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Abstract. An ordinary convexity can be interpreted in the form of an inequality between arithmetic means
and referred as to AA-convexity. Other classes of convex functions that include means are also known
in the literature. Depending on which type of mean is included, arithmetic A or geometric G, there are
also GG-convex, AG-convex and GA-convex functions. On the other side, a class with stronger property
that ordinary convex class is known as uniform convexity. In this paper, we connect these two concepts,
GA-convexity with the uniform convexity, and introduce a new concept named uniform GA-convexity.
By analyzing the newly defined class we prove that it inherits some good properties from both classes of
convexity. For uniformly GA-convex functions we prove few basic inequalities as Jensen’s inequality, the
Jensen-Mercer inequality and the Hermite-Hadamard inequality. As applications of the main results we
obtain some analytic inequalities and new estimates of some statistical divergences.

1. Introduction and Preliminaries

The theory of convex functions experienced an accelerated development starting from the appearance
of the works of J. L. Jensen until today. There is almost no area of mathematical analysis in which convex
functions are not used indirectly. Let us recall that a function f: [4,b] € R — R is convex if

fix+ A -ty <tfx)+ A -Hf(y)
holds for all x, y € [a,b] and t € [0, 1].

The theory of convex functions is closely related to the theory of mathematical inequalities. Together,

these theories find various applications in many scientific and applied fields. One of the most important
and basic inequality for convex functions is Jensen’s inequality

q Zn_: pixi | < Zn: piq(xi)
i=1 i=1

(1)
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which holds for every convex function q: [2,b)] CR - R, x; € [a,b],i =1,..,n,and p; > 0,i = 1,...,n, with
Y1 pi = 1 (see [29]). A slightly modified Jensen’s inequality is known as the Jensen-Mercer inequality [24],

q[a +b- Zp,-x,-
i=1

and holds for every convex function g: [4,0] CR - R, x; € [a,b],i =1,..,n,and p; > 0,i = 1,...,n, with
YL, pi =1 (see also [31]).
Another fundamental inequality is the Hermite-Hadamard inequality

b
q (a . b) < blTa f gz < 1010 - 10) 2)

that holds for every convex function g: [2,b] C R — R.

Various inequalities valid for convex functions indicate the possibility of further generalization of convex
functions and creation of new classes of convexity. One of such classes is the class of GA-convex functions.
To specify, a function f: [a,b] C (0, ) — R is GA-convex if

f(Gx, y)) SA(f(), f(),

where G(x, y) = x'y' " is the geometric mean of x and y and A(f(x), f(y)) = tf(x) + (1 —t)f(y) is the arithmetic

mean of f(x)and f(y). In other words, a function f: [a,b] C (0, 0) — R is GA-convex if

F(xy') <) + (1= DY)

holds for all x, y € [a,b] and ¢ € [0, 1]. These functions are also known as geometric-arithmetic or geometric-
arithmetically convex functions.

We can interpret definition of ordinary convexity (1) also in the form of an inequality between means.
If we denote the arithmetic mean of x and y by A(x, y) = tx + (1 — t)y, then (1) is equivalent to

fAQ, ) < AF(), f(y)-

In this context, an ordinary convexity can be referred as to AA-convexity. Other classes of convex functions
that include means are also known in the literature. Depending on which type of mean is included, arith-
metic A or geometric G, there are also GG-convex functions and AG-convex functions. More information
on this topic the reader can find in [5, 23, 25, 26].

One useful characterization of convex function is by its second derivatives. A twice differentiable
function f is convex iff f” > 0. We can interpret analogous characterization for the class of GA-convex
functions. Using the fact that a function f: [4,b] € (0, o) = R is GA-convex iff the function g: [Ina,Inb] —
R, defined by g = f o exp is convex, we have that f is GA-convex iff (f o exp)” > 0 on [Ing,Inb], i.e. iff
x2f'(x) + xf"(x) > 0 for all x € [a,b].

Jensen’s inequality for GA-convex function g: [4,0] € (0,0) —» R, x; € [a,b],i = 1,..,n, and p; > 0,
i=1,..n with Y., pi = 1, has the form

q 1_[ xff] < Zpiq(xi).
i=1 i=1
For GA-convex function g: [a,b] C (0, ®0) — R also the Hermite-Hadamard inequality

q(a) +q(b)
q( lnb—lnaf _d < 2 ®)

holds. Some other variants of the Hermite-Hadamard type inequalities for GA-convex functions can be
found in [12, 13, 38].

<q(@) +q(b) - Y piq(x)

i=1
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The Jensen-Mercer inequality for GA-convex functions can be represented as

ab -
- | < b) - iq(xi
q[n;;xf*] 100 +40) = ) piat)

and holds for every GA-convex function g: [2,0] € (0,00) = R, x; € [a,b],i=1,..,n,and p; > 0,i =1, ..., 1,
with i, pi = 1 (see [17]).

In recent years, many generalizations of the concept of GA-convexity were introduced and different
kinds of Jensen’s, the Hermite-Hadamard and the Jensen-Mercer type inequalities have been established
(see for example [4, 6, 14, 16, 22, 28, 30, 35, 36, 38]).

The goal of this paper is to introduce a new class of convexity that connects the concept of GA-convexity
with uniformly convex functions which we present below.

A function f: [a,b] € R — R is uniformly convex with modulus ¢, if ¢: [0, c0) — [0, 0) is an increasing
function, vanishes only at 0, and

fltx+ (1= ty) <tf(x) + A - Hf(y) — 11 = HP(x — yl) (4)

holds for all x, y € [a,b] and t € [0, 1] (see [9, 37]).

It is obviously that uniform convexity implies ordinary convexity but the reverse implication is not true
in generally. For example, a linear function is convex but not uniformly convex.

Particularly, when (4) holds with ¢ = k(-)?, for some k > 0, then f is called strongly convex with modulus
k. For example, the function h(x) = x? is strongly convex with modulus k = 1 (see [18, 20]).

Every continuous and differentiable uniformly convex function f: [2,b] € R — Rwith modulus ¢
satisfies inequality

fW) = f@) = )y -x+olx—yl), xyelab]

(see [27], [37]). Moreover, for such function Jensen’s inequality

Zn:pif(xi) - f[ipixi] > Xn:Pz‘P [ Xi = Zn:ijj ] ©)
i=1 i=1 i=1 =1

holds with x; € [a,b],i=1,..,n,p; >0,i=1,..,n,such that Y./, p; = 1.

For more information about uniformly convexity see [1, 2, 8, 10, 15, 27, 32, 33].

This paper is divided into four sections. After introduction, in the second section we give the basic
notions, preliminary results and study uniformly GA-convex functions with examples. In the third section
we present fundamental inequalities as Jensen’s, the Jensen-Mercer and the Hermite-Hadamard type in-
equalities for uniformly GA-convex functions. In the last section, as applications of the main results, we
obtain some analytic inequalities and derive new estimates for Shannon’s entropy, the Kullback-Leibler
divergence and Jeffreys distance.

2. Introduction and Preliminaries
We begin this section with definition of the new class of convex functions.

Definition 2.1. A function f: [a,b] C (0,00) — R is said to be uniformly GA-convex on [a, b] with modulus ¢ if
¢: [0,00) = [0, o) is an increasing function and

fEyT <) + (1= Hf(y) - H1 = (| Inx — Iny)) (6)

holds for all x,y € [a,b] and t € [0, 1]. If — f is uniformly GA-convex with modulus ¢, then f is said to be uniformly
GA-concave with modulus ¢.



H. Barsam et al. / Filomat 39:20 (2025), 6841-6858 6844
If

#(vem) < LI L ine - ny) )

holds for all x, y € [a, b], then f is said to be uniformly GA-midconvex on [a, b] with modulus ¢.

Obviously, uniform GA-convexity implies GA-convexity but the reverse implication is not true in
general. Namely if f: [a,b] C (0, 00) — R is an uniformly GA-convex function with modulus ¢, then

FEYT <) + (1= Df(y) - 11 = HP( Inx — In y)
() + (1 - B f(y)

holds for all x,y € [4,b] and ¢t € [0,1]. On the other side, for example the logarithm function In(-) is
GA-convex but not uniformly GA-convex.

VAR/AN

Remark 2.2. Note that by definition (6),

)+ (1 -Hf(y) - f&'y'™)

0< ¢(lnx—Inyl) < o9

holds for all x,y € [a,b] and t € (0, 1). Specially, when x =y, then ¢(0) < 0, i.e. ¢ vanishes at 0.
As a summary of this, in the sequel by modulus we mean every function ¢ nonnegative and increasing on [0, 0o)
that vanishes at 0.

Definition 2.3. Let us define exact modulus of GA-convexity of f as

:x,y €[a,b] €(0,00),s = |1nx—lny

_: HE+HA-0fy)—f('y'™)
pf(s) = 1nf{ HI-F)

e D).
Note that 1if can take negative values if f is not GA-convex.

Proposition 2.4. A function f: [a,b] C (0,00) — R is uniformly GA-convex with modulus ¢ iff us(s) > 0 for
every s > 0.

Proof. It is direct consequence of definition of us and Remark 2.2. [

Remark 2.5. We can replace (6) with any of the following relations:

(D1) For every p > 0 there exists 6 > 0 such that for all x,y € [a,b], |Iny — In x) > p,andt € (0,1),
fOEYT) <) + (1=t f(y) - 11 - 1o; (8)
(D2) For every p > 0 there exists 6 > 0 such that for all x,y € [a, D],

f(\/x_y)<f(x);f(y)—6. )

lny—lnx) Zp,

Relations (6), (8) and (9) are equivalent. Namely, the first equivalence (6)<(8) is a consequence of the previous
consideration.
Let’s prove (8)&(9). First we prove (8)=(9). Let (8) holds. We can take t = 3 in (8) and we get

£ (V) < f(X)‘;f(y) s
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where &' = 8 is some nonnegative constant. Now we prove (9)=>(8). Let (9) holds and t € (O, %] (similarly for

te [%,1)). We have

iy = f (( Vi7) Vl_Zt)
<2tf (VAY) + (1 - 26)f(y)
< 2t(w - 5) +(1-20f(y)
= tf(x) + tf(y) — 2t6 + (1 — 2D f(y)

= tF() + (1 = D) f(y) — 260
<H@) + (1= DF(y) — 261 - Hd,

what we need to prove.

The following proposition connects the classes of uniformly convex functions with uniformly GA-convex
functions.

Proposition 2.6. Ifa function f: [a,b] C (0, o0) — R is increasing and uniformly convex on [a, b] with modulus ¢,
then f is also uniformly GA-convex on [¢", '] with the same modulus ¢. If f is decreasing and uniformly concave on
[a, b] with modulus ¢, then f is also uniformly GA-concave on [¢°, P with modulus ¢.

Proof. We prove only the case of convexity.
Since f is uniformly convex on [a, b] with modulus ¢, then

fltx+ (1= y) < tF(x) + (1= 1) f(y) = K1 = Bp(|x - ) (10)
=tf(x)+ A -1)f(y) — 1 - )Pp(Ine*—1ne’])

holds for all x,y € [a,b] and t € [0, 1].
By assumption f is also increasing. Then as an easy consequence of AM-GM inequality, i.e. inequality between
arithmetic and geometric mean,

Ayt <t + (1 -y,
we have
FEY) < fltx+ (1= by) (11)

for all x,y € [a,b] and t € [0,1]. Combining (10) and (11) we have that f is also uniformly GA-convex on [¢", €'
with modulus ¢. [

The following proposition gives connection in both directions between these two classes of convexity.

Proposition 2.7. A function f: [a,b] C (0,00) — R is uniformly GA-convex with modulus ¢ iff the function
g: [Ina,Inb] — R, defined by g = f o exp, is uniformly convex on [Ina, Inb], with the same modulus .

Proof. "<" Let g: [Ina,Inb] — R, defined by g = f o exp, be uniformly convex on [Ina, In b] with modulus ¢.
Then

(foexp)(tinx+(1-t)Iny)
< H(f o exp)(Inx) + (1 = £)(f o exp)(Iny) — t(1 — t)p(| Inx — In y|)

holds for every x,y € [a,b] and t € [0, 1], what is equivalent to
fEYT) <tf) + (1= Hf(y) - 11 - HP(|Inx — Iny))
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Moreover, f: [a,b] — R is uniformly GA-convex with modulus ¢.
"=" Let f be uniformly GA-convex on [a, b] with modulus ¢. Then

(foexp)(tinx+ (1 —-t)Iny)

— f(etlnx+(1—t)lny)

= f'y'™)

<tf() + (1 =6)f(y) = 1 = HP(|Inx — In yl)

< H(f o exp) (Inx) + (1= ) (f o exp) (In y) — {1 ~ Hip(| Inx ~ In ).

holds for every x,y € [a,b] and t € [0, 1]. Moreover, g = f o exp is uniformly convex on [Ina,In b] with modulus

¢. O

Example 2.8. As emphasized in Introduction, the function h(x) = x* is uniformly convex with modulus ¢(r) = r*.
Let’s consider the restriction of h on the interval [e”, eb] , with b > a > 0. Since we have

h(x) = (In(exp(x))’ = (o In o exp)(x) = [ o In] o (exp)(x) = (f © exp)(x),

where f(x) = In®x, then by Proposition 2.7, it follows that f(x) = In”x is uniformly GA-convex on [a,b] with the
same modulus P(r) = 2. Furthermore, this function is also increasing on [c,d] C [a,b], where d > ¢ > e, where
e is Euler’s number, but not convex and neither uniformly convex on [c,d]. Moreover, the inverse implications in
Proposition 2.6 are not valid in general.

Below we give more examples which are of interest in applications.
Example 2.9. Letk,p € R, 0 <a <band f: [a,b] C (0,00) — R be the function defined by f(x) = x.
1. Ifp>0and 0 <k < ﬂsz, then f is uniformly GA-convex with modulus ¢(r) = kr®. In particular, the function
flx) = X2 is uniformly GA-convex on [a,b] C [%i, oo) with modulus ¢(r) = .
2. Ifp<0and 0 <k < %, then f is uniformly GA-convex on [a, b] with modulus ¢(r) = kr?. In particular, the
function f(x) = 1 is uniformly GA-convex on (0, %] with modulus ¢(r) = r%.
Proof. (1) By assumption p > 0 and aPp? > 2k . It is obvious that ¢(r) = r* is nonnegative, increasing on [0, co) and
vanishes at 0. We consider two fixed points x, y € [a, b] and define

g(t): =xPy" 7 + k(1 - £) (Inx — In y)?

for every t € [0,1].
Since g(0) = y¥, g(1) = x* and
2

ZTZ — pzxtpyp—pt (ln(x) _ In(y))z _ 2k (ln(x) _ ln(y))2

> (pPa? - 2k) (In(x) - In(y))’ > 0,
then
git)y <tf(x)+ 1A -1f(y)
for every x,y € [a,b] and t € [0, 1]. Therefore,
xXPyP Pt (1 - t)k(|1nx -In y|)2 <t + (1 -y

for every x,y € [a,b] and t € [0, 1] what we need to prove.
2

Sl

The last statement follows by choosingk =1,p =2and a =
(2) The proof of this part is quite similar to that of first part and the last statement follows by choosingk =1, p = -1
andb=1 0O
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Example 2.10. Let 0 <a < band 0 < k < 228 [t f: [q,b] C (0,00) — R be defined by f(x) = xInx. Then f
is uniformly GA-convex with modulus ¢(r) = kr®. In particular, the function f(x) = xInx is uniformly GA-convex
with modulus ¢(r) = r* on [a, b], withalna + 2a > 2.

Proof. By assumption k < %, alna + 2a — 2k > 0. It is obvious that ¢ is nonnegative, increasing on [0, co0) and
vanishes at 0. We consider two fixed points x, y € [a, b] and define

g(t): =x'y" (tInx + (1 — ) Iny) + k(1 — £) (Inx — In y)*

g(t): =2y Inxy'™ + kt(1 - ) (Inx - Iny)
for every t € [0,1].
Since g(0) = yIny, g(1) = xInx and
d29 £y -t 2
¥l [x y(tnx+(1-Hlny+2) - Zk] (Inx —Iny)
> [alna + 2a — 2k] (In(x) — In(y))* > 0,
then

gt <tf(x) + A =Hf(Yy)
holds for every x,y € [a,b] and t € [0, 1]. Therefore,
Xy Inady' ™ + (1 - Dk (Inx - Iny)
= x'y"t (tInx + (1 = ) Iny) + 11 — Dk (Inx — In )’
<txlnx+(1-tylny

holds for every x,y € [a,b] and t € [0, 1].
The last statement follows by choosingk =1. O

Example 2.11. Let 0 <a < band 0 < k < Y228 Lot f: [a,b] C (0,00) > R be defined by f(x) = (x — 1) Inx.
Then f is uniformly GA-convex with modulus ¢(r) = kr?. In particular, the function f(x) = (x — 1) Inx is uniformly
GA-convex with modulus ¢(r) = 1> on [a,b], withalna + 2a > 2.

Proof. By assumption 0 < k < 42822 je glng+2a — 2k > 0. It is obvious that ¢ is nonnegative, increasing
on [0, o0) and vanishes at 0. We consider two fixed points x, y € [4, b] and define

g(): = 'y = 1) Inx'y" + k(1 — £) (Inx — Iny)°

for every t € [0,1].
Since g(0) = (y —1)Iny, g(1) = (x — 1) Inx and

d’g _ } B}

Pt (xtyl Fnafy! ™" + 2xfy!~ - 2k) (Inx — Iny)*
> (alna+2a—2k)(Inx — 1r1]/)2 >0,

then

g < tf) + 1 =1)f(y)

holds for every x, y € [a,b] and t € [0, 1]. Therefore,
'y = D) Inx'y™ + kt(1 - £) (Inx — Iny)
StHx—-1)Inx+(1-tH)y-1Iny

holds for every x, y € [a,b] and ¢ € [0, 1]. This end the proof.
The last statement follows by choosing k = 1. O
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In the sequel we prove more characterizations of uniformly GA-convex functions.

Proposition 2.12. Let fi, fo: [a,b] C (0, 0) — R be uniformly GA-convex functions with moduli ¢1, ¢2, respec-
tively. Then:

a) Af1, where A > 0, is uniformly GA-convex with modulus A1,
b) fi + fo, is uniformly GA-convex with modulus ¢1 + ¢,.
Proof. a) Since fi is uniformly GA-convex with modulus ¢+, then
AGY <) + (1= DfiY) - 11 - HPi(|Inx —Iny)
holds for all x,y € [a,b] and t € [0, 1]. Multiplying it by A > 0, we get
AfiEY'T) <A + A = DAAY) - 11 = HAG1(| Inx — Iny)).
b) Since f1, f> are uniformly GA-convex with moduli ¢1, @2, then inequalities
ACY <) + (1= DAY — L - HPi(|Inx — Iny),
AEYT <) + (1= DY) - 1 - Hpa(|Inx - Iny)
hold for all x, y € [a,b] and t € [0, 1]. By summarizing, we get

AEY + RO <R + Q- Dfiy) — L~ (| Inx — Iny)
+tHh(x)+ (1 -1fa(y) —t1 - H)P2(lInx —Iny)),
ie.
(fi + )Y
<H(fi+ 2)&) + (1 =H(fi + L)) = 11 = (1 + P1)(| Inx = Iny]).
This ends the proof. [

Proposition 2.13. Let fi, f>: [a,b] € (0,0) — R be two uniformly GA-convex functions with modulus ¢. Then
the function f: [a,b] — R, defined by

£@) = maxifi(x), o),

is uniformly GA-convex with modulus ¢.
Proof. Since fi, f, are uniformly GA-convex with modulus ¢, then
AT <t + (1 =-HAY) - K1 - Ho(Inx —Iny)
<t ) + 1 =)f(y) = 11 = Ho(lInx — Inyl) (12)
and
AEYT) <thE) + (1= 1fa(y) - H(1 - He(Inx — Iny|)
<t )+ A =Hf(y) - 11 = HP(Inx — Inyl), (13)

hold for all x,y € [a,b] and t € [0,1], where the last inequalities in (12) and (13) are consequences of definition

f(x) = maxeepp{f1(x), £2(x)}.
Now, by combining (12) and (13), we get

f(xtyl—t) — xl;é%;z]{fl(xtyl—t)/ fz(xtyl—t)}

<t ) +A-0f(y) —tA-Ho(Inx —Inyl)
forall x,y € [a,b] and t € [0, 1], what we needed to prove. [



H. Barsam et al. / Filomat 39:20 (2025), 6841-6858 6849

Proposition 2.14. Let ¢1, ¢y be two moduli such that ¢, < ¢1.If f: [a,b] € (0, 00) — R is uniformly GA-convex
functions with modulus ¢1, then f is also uniformly GA-convex with modulus ¢,.

Proof. Since f is uniformly GA-convex function with modulus ¢1, then
H1=B1(|Inx —Iny) < tf() + (1 - HfY) - f&'y')
holds for every x,y € [a,b] and t € [0, 1]. Moreover, if o < 1, then we have that
H1 = Hp2(|Inx — Inyl) < H(1 = Hpr (| Inx — Inyl) < tf(x) + (1 = Hf(y) - f&'y'™)
holds for every x,y € [a,b] and t € (0,1). This ends the proof. [
We finish this section with characterization that includes differentiability.

Proposition 2.15. Let a function f: [a,b] C (0,00) — IR be differentiable uniformly GA-convex with modulus ¢.
Then

[f'(0)x = f'(y)yl (Inx = Iny) > 2¢|Inx —Iny| (14)
holds for all x, y € [a, b].
Proof. Since f is uniformly GA-convex with modulus ¢, then

fEY' <tf@) + (1= Of(y) - t(1 - el Inx —Iny]
holds for all x, y € [a,b] and t € [0, 1]. Further we have

f((g) y] ~ f) < HF@) - F(y) ~ K1 - gl Inx ~ Iyl

ie forallx,y €[a,blandt € (0,1],
£() v)-rw
—( ! t) < f@) = f(y) = (1 = HlInx ~ Iyl

By taking limit

) () v)-
b=

<f(x)-fly) -1 -H¢llnx —Iny|
we get

fy)nx —Iny)y < f(x) - f(y) - ¢lInx —Inyl.

If x and y are interchanged in the previous inequality, we get
f)Iny —Inx)x < f(y) — f(x) — plIny — Inx|.

By summing the previous two inequalities, we et

f'(y)(Inx —Iny)y + f'(x)(Iny — Inx)x < -2¢|Inx —1Iny|,

what is equivalent to (14). O
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3. Some inequalities for uniformly GA-convex functions

In this section we prove some basic inequalities for uniformly GA-convex functions. We start with
Jensen type inequalities.

Theorem 3.1. Let f: [a,b] C (0, 00) — R be an uniformly GA-convex function with modulus ¢. Let {xk}Z:1 C [a,b]
be a sequence and p; > 0,i=1,...,n, with Y,i_ pi = 1. Then

(L1« Srer- S |- 4| )

i=1
Proof. Since f is uniformly GA-convex on [a, b] with modulus ¢, by Proposition 2.7 the function g: [Ina,Inb] — R,
defined by g = f o exp, is uniformly convex on [Ina, Inb] with modulus ¢. Then by (5) we have

Zn:Pig(ln Xi) =g {ipi In x,-] > ipiqf’ [ Inx; - iPi Inx; ]
i=1 i=1 i=1 j=1

lnxi - Zp] lnx]-
j=1

Y pi(f o exp)(inx) = (f o exp) [pr In x,-] > Zp@[
i=1 i=1 i=1

what is equivalent to (15). [

|

Theorem 3.2. Let f: [a,b] C (0, o0) — R be an uniformly GA-convex function with modulus ¢. Let {x}}_, C [a,b]
be a sequence, T be a permutation on {1, ..., n} such that

Xr(1) S X72) S 0 S Xg(n)

andp; >0,i=1,...,n,with Y\, pi = 1. Then

n—1
(H ] Zﬁf (xi) = Z‘Pr(z)rh(m (ln(x;(l;;) )) (16)

Proof. Without loss of generality, we assume that x; < x, < --- < x,. We prove result using the method of
induction.
For n = 2 the statement follows by definition. Assume that (16) holds for some n > 2. Therefore, we

have
n+1 n-1 n Pntl PntpPu
P: _ i pntPpsl Pn*Pn+1
AL | = | T (s )

i=1 i=1

pn P+l

n—1
Z sz(xz) + (pn + pn+1)f( A 1:1+1nn+1 )

: =

pn Pn+1
PntPpyl pntppy1
In (x;-1) — In "t -

—pip2¢p (ln(x—l)) — = Pu-oPu- 1¢(1n(

). (17)

- pn—l(pn + pn+1)¢) (

Since x,-1 < X, < X141 and the function In(') is increasing, then

n+l1

1 Vﬂf}:’nﬂ F’”pf;:lrl 1
n - X —In(x,-1) = In(x;) — In (x,-1)
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and thus
Pn Pn+1
qb(ln (xn-1) — ln( ANEES S ) ) > ¢ (In (x,) — In (x-1)) -
Hence by (17), we get
o) < § PufCi) Pt flxun)
< ii+n+,1{nn+77+ nt
f{!;[xl] ;Pf(X) (Pn + pn+1) I R
n-1
~ o) (a(%)
(Pn +Pn+1)2¢ In Xn plle(P In Xi

I’
—_

i
n+l

Z pif(xi) - Z pnad (in(*21)),
achieving inequality (16). O

Corollary 3.3. Let f:[a,b] € (0,00) — R be an um’formly GA-convex function with modulus ¢ on [a,b]. Let
{xk}7_; € [a, b] be a sequence and let T be a permutation on (1, ...,n} such that

Xz(1) 2 Xz2) 2 2 Xe(n)

andp; > 0,i=1,...,n,with Y\ p; = 1. Then

H ] pr (xz)—ZPm)Pmﬂ (1n(xT;(+l)l))) (18)

Proof. An immediate consequence of Theorem 3.2. [J

As an easy consequence of Theorem 3.2 we also get the next corollary by setting p; = 1, fori =1,...,n

Corollary 3.4. Let f: [a,b] C (0,00) = R be an uniformly GA-convex function with modulus ¢. Let x; < xp <
< x,, be a sequence in [a, b]. Then

f(\mm Xﬂ»— 2¢(@m» (19)

Remark 3.5. Inequality (19) presents generalization of (7).
The next we present the Hermite-Hadamard inequality for uniformly GA-convex functions.

Theorem 3.6. Let f: [a,b] C (0, 00) — R be an uniformly GA-convex function with modulus ¢. Then
1 in(?) 1 v f(u)du
Vab) + ——— f (uw)du < f (20)
fe o mh Ty

<ﬂm;ﬂm_%¢@%3)

Proof. If wesetx: =aand y: =bin (6), we get

f(afbl-f)+t(1—t)¢(1n(§)) tf(a) + (1 — (D).
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By integrating both sides of the above inequality from ¢t = 0 to t = 1 with respect to f, we obtain the
right-hand inequality in (20).
To prove the left-hand inequality, we use (7) what is equivalent to

)< f() erf(y) -

#(va) + 3o (%)

X

for every x,y € [a, b].
Setting

x=ab"" and y=a"t'

in (21), we obtain

£ (Vab) + 3¢ (m(%) ot - 1|) ) ;f (")

By integrating both sides of the previous inequality from ¢t = 0 to t = 1 with respect to t, we get the left-hand
inequality in (20), because

! b 1 In(?)

ooy o
and

U (i 1 [ fudu

j;f(ab )dt_j;f(a b)dt_ln(g)fu u
hold. OO

To prove the Jensen-Mercer type inequalities for GA-convex functions we need the following lemma.

Lemma 3.7. Let f: [a,b] C (0, 00) — R be an uniformly GA-convex function with modulus ¢ . Then inequality
ab 2In(%)In(L b
1) < s+ - 0 - 22 ) @
(n(5))
holds for all x € [a, b].

Proof. Let x € [a,b]. Then for some t € [0, 1], we have x = a'b'™". Thus by (6) we have

fx)+t1 -t (ln(g)) < tf(a) + (1 =1 f(b). (23)
On the other hand,
ab b
f(;) 1= Do (m(a))
= f(al—fbf) +H1 -t (ln(g)) < (1 -=bBf(a) +tf (). (24)

Adding (23) and (24), we obtain

flx) + f(%) +2t(1 - t)¢p (In(g)) < f(a) + f(b). (25)
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Since

tzln('g) and 1—t:ln(§),

the result follows from (25). O

Theorem 3.8. Let f: [a,b] € (0, c0) = R be an uniformly GA-convex function with modulus ¢. Let {xi};_, < [a, ]
be a sequence and p; > 0,i=1,...,n, with Y,i_ pi = 1. Then
f(H ] f@ + f®) - pr(
1= 1 i

- Zn‘pch[lnﬁx?’ - lnxi }
i=1 j=1

Proof. Applying Theorem 3.1 and Lemma 3.7, we have

! [Hﬂ fx”‘] N [H(@)p]
<Tos(2)- Lol [

i=
n 20 (1 b n .

< f@)+ FO) - Y pif () - qj(L%)) pin(%)in( 1)
i=1 ' l

o) w12

TG AW

(n(ey &

i=1 j=1

n In(2)) 2 ”
= J@) + FO) = Y pf ) - &g“»zpi 1n(;f)1n(x£)
—ipi(p[lnﬁx?’ —lnxiJ,
i=1 j=1

what we need to prove. [J
Theorem 3.9. Let f: [a,b] — R uniformly GA-convex with modulus ¢. Let {x;}"_, C [a, b] C (0, %) be a monotone
sequenceand p; > 0,i=1,..,n, with Y. p; = 1. Then

f(H,lxl ]<f(a)+fb) ZPf(xz ( (< <)§2)) ’n(a)ln(x%)
- gpirm@ (‘ln(x;c—tl)

) . (26)
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Proof. Applying Theorem 3.2, Corollary 3.3 and Lemma 3.7, we have

) )

n-1 '
- ; pibis1P ('ln (x;—tl) ),

what we need to prove. [

4. Applications

Using results from the previous sections we prove some analytic inequalities.
Proposition 4.1. The following hold:

a) For every x,y € [a,b] C (0, 00), where a(Ina + 2) > 2, we have

2
%(ln 5) + yxylnxy <xlnx+ylny.

b) For every x,y € [a,b] C (0, 00), where p is a real number such that appz > 2, we have
o\
4x§y§ + (ln ]—/) <2 +y).

Proof. The inequalities follows directly as application of (7) to the function:
a) f(x) = xInx uniformly GA-convex with modulus ¢(r) = 12
b) f(x) = x¥ uniformly GA-convex with modulus ¢p(r) = r2. O

Proposition 4.2. [nequality

2 4
holds for a, b grater than %ﬁ

Proof. Choosingn =2,p1 =pz = %, X1 =a,xy =bin (15) we get

8 ] e )

6854

(27)

(28)

Now (27) is a simple consequence of application (28) to f(x) = x* uniformly GA-convex with modulus ¢(r) = r*. [
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Proposition 4.3. Let0 <a<band 0 <k < ‘%pz. Then

[

(ab)

2
kb p_w wew k( br
+ < < In-| .

12 \Phwf)\ 2 6\ a

a’p?

Proof. Let 0 < k < ——, thus p # 0. As explained in Example 2.9, the function f(x) = x” is uniformly
GA-convex with modulus ¢(r) = kr2. Applying Theorem 3.6 to f(x) = x¥, we arrive at

k in(%) 5 1 b ak +bP k b2
_— p-1 = Z
(ab)? + 1 Zj(: udu<1 bj;u du < 5 6(lna) ,

a

[0S

which completes the proof. [

Proposition 4.4. Let0 <a<x<band0<k< #. Then

PP
GV 4 2 —2kInIn L
xP a X

Proof. The case a = b is trivial. Leta # b. As explained in Example 2.9, the function f(u) = u” is uniformly
GA-convex with modulus ¢(r) = kr>. Applying Lemma 3.7 to f(u) = u”, we get the required result. [

Next we give some applications in information theory. For the purpose of those results, let us denote
Pl’l = {P = (pl;-'-/pn): pl;--'/pn > O/ Z?:lpi = 1}/

the set of all complete finite discrete probability distributions. The restriction to positive distributions is
only for convenience. If we take p; = 0, for some i € {1, ..., n}, in the following results we need to interpret

undefined expressions as f(0) = lim;_o+ f(t), Of(g) =0and Of(g) =lim, 0+ f (S) =elim; o @, e>0.

Shannon’s entropy [34] is defined in terms of probability distribution p for a random variable X as

S(p) = =) pilnp. (29)
i=1

It quantifies the unevenness in p and satisfies inequality
0<S(p) <Inn.
We obtain new upper bound for Shannon’s entropy S(p) as follows.

Proposition 4.5. Let p € P, with p; € [a,b] C (0, 00), where a(Ina + 2) > 2. Let t be a permutation on {1,...,n}
such that

Pe) S Pr@) S 00 S Pan)-

Then

n—1 .
1 )__1 1n2(p“f”). (30)
w?l'p2""'pn ni:l pT(l)

Proof. Applying Theorem 3.2 the function f(x) = xInx uniformly GA-convex with modulus ¢(r) = r* on [a,b] C
(0, 00), with a(lna + 2) > 2, and substituting x; by p;, i = 1, ..., n, we get the required result. [

S(P) < Ap1-p2 P ln(
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Nonnegative measures of dissimilarity between pairs of probability measures are known as divergence
measures. Important class of divergence measures is defined by means of convex functions f and it is
called the class of f-divergences or Csiszér f-divergences (see [11]). Expressed more precisely, for a convex
function f: (0, 0) — R and p, q € P,,, we define Csiszér f-divergence as

Di(a,p) = Y. pif (:’;) (31)
i=1 !

With the assumption f(1) = 0, so called normalized property, the convexity ensures the nonnegativity
of Csiszar f-divergence, i.e.

D f (q/ P) 20
with D¢(q, p) = 0iffq = p.

Csiszér f-divergence (31) is useful generalization of some well-known divergences ([3], [18]-[21]) which
have deep and fruitful applications in probability, statistics, information theory, physics etc. One of the
most commonly used divergence is the Kullback-Leibler divergence which is a particular case of (31) for
generating function f(x) = xInx.

For two p, q € Py, the Kullback-Leibler divergence is defined by

n gi
KL(q,p) = Zqi In ; (32)
i=1 !
The following estimates for the Kullback-Leibler divergence hold.

Proposition 4.6. Lef p, q € P, such that {%}?_1 is a sequence in [a,b] C (0, o) with a(lna + 2) > 2. Then

2
ol TT(EY @] TT(% Wl 1T ()
Z[H() ]H() ln[n(pi)] -

i=1
< KL(q,p)

L ap; bpi
<Ina't’ +2 iln(—)ln(—)
Ll el

S xSy (e B (B R (B

Proof. Applying Theorem 3.1 and Theorem 3.8 to the function f(x) = xInx uniformly GA-convex with modulus
o(r) = % on [a,b] C (0, 00), with a(lna + 2) > 2, and substituting x; by %,i =1,...,n,weobtain (33). O

At the end we derive new estimates for Jeffreys distance defined by

k .
J(q,p) = Z(qi -pi)ln ;77 (34)
i=1 !

obtained from (31) by generating function f(x) = (x — 1)Inx.
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Proposition 4.7. Let p, q € P, such that { }n . is a sequence in [a,b] C (0, 00) with a(Ina + 2) > 2. Then

i=

o)1 {1

i=1

<J(q,p) (35)

i b i
<lna"1bb1+21n( )Zp, (“?) (qﬂ)

l

2
n . n \Pi

_Zpi 1n(@)_1nn(@) _ nL_l In nL
i=1 pi j=1 p/

e e

Proof. Applying Theorem 3.1 and Theorem 3.8 to the function f(x) = (x— 1) Inx unzformly GA-convex with modulus
¢(r) = r* on [a,b] C (0, 00), with a(lna + 2) > 2, and by substituting x; by ,i=1,...,n,weobtain (35). O
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