B_1}(\theta(n)) = -\frac{1}{4}(s-2)h(\theta(n)) > -\frac{1}{4}(s-2)h(n-5) = -\frac{1}{4}(s-2)p(n) \ge 0$, which implies $\rho_{\alpha}(G) < \theta(n) < \tau(n)$ for $s \ge 4$ by (6), a contradiction with $\rho_{\alpha}(G) > \tau(n)$.

Subcase 1.2.2.2. $\frac{5}{7} < \alpha < 1$.

By (1), we have

$$f_{B_1}(n-5) = \frac{3}{4}(7\alpha - 5)(1 - \alpha)s^3 + ((3\alpha^2 - 3\alpha)n - \frac{13}{2}\alpha^2 + \frac{21}{2}\alpha + 2)s^2 + ((\frac{3}{2} - \frac{3}{2}\alpha)n^2 - (2\alpha^2 - \frac{19}{2}\alpha + \frac{27}{2})n - 2\alpha^2 - 13\alpha + 33)s + (3\alpha - 3)n^2 - (15\alpha - 27)n - 60.$$

Let $\Phi(s, n) = f_{B_1}(n - 5)$. Thus, we get

$$\frac{\partial \Phi(s,n)}{\partial s} = \frac{9}{4} (7\alpha - 5)(1 - \alpha)s^2 + 2((3\alpha^2 - 3\alpha)n - \frac{13}{2}\alpha^2 + \frac{21}{2}\alpha + 2)s + ((\frac{3}{2} - \frac{3}{2}\alpha)n^2 - (2\alpha^2 - \frac{19}{2}\alpha + \frac{27}{2})n - 2\alpha^2 - 13\alpha + 33).$$

Since $\frac{5}{7} < \alpha < 1$, $n \ge f(\alpha) > \frac{7}{1-\alpha} + 3 > \frac{7}{1-\alpha}$. By a simple computation, we have

$$\begin{aligned} \frac{\partial \Phi(s,n)}{\partial s} \bigg|_{s=4} &= (\frac{3}{2} - \frac{3}{2}\alpha)n^2 + (22\alpha^2 - \frac{29}{2}\alpha - \frac{27}{2})n - 306\alpha^2 + 503\alpha - 131 \\ &> (\frac{3}{2} - \frac{3}{2}\alpha)(\frac{7}{1-\alpha})^2 + (22\alpha^2 - \frac{29}{2}\alpha - \frac{27}{2})(\frac{7}{1-\alpha}) - 306\alpha^2 + 503\alpha - 131 \\ &= \frac{1}{2(1-\alpha)}(612\alpha^3 - 1310\alpha^2 + 1065\alpha - 304) \\ &> 0, \end{aligned}$$

and

$$\frac{\partial \Phi(s,n)}{\partial s} \Big|_{s=\frac{2}{5}n-\frac{6}{5}} = \frac{1}{50} ((-6\alpha^2 + 21\alpha - 15)n^2 + (36\alpha^2 - 41\alpha - 55)n - 454\alpha^2 + 34\alpha + 600)$$

$$< \frac{1}{50} ((-6\alpha^2 + 21\alpha - 15)(\frac{7}{1-\alpha})^2 + (36\alpha^2 - 41\alpha - 55)(\frac{7}{1-\alpha})$$

$$- 454\alpha^2 + 34\alpha + 600)$$

$$= \frac{1}{50(1-\alpha)} (454\alpha^3 - 236\alpha^2 - 559\alpha - 520)$$

$$< 0.$$

Then $f_{B_1}(n-5) = \Phi(s,n) \ge \min\{\Phi(4,n), \Phi(\frac{2}{5}n - \frac{6}{5},n)\}$ since the leading coefficient of $\Phi(s,n)$ (when viewed as a cubic polynomial of s) is positive, and $4 \le s \le \frac{2}{5}n - \frac{6}{5}$. By $\frac{5}{7} < \alpha < 1$ and $n \ge f(\alpha) > \frac{7}{1-\alpha} + 3 > \frac{7}{1-\alpha}$, we have

By
$$\frac{5}{7} < \alpha < 1$$
 and $n \ge f(\alpha) > \frac{7}{1-\alpha} + 3 > \frac{7}{1-\alpha}$, we have

$$\Phi(4, n) = (3 - 3\alpha)n^2 + (40\alpha^2 - 25\alpha - 27)n - 448\alpha^2 + 692\alpha - 136$$

$$> (3 - 3\alpha)(\frac{7}{1 - \alpha})^2 + (40\alpha^2 - 25\alpha - 27)(\frac{7}{1 - \alpha}) - 448\alpha^2 + 692\alpha - 136$$

$$= \frac{1}{1 - \alpha}(448\alpha^3 - 860\alpha^2 + 653\alpha - 178)$$

$$> 0,$$

and

$$\Phi(\frac{2}{5}n - \frac{6}{5}, n) = \frac{1}{125}((18\alpha^2 - 63\alpha + 45)n^3 - (212\alpha^2 - 997\alpha + 965)n^2 + (386\alpha^2 - 3806\alpha + 6000)n + 264\alpha^2 + 1896\alpha - 11280)$$

$$> \frac{1}{125}((18\alpha^2 - 63\alpha + 45)(\frac{7}{1 - \alpha} + 3)^3 - (212\alpha^2 - 997\alpha + 965)(\frac{7}{1 - \alpha} + 3)^2 + (386\alpha^2 - 3806\alpha + 6000)(\frac{7}{1 - \alpha} + 3) + 264\alpha^2 + 1896\alpha - 11280)$$

$$= \frac{1}{125(1 - \alpha)^2}(550\alpha^3 - 4825\alpha^2 + 7496\alpha - 2780)$$

$$> 0$$

Therefore, we conclude that $f_{B_1}(n-5) \ge \min\{\Phi(4,n), \Phi(\frac{2}{5}n-\frac{6}{5},n)\} > 0$ for $s \ge 4$. By (6), we have $\rho_{\alpha}(G) < \infty$ $\theta(n) < \tau(n)$ for $s \ge 4$, which contradicts $\rho_{\alpha}(G) > \tau(n)$.

Case 2. G - S has no non-trivial connected component.

In this case, $G = K_s \vee iK_1$. Now we show $i = \lfloor \frac{3s}{2} \rfloor + 1$ or $i = \lfloor \frac{3s}{2} \rfloor + 2$.

If $i \ge \lfloor \frac{3s}{2} \rfloor + 3$, then we create a new graph G''' by adding an edge between two vertices in iK_1 . Thus, $i(G'''-S)=i-2 \ge \lfloor \frac{3s}{2} \rfloor +1$ and G'''-S admits exactly one non-trivial connected component. Obviously, G is a proper subgraph of G''', and then $\rho_{\alpha}(G) < \rho_{\alpha}(G''') \le \tau(n)$ by applying Case 1, a contradiction. Therefore, $i = \lfloor \frac{3s}{2} \rfloor + 1 \text{ or } i = \lfloor \frac{3s}{2} \rfloor + 2 \text{ by } i > \frac{3s}{2}.$

Subcase 2.1. $i = \lfloor \frac{3s}{2} \rfloor + 1$.

Obviously, $n = s + \lfloor \frac{3s}{2} \rfloor + 1$, and the quotient matrix of $A_{\alpha}(G)$ in view of the partition $\{V((\lfloor \frac{3s}{2} \rfloor + 1)K_1), V(K_s)\}$

$$B_2 = \begin{pmatrix} \alpha s & (1-\alpha)s \\ (1-\alpha)(\lfloor \frac{3s}{2} \rfloor + 1) & \alpha n - \alpha s + s - 1 \end{pmatrix}.$$

Then the characteristic polynomial of B_2 is

$$f_{B_2}(x) = x^2 - (\alpha n + s - 1)x + \alpha^2 s n - (\alpha^2 - 2\alpha + 1)s \lfloor \frac{3s}{2} \rfloor - (\alpha^2 - \alpha)s^2 - (\alpha^2 - \alpha)s - s$$

$$= x^2 - (\alpha n + s - 1)x + (2\alpha - 1)s \lfloor \frac{3s}{2} \rfloor + \alpha s^2 + \alpha s - s,$$

and $\rho_{\alpha}(G)$ is the largest root of $f_{B_2}(x) = 0$ by Lemma 2.2. By a simple computation, we have

$$\rho_{\alpha}(G) = \frac{\alpha n + s - 1 + \sqrt{(\alpha n + s - 1)^2 - 4((2\alpha - 1)s\lfloor\frac{3s}{2}\rfloor + \alpha s^2 + \alpha s - s)}}{2}.$$
(8)

Now we show $\rho_{\alpha}(G) < n - 3$. It follows from $n = s + \lfloor \frac{3s}{2} \rfloor + 1$ that

$$(2(n-3) - (\alpha n + s - 1))^{2} - (\alpha n + s - 1)^{2} + 4((2\alpha - 1)s\lfloor \frac{3s}{2} \rfloor + \alpha s^{2} + \alpha s - s)$$

$$= (4 - 4\alpha)n^{2} - (4s + 20 - 12\alpha)n + (8\alpha - 4)s\lfloor \frac{3s}{2} \rfloor + 4\alpha s^{2} + 4\alpha s + 8s + 24$$

$$= \begin{cases} 9(1 - \alpha)s^{2} - 4(-5\alpha + 8)s + 5\alpha + 15, & \text{if } s \text{ is odd,} \\ 9(1 - \alpha)s^{2} - 2(-7\alpha + 13)s + 8\alpha + 8, & \text{if } s \text{ is even.} \end{cases}$$

$$(9)$$

Subcase 2.1.1. *s* is odd.

Let $t_1(s) = 9(1 - \alpha)s^2 - 4(-5\alpha + 8)s + 5\alpha + 15$. Then we obtain $t_1(9) = 456 - 544\alpha$, $t_1(11) = 752 - 864\alpha$ and $t_1(\frac{19-5\alpha}{5(1-\alpha)}) = \frac{1}{25(1-\alpha)}(-400\alpha^2 + 740\alpha + 584)$. Since

$$n = \frac{5}{2}s + \frac{1}{2} \ge \begin{cases} 20, & \text{if } \alpha \in [0, \frac{1}{2}], \\ 25, & \text{if } \alpha \in (\frac{1}{2}, \frac{5}{7}], \\ \frac{7}{1-\alpha} + 3, & \text{if } \alpha \in (\frac{5}{7}, 1), \end{cases}$$

we have

$$\frac{4(-5\alpha+8)}{2(9-9\alpha)} < \begin{cases} 3 < 9 \le s, & \text{if } \alpha \in [0,\frac{1}{2}], \\ 4 < 11 \le s, & \text{if } \alpha \in (\frac{1}{2},\frac{5}{7}], \\ \frac{19-5\alpha}{5(1-\alpha)} \le s, & \text{if } \alpha \in (\frac{5}{7},1), \end{cases}$$

and

$$t_1(s) \geq \begin{cases} t_1(9) = 456 - 544\alpha > 0, & \text{if } \alpha \in [0, \frac{1}{2}], \\ t_1(11) = 752 - 864\alpha > 0, & \text{if } \alpha \in (\frac{1}{2}, \frac{5}{7}], \\ t_1(\frac{19 - 5\alpha}{5(1 - \alpha)}) = \frac{1}{25(1 - \alpha)}(-400\alpha^2 + 740\alpha + 584) > 0, & \text{if } \alpha \in (\frac{5}{7}, 1). \end{cases}$$

Subcase 2.1.2. *s* is even.

Let $t_2(s) = 9(1 - \alpha)s^2 - 2(-7\alpha + 13)s + 8\alpha + 8$. Then we obtain $t_2(8) = 376 - 456\alpha$, $t_2(10) = 648 - 752\alpha$ and $t_2(\frac{2(9-2\alpha)}{5(1-\alpha)}) = \frac{1}{25(1-\alpha)}(-336\alpha^2 + 484\alpha + 776).$

$$n = \frac{5}{2}s + 1 \ge \begin{cases} 20, & \text{if } \alpha \in [0, \frac{1}{2}], \\ 25, & \text{if } \alpha \in (\frac{1}{2}, \frac{5}{7}], \\ \frac{7}{1-\alpha} + 3, & \text{if } \alpha \in (\frac{5}{7}, 1), \end{cases}$$

we have

$$\frac{2(-7\alpha+13)}{2(9-9\alpha)} < \begin{cases} 3<8 \le s, & \text{if } \alpha \in [0,\frac{1}{2}], \\ 4<10 \le s, & \text{if } \alpha \in (\frac{1}{2},\frac{5}{7}], \\ \frac{2(9-2\alpha)}{5(1-\alpha)} \le s, & \text{if } \alpha \in (\frac{5}{7},1), \end{cases}$$

and

$$t_2(s) \geq \begin{cases} t_2(8) = 376 - 456\alpha > 0, & \text{if } \alpha \in [0, \frac{1}{2}], \\ t_2(10) = 648 - 752\alpha > 0, & \text{if } \alpha \in (\frac{1}{2}, \frac{5}{7}], \\ t_2(\frac{2(9-2\alpha)}{5(1-\alpha)}) = \frac{1}{25(1-\alpha)}(-336\alpha^2 + 484\alpha + 776) > 0, & \text{if } \alpha \in (\frac{5}{7}, 1). \end{cases}$$

Therefore, by (8), (9), $t_1(s) > 0$ and $t_2(s) > 0$, we have $\rho_{\alpha}(G) < n - 3$. **Subcase 2.2**. $i = \lfloor \frac{3s}{2} \rfloor + 2$.

Obviously, $n = s + \lfloor \frac{3s}{2} \rfloor + 2$, and the quotient matrix of $A_{\alpha}(G)$ in view of the partition $\{V((\lfloor \frac{3s}{2} \rfloor + 2)K_1), V(K_s)\}$ equals to

$$B_3 = \begin{pmatrix} \alpha s & (1-\alpha)s \\ (1-\alpha)(\lfloor \frac{3s}{2} \rfloor + 2) & \alpha n - \alpha s + s - 1 \end{pmatrix}.$$

Then the characteristic polynomial of B_3 is

$$f_{B_3}(x) = x^2 - (\alpha n + s - 1)x + \alpha^2 s n - (\alpha^2 - 2\alpha + 1)s \lfloor \frac{3s}{2} \rfloor - (\alpha^2 - \alpha)s^2 - (2\alpha^2 - 3\alpha + 2)s$$
$$= x^2 - (\alpha n + s - 1)x + (2\alpha - 1)s \lfloor \frac{3s}{2} \rfloor + \alpha s^2 + (3\alpha - 2)s,$$

and $\rho_{\alpha}(G)$ is the largest root of $f_{B_3}(x) = 0$ by Lemma 2.2. By a simple computation, we have

$$\rho_{\alpha}(G) = \frac{\alpha n + s - 1 + \sqrt{(\alpha n + s - 1)^2 - 4((2\alpha - 1)s\lfloor \frac{3s}{2} \rfloor + \alpha s^2 + 3\alpha s - 2s)}}{2}.$$
(10)

Now we show $\rho_{\alpha}(G) < n-3$. It follows from $n=s+\lfloor \frac{3s}{2} \rfloor +2$ that

$$(2(n-3) - (\alpha n + s - 1))^2 - (\alpha n + s - 1)^2 + 4((2\alpha - 1)s\lfloor \frac{3s}{2} \rfloor + \alpha s^2 + 3\alpha s - 2s)$$

$$= (4 - 4\alpha)n^2 - (4s + 20 - 12\alpha)n + (8\alpha - 4)s\lfloor \frac{3s}{2} \rfloor + 4\alpha s^2 + 4\alpha s + 8s + 24$$

$$= \begin{cases} 9(1 - \alpha)s^2 - 4(-2\alpha + 5)s + 9\alpha + 3, & \text{if } s \text{ is odd,} \\ 9(1 - \alpha)s^2 - 2(-\alpha + 7)s + 8\alpha, & \text{if } s \text{ is even.} \end{cases}$$
(11)

Subcase 2.2.1. *s* is odd.

Let $t_3(s) = 9(1 - \alpha)s^2 - 4(-2\alpha + 5)s + 9\alpha + 3$. Then we obtain $t_3(9) = 552 - 648\alpha$, $t_3(11) = 872 - 992\alpha$ and $t_3(\frac{17-3\alpha}{5(1-\alpha)}) = \frac{1}{25(1-\alpha)}(-264\alpha^2 + 212\alpha + 976)$.

Since

$$n = \frac{5}{2}s + \frac{3}{2} \ge \begin{cases} 20, & \text{if } \alpha \in [0, \frac{1}{2}], \\ 25, & \text{if } \alpha \in (\frac{1}{2}, \frac{5}{7}], \\ \frac{7}{1-\alpha} + 3, & \text{if } \alpha \in (\frac{5}{7}, 1), \end{cases}$$

we have

$$\frac{4(-2\alpha+5)}{2(9-9\alpha)} < \begin{cases} 2 < 9 \le s, & \text{if } \alpha \in [0,\frac{1}{2}], \\ 3 < 11 \le s, & \text{if } \alpha \in (\frac{1}{2},\frac{5}{7}], \\ \frac{17-3\alpha}{5(1-\alpha)} \le s, & \text{if } \alpha \in (\frac{5}{7},1), \end{cases}$$

and

$$t_3(s) \geq \begin{cases} t_3(9) = 552 - 648\alpha > 0, & \text{if } \alpha \in [0, \frac{1}{2}], \\ t_3(11) = 872 - 992\alpha > 0, & \text{if } \alpha \in (\frac{1}{2}, \frac{5}{7}], \\ t_3(\frac{17 - 3\alpha}{5(1 - \alpha)}) = \frac{1}{25(1 - \alpha)}(-264\alpha^2 + 212\alpha + 976) > 0, & \text{if } \alpha \in (\frac{5}{7}, 1). \end{cases}$$

Subcase 2.2.2. *s* is even.

Let $t_4(s) = 9(1-\alpha)s^2 - 2(-\alpha+7)s + 8\alpha$. Then we obtain $t_4(10) = 464 - 552\alpha$, $t_4(10) = 760 - 872\alpha$ and $t_4(\frac{2(8-\alpha)}{5(1-\alpha)}) = \frac{1}{25(1-\alpha)}(-184\alpha^2 - 76\alpha + 1184)$. Since

$$n = \frac{5}{2}s + 2 \ge \begin{cases} 20, & \text{if } \alpha \in [0, \frac{1}{2}], \\ 25, & \text{if } \alpha \in (\frac{1}{2}, \frac{5}{7}], \\ \frac{7}{1-\alpha} + 3, & \text{if } \alpha \in (\frac{5}{7}, 1), \end{cases}$$

we have

$$\frac{4(-2\alpha+5)}{2(9-9\alpha)} < \begin{cases} 2 < 8 \le s, & \text{if } \alpha \in [0,\frac{1}{2}], \\ 3 < 10 \le s, & \text{if } \alpha \in (\frac{1}{2},\frac{5}{7}], \\ \frac{2(8-\alpha)}{5(1-\alpha)} \le s, & \text{if } \alpha \in (\frac{5}{7},1), \end{cases}$$

and

$$t_4(s) \geq \begin{cases} t_4(8) = 464 - 552\alpha > 0, & \text{if } \alpha \in [0, \frac{1}{2}], \\ t_4(10) = 760 - 872\alpha > 0, & \text{if } \alpha \in (\frac{1}{2}, \frac{5}{7}], \\ t_4(\frac{2(8-\alpha)}{5(1-\alpha)}) = \frac{1}{25(1-\alpha)}(-184\alpha^2 - 76\alpha + 1184) > 0, & \text{if } \alpha \in (\frac{5}{7}, 1). \end{cases}$$

Therefore, by (10), (11), $t_3(s) > 0$ and $t_4(s) > 0$, we have $\rho_{\alpha}(G) < n - 3$.

Note that $\tau(n) > n-3$. Combining the above arguments, we conclude $\rho_{\alpha}(G) < n-3 < \tau(n)$, which contradicts $\rho_{\alpha}(G) > \tau(n)$.

By Case 1 and Case 2, we complete the proof of Theorem 1.2. \Box

5. Extremal graphs

In this section, we claim that the condition in Theorem 1.2 is best possible.

Theorem 5.1. Let $\alpha \in [0, 1)$, n, $\tau(n)$ be as in Theorem 1.2. Then $\rho_{\alpha}(K_1 \vee (K_{n-3} \cup 2K_1)) = \tau(n)$, and $K_1 \vee (K_{n-3} \cup 2K_1)$ contains no $\{P_2, C_3, P_5, \mathcal{T}(3)\}$ -factor.

Proof. By the proof of Theorem 1.2, we have $\rho_{\alpha}(K_1 \vee (K_{n-3} \cup 2K_1)) = \tau(n)$. Let v be the vertex with the maximum degree of $K_1 \vee (K_{n-3} \cup 2K_1)$. Set $S = \{v\}$, then we infer $i(K_1 \vee (K_{n-3} \cup 2K_1) - S) = 2 > \frac{3}{2}|S|$. By Lemma 2.6, the graph $K_1 \vee (K_{n-3} \cup 2K_1)$ contains no $\{P_2, C_3, P_5, \mathcal{T}(3)\}$ -factor. Therefore, the bound on A_α -spectral radius established in Theorem 1.2 is sharp. □

References

- [1] A.E. Brouwer, W.H. Haemers, Spectra of Graphs, Springer, 2011.
- [2] H.Z. Chen, X.Y. Lv, J.X. Li, Sufficient conditions for component factors in a graph, Indian J. Pure Appl. Math. http://dx.doi.org/10.1007/s13226-024-00575-7.
- [3] M. Kano, H.L. Lu, Q.L. Yu, Component factors with large components in graphs, Appl. Math. Lett. 23 (2010), 385-389.
- [4] M. Kano, H.L. Lu, Q.L. Yu, Fractional factors, component factors and isolated vertex conditions in graphs, Electron. J. Comb. 26 (4) (2019), 4.33.
- [5] M. Kano, A. Saito, Star-factors with large components, Discrete Math. 312 (2012), 2005-2008.
- [6] M. Las Vergnas, An extension of Tutte's 1-factor theorem, Discrete Math. 23 (1978), 241-255.
- [7] H.Q. Lin, X. Huang, J. Xue, A note on the A_{α} -spectral radius of graphs, Linear Algebra Appl. 557 (2018), 430-437.
- [8] H.Q. Lin, X.G. Liu, J. Xue, Graphs determined by their A_{α} -spectra, Discrete Math. 342 (2) (2019), 441-450.
- $[9] \ \ X.Y.\ Lv, J.X.\ Li, S.J.\ Xu, Some\ results\ on\ \{K_2, C_{2i+1}: i\geq 1\}-factor\ in\ a\ graph, Discrete\ Appl.\ Math.\ 360\ (2025), 81-92.$
- [10] S.C. Li, S.J. Miao, Characterizing $\mathcal{P}_{\geq 2}$ -factor and $\mathcal{P}_{\geq 2}$ -factor covered graphs with respect to the size or the spectral radius, Discrete Math. **344** (11) (2021), 112588.
- [11] S.J. Miao, S.C. Li, Characterizing star factors via the size, the spectral radius or the distance spectral radius of graphs, Discrete Appl. Math. 326 (2023), 17-32.
- [12] V. Nikiforov, Merging the A- and Q-spectral theories, Appl. Anal. Discrete Math. 11 (2017), 81-107.
- [13] L.H. You, M. Yang, W.S. So, W.G. Xi, On the spectrum of an equitable quotient matrix and its application, Linear Algebra Appl. 577 (2019), 21-40.
- [14] Y. Zhang, G.Y. Yan, M. Kano, Star-like factors with large components, J. Oper. Res. Soc. China 3 (2015), 81-88.
- [15] X.L. Zhang, L.H. You, The existence of a $\{K_{1,2}, K_{1,3}, K_5\}$ -factor based on the size or the A_{α} -spectral radius of graphs, arXiv:2412.11580v1.
- [16] S.Z. Zhou, Spectral radius and component factors in graphs, J. Supercomput. 81(1) (2025), 120.
- [17] S.Z. Zhou, Y.L. Zhang, Z.R. Sun, The A_α-spectral radius for path-factors in graphs, Discrete Math. 347 (5) (2024), 113940.