

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

β -expansions of rational numbers with Pisot Chabauty basis in \mathbb{Q}_p

A. Ben Amora, R. Ghorbela,*

^aDepartment of Mathematics, Faculty of Sciences of Sfax, University of Sfax, Soukra road km 3.5, B.P. 1171, 3000, Sfax, Tunisia

Abstract. The aim of this paper is to study some arithmetic properties about the periodicity of the β -expansion of p-adic numbers. We prove that for every Pisot Chabauty unit number such that the finiteness property (F) is satisfied, there exists a constant $\gamma'(\beta)$ for which every rational in $[0, \gamma'(\beta)[$ have a purely periodic β -expansion, where

$$\gamma'(\beta) = \sup\{c \in [0,1) : \forall x \in (\mathbb{Q} \cap \mathbb{Z}_p) \cap [0,c), d_{\beta}(x) \text{ is purely periodic}\}.$$

1. Introduction

The β -expansions of real numbers were first introduced by A. Rényi [8]. Since then, their arithmetic, diophantine and ergodic properties have been extensively studied by several researchers. Let $\beta > 1$ be a real number. The β -expansion of a real number $x \in [0,1]$ is defined as the sequence $(x_i)_{i\geq 1}$ with values in $\{0,1,\ldots,[\beta]\}$ produced by the β -transformation $T_\beta:x\longrightarrow\beta x$ (mod 1) as follows:

$$\forall i \geq 1, \ x_i = [\beta T_{\beta}^{i-1}(x)], \ and \ thus \ x = \sum_{i \geq 1} \frac{x_i}{\beta^i}.$$

An expansion is finite if $(x_i)_{i\geq 1}$ is eventually 0. A β -expansion is periodic if $p\geq 1$ and $m\geq 1$ exist in a way $x_k=x_{k+p}$, holds for all $k\geq m$. When $x_k=x_{k+p}$ holds for all $k\geq 1$, then it is purely periodic. The sets of real numbers with periodic β -expansions, purely periodic β -expansions and finite β -expansions are respectively denoted by $Per(\beta)$, $Pur(\beta)$ and $Fin(\beta)$.

Let $\mathbb{Q}(\beta)$ be the smallest field containing \mathbb{Q} and β . An easy argument shows that $Per(\beta) \subseteq \mathbb{Q}(\beta) \cap [0,1)$ for every real number $\beta > 1$.In the statement [9], K. Schmidt showed that if β is a Pisot number (an algebraic integer whose conjugates have modulus <1), then $Per(\beta) = \mathbb{Q}(\beta) \cap [0,1)$.

S. Ito and H. Rao discussed the purely periodic β -expansions in the statement [5] and they characterized all reals in [0,1) which have purely periodic β -expansions with Pisot unit base. In the statement [3], V. Berthé and A. Siegel completed the characterization in the Pisot non unit base.

2020 Mathematics Subject Classification. Primary 11R06; Secondary 37B50.

Keywords. p-adic numbers, β-expansion, PC number.

Received: 20 December 2024; Revised: 24 May 2025; Accepted: 24 May 2025

Communicated by Paola Bonacini

Email addresses: anwarbenamor98@gmail.com (A. Ben Amor), rimaghorbel@yahoo.fr (R. Ghorbel)

 $ORCID\ iDs:\ https://orcid.org/0009-0003-1932-8452\ (A.\ Ben\ Amor),\ https://orcid.org/0009-0007-8479-1215\ (R.\ Ghorbel)$

^{*} Corresponding author: R. Ghorbel

Set $\gamma(\beta) = \sup\{c \in [0,1) : \forall x \in \mathbb{Q} \cap D(0,c), d_{\beta}(x) \text{ is purely periodic}\}.$

S. Akiyama proved in the statement [2] that if β verifies the finiteness property $(Fin(\beta) = \mathbb{Z}[\beta^{-1}] \cap \mathbb{R}_+)$, then $\gamma(\beta) > 0$. In the quadratic case, K. Schmidt [9] has proved that if β satisfied $\beta^2 = n\beta + 1$ for some integer $n \ge 1$, then $\gamma(\beta) = 1$. Until now, it is the unique known family of reals for which $\gamma(\beta) = 1$. In [1] the authors has proved that if β is not Pisot unit, then $\gamma(\beta) = 0$, they also showed that if β is a cubic Pisot unit satisfying the finiteness property such that the number field $\mathbb{Q}(\beta)$ is not totally real, then $0 < \gamma(\beta) < 1$.

The β -expansion in the field of p-adic number was introduced by K.Scheicher, V. F. Sirvent and P. Surer [7] . They have proved that if β is a PC number, then $Per(\beta) = \mathbb{Q}(\beta) \cap \mathbb{Z}_p$.

The study of $\gamma(\beta)$ is an important problem that is still largely open. We can define analogous notion in the case the field of the p-adic numbers that means in the similar case with the real number we can define the constant $\gamma'(\beta)$. The main objective of this paper is to determine this problem in \mathbb{Q}_p where β is a PC or SC numbers. Particularly, in this paper, we prove that $\gamma'(\beta) > 0$, if β is a PC unit number in \mathbb{Q}_p satisfying the finiteness property (F).

The purely periodicity of the β -expansion is a very important problem but still largely open until now. Let's remember also that in the case of the field of formal series, on the one hand, in [6], M.Jelleli, M. Mkaouar and K. Scheicher have studied the characterization of purely periodic β -expansions in the Pisot unit base. On the other hand, in [8], the authors characterize formal power series that have purely periodic β -expansions in Pisot or Salem unit basis and they prove that every rational series in the unit disk has a purely periodic β -expansion when β is a quadratic Pisot unit basis or Salem cubic unit basis.

This paper is organized as follows: In section 2, we introduce some basic definitions of p-adic numbers in the field \mathbb{Q}_p . In section 3, we define the β -expansion algorithm for p-adic numbers and we recall some recent results. In section 4, we prove that there exists a constant $\gamma'(\beta)$ for which every rational in the disk $D(0, \gamma'(\beta))$ have a purely periodic β -expansion if β is a PC unit number satisfying the finiteness property (F). Furthermore, we show that the unit condition is necessary to have $\gamma'(\beta) > 0$.

2. p-adic numbers

In order to introduce \mathbb{Q}_p in an harmonious way, we begin by presenting the following set: Let p be a prime and $\mathbb{A}_p = \{mp^n, m, n \in \mathbb{Z}\} = \mathbb{Z}[\frac{1}{p}]$. Particularly, we denote by $\mathbb{A}'_p = \mathbb{A}_p \cap [0, 1)$.

Recall that $\mathbb{A}_p \subset \mathbb{Q}$ is a principal ring, the unit group of \mathbb{A}_p is $\{\pm p^k, k \in \mathbb{Z}\}$ and the field of fraction is \mathbb{Q} . Now, let us define the p-adic valuation:

which verifies the following properties:

- $v_v(0) = \infty$,
- $\bullet \ v_p(xy) = v_p(x) + v_p(y),$
- $v_p(x+y) \ge \min\{v_p(x), v_p(y)\}\$ with $v_p(x+y) = \min\{v_p(x), v_p(y)\},\$ if $v_p(x) \ne v_p(y).$

Therefore $v_p(.)$ is an exponential valuation on \mathbb{A}_p . The p – adic norm $|.|_p$ is defined by

$$|x|_p = \begin{cases} p^{-v_p(x)} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Then $|.|_p$ is a non archimedean absolute value on \mathbb{A}_p . It fulfills the strict triangular inequality

$$|x + y|_{p} \le max\{|x|_{p}, |\{y|_{p}\} \text{ with }$$

$$|x + y|_p = max\{|x|_p, |\{y|_p\} \ if \ |x|_p \neq |y|_p.$$

Let |.| be the archimedean absolute value. Then $|x|_p$ and |x| satisfy the following product formula

$$\prod_{p\in\mathbb{P}\cup\{\infty\}}|x|_p=1 \ for \ all \ x\in\mathbb{Q}\setminus\{0\}$$

where \mathbb{P} denote the set of primes. The completion of \mathbb{A}_p with respects to $|.|_p$ is the field \mathbb{Q}_p of p – adic numbers. Thus

$$\mathbb{Z} \subset \mathbb{A}_p \subset \mathbb{Q} \subset \mathbb{Q}_p$$
.

We mention that each element $x \in \mathbb{Q}_p$ $(x \neq 0)$ admits a unique expansion of the form

$$x = \sum_{n=n_0}^{\infty} x_n p^n$$
, such that $n_0 \in \mathbb{Z}$, $x_{n_0} \neq 0$ and $x_n \in \{0, ..., p-1\}$.

From expansions of the form, we will use the notation

$$x = \dots p_2 p_1 p_0 \bullet p_{-1} \dots p_{n_0}.$$

Definition 2.1. Each $x \in \mathbb{Q}_p$ of the form mentioned above has a unique Artin decomposition

$$x = [x]_p + \{x\}_p$$

such that

$$[x]_p = \sum_{n \ge 0} x_n p^n$$
 and $\{x\}_p = \sum_{n \le 0} x_n p^n$.

The number $[x]_p \in \mathbb{Z}_p$ is called p-adic integer part and $\{x\}_p \in \mathbb{A}_p \cap [0,1)$ is called p-adic fractional part of x.

Furthermore, we can also define the extension v_p in \mathbb{Q}_p :

$$v_v(x) = n_0 \text{ if } x \neq 0 \text{ and } v_v(x) = \infty \text{ otherwise.}$$

In addition \mathbb{Q}_p is equivalent to the fraction field of the p-adic integers \mathbb{Z}_p where

$$\mathbb{Z}_p = \{ x \in \mathbb{Q}_p \; ; \; |x|_p \le 1 \}.$$

Consequently

$$\mathbb{Z}=\mathbb{A}_p\cap\mathbb{Z}_p=\{x\in\mathbb{A}_p\;;\;|x|_p\leq 1\}.$$

Our purpose now is to define Pisot-Chabauty numbers. For this, we shall need some definitions:

Definition 2.2. An element α is called algebraic over \mathbb{A}_p , if there is a polynomial

$$f(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{A}_n[x]$$
 with $f(\alpha) = 0$.

If f is irreducible over \mathbb{A}_p , then f is called a minimal polynomial of α . If $a_n = p^k$ for some $k \in \mathbb{Z}$, then α is called an algebraic integer. Since p^k is a unit of \mathbb{A}_p , we can assume without loss of generality, that $a_n = 1$. If $a_0 = p^{k'}$ for some $k' \in \mathbb{Z}$, then α is called an algebraic unit.

Proposition 2.3. Let K be complete field with respect to (a non archimedean absolute value |.|) and L/K ($K \subset L$) be an algebraic extension of degree m. Then |.| has a unique extension to L defined by : $|\alpha| = \sqrt[m]{|N_{L/K}(\alpha)|}$ and L is complete with respect to this extension.

We apply this proposition to algebraic extension of \mathbb{Q}_p . Since \mathbb{Q}_p is complete, $|.|_p$ and $v_p(.)$ can be extended uniquely to each algebraic field L of $K = \mathbb{Q}_p$. Thus, every algebraic element over \mathbb{A}_p can be valuated.

Remark 2.4. In what follows, for algebraic elements β over \mathbb{A}_p , we will denote by $\beta^{(1)}, \ldots, \beta^{(n)}$ the non-archimedean conjugates of β and by $\beta^{(n+1)}, \ldots, \beta^{(2n)}$ the archimedean conjugates of β .

Finally, we reach to give the definition of Pisot-Chabauty numbers.

Definition 2.5. A Pisot-Chabauty number (for short PC number) is a p-adic number $\beta \in \mathbb{Q}_p$, such that

- $\beta^{(1)} = \beta$ is an algebraic integer over \mathbb{A}_p .
- $|\beta^{(1)}|_p > 1$ for one non-archimedean conjugate of β .
- $|\beta^{(i)}|_p \le 1$ for all non-archimedean conjugates $\beta^{(i)}$, $i \in \{2, ..., n\}$ of β .
- $|\beta^{(i)}| < 1$ for all archimedean conjugates $\beta^{(i)}$, $i \in \{n+1,\ldots,2n\}$ of β .

3. β -expansion in the field \mathbb{Q}_p

Similary to the classical β -expansion for the real numbers, we introduce the β -expansion for p-adic numbers. For this, Let $\beta \in \mathbb{Q}_p$ where $|\beta|_p > 1$, $x \in \mathbb{Z}_p$ and denote by $N_p = [0,1) \cap \{x \in \mathbb{A}_p : |x|_p \le |\beta|_p\}$. A representation in base β (or β -representation) of x is a sequence $(d_i)_{i \ge 1}$, $d_i \in \mathbb{A}_p$, such that

$$x = \sum_{i \ge 1} \frac{d_i}{\beta^i}.$$

A particular β -representation of x is called the β -expansion of x and noted

 $d_{\beta}(x) = (d_i)_{i \geq 1}$ with values in N_p produced by the β -transformation $T : \mathbb{Z}_p \to \mathbb{Z}_p$, which is given by the mapping $z \mapsto [\beta z]_p$.

For $k \ge 0$, define

$$T^{0}(x) = x$$
 and $T^{k}(x) = T(T^{k-1}(x))$.

Then $d_k = \{\beta T^{k-1}(x)\}_p$ for all $k \ge 1$.

An equivalent definition of the β -expansion can be obtained by a greedy algorithm. This algorithm works as follows:

$$r_0 = x$$
; $d_k = \{\beta r_{k-1}\}_p$ and $r_k = \lfloor \beta r_{k-1} \rfloor_p$ for all $k \ge 1$.

The β -expansion of x will be noted as $d_{\beta}(x) = (d_k)_{k \ge 1}$.

Notice that, $d_{\beta}(x)$ is finite if and only if there is a $k \ge 0$ with $T^k(x) = 0$, $d_{\beta}(x)$ is ultimately periodic if and only if there is some smallest $n \ge 0$ (the pre-period length) and $s \ge 1$ (the period length) when $T^{n+s}(x) = T^n(x)$, namely the period length. In a special case, where n = 0, $d_{\beta}(x)$ is purely periodic.

Afterwards, we will use the following notations:

$$Fin(\beta) = \{x \in \mathbb{Z}_p : d_{\beta}(x) \text{ is finite}\}\ \text{ and } Per(\beta) = \{x \in \mathbb{Z}_p : d_{\beta}(x) \text{ is eventually periodic}\}.$$

Now, let $x \in \mathbb{Q}_p$ be an element, with $|x|_p > 1$. Then there is a unique $k \in \mathbb{N}$ having $|\beta|_p^k \le |x|_p < |\beta|_p^{k+1}$. We can represent x by shifting $d_\beta(\beta^{-(k+1)}x)$ by k digits to the left. Therefore, if $d_\beta(x) = 0 \cdot d_1d_2d_3\ldots$, then $d_\beta(\beta x) = d_1 \cdot d_2d_3\ldots$

If we have $d_{\beta}(x) = d_{l}d_{l-1} \dots d_{0} \cdot d_{-1} \dots d_{-m}$, then we put $\operatorname{ord}_{\beta}(x) = -m$.

Definition 3.1. Let $\beta \in \mathbb{Q}_p$. β verifies the finiteness property (F) if $Fin(\beta) = \mathbb{A}_p[\beta^{-1}]$.

Through the use of the previous set $Per(\beta)$ and the PC numbers, K. Scheicher, V. F. Sirvent and P. Surer [7] established the following theorem in the case of p-adic numbers.

Theorem 3.2. Let β be a PC number. Then $Per(\beta) = \mathbb{Q}(\beta) \cap \mathbb{Z}_p$.

Moreover, in the same paper [7], geometric condition of the finiteness property (*F*) has been given by K. Scheicher, V. F. Sirvent and P. Surer.

4. Purely periodic β – expansion

We define for each $\beta \in \mathbb{Q}_p$ with $|\beta|_p > 1$ the quantity

$$\gamma'(\beta) = \sup\{c \in [0,1) : \forall x \in (\mathbb{Q} \cap \mathbb{Z}_p) \cap [0,c), d_{\beta}(x) \text{ is purely periodic}\},$$

In order to prove our main theorem, we need to introduce some basic notions: Let β be a PC unit number with minimal polynomial $P(\beta) = \beta^d + a_{d-1}\beta^{d-1} + \cdots + a_0$ where $a_i \in \mathbb{A}_p$ for $i \in \{0, \ldots, d-1\}$. Let $\beta^{(2)}, \ldots, \beta^{(d)}$ be the non-archimedean conjuguates of β .

We denote by $\overline{\beta}$, the vector of non-archimedean conjuguates of β given by $\overline{\beta} = \begin{pmatrix} \beta^{(2)} \\ \vdots \\ \beta^{(d)} \end{pmatrix}$.

Put

$$Q'(\beta) = \{ \sum_{i=0}^{n_i} a_i \beta^i, a_i \in \mathbb{Q} \cap \mathbb{Z}_p, |a_i| < 1 \}.$$

For $x \in Q'(\beta)$, the j-th non-archimedean conjuguate of x is given by $x^{(j)} = \sum_{i=0}^{n_i} a_i (\beta^{(j)})^i$, $\forall j \in \{2, ..., d\}$.

We define \overline{x} , the vector of non-archimedean conjuguates of x by $\overline{x} = \begin{pmatrix} x^{(2)} \\ \vdots \\ x^{(d)} \end{pmatrix}$ and $||\overline{x}||_p = \sup_{2 \le k \le d} |x^{(k)}|_p$.

We begin with these results which are essential for the development of the proof of our main Theorem.

Lemma 4.1. [7]

Let $A \subset \mathbb{A}_p$. *If* A *is bounded with respect to* $|.|_p$ *and* $|.|_r$ *i.e.*

$$\max_{a \in A} |a|_p < \infty \ and \ \max_{a \in A} |a| < \infty,$$

then A is finite.

Lemma 4.2. Let $\beta \in \mathbb{Q}_p$ be a PC unit number. Put

$$X(k) = \{x \in Fin(\beta) \cap Q'(\beta); ord_{\beta}(x) = -k\}.$$

Then

$$\lim_{k\to\infty} \min_{x\in X(k)} ||\overline{x}||_p = \infty.$$

Proof:

Assume that there exists a constant B and an infinite sequence x_i (i = 1, 2, ...) then that both

$$|x_i^{(j)}|_p \le B$$
 for $j = 2, 3, \dots, |x_i|_p \le 1$ and $\lim_{i \to \infty} \operatorname{ord}_{\beta}(x_i) = -\infty$

holds

We have $x_i = \sum_{i=0}^{n_i} a_i \beta^i$, $n_i \in \mathbb{N}$ and $x_i^{(j)} = \sum_{i=0}^{n_i} a_i (\beta^{(j)})^i$ for all $\beta^{(j)}$ conjugates of β .

Let now $\beta^{(2)},\ldots,\beta^{(d)}$ be the non-archimedean conjuguates of β . As β is unit, then $x_i\in \mathbb{A}_p[\beta]$. Hence $x_i=A_0^i+A_1^i\beta+\ldots+A_{d-1}^i\beta^{d-1}$ and $x_i^{(j)}=A_0^i+A_1^i\beta^{(j)}+\ldots+A_{d-1}^i(\beta^{(j)})^{d-1}, \forall j\in\{2,\ldots,d\}$ where $\beta^{(2)},\ldots,\beta^{(d)}$ are the non-archimedean conjuguates of β .

Thus
$$\begin{pmatrix} x_i \\ x_i^{(2)} \\ \vdots \\ x_i^{(d)} \end{pmatrix} = M \begin{pmatrix} A_0^i \\ A_1^i \\ \vdots \\ A_{d-1}^i \end{pmatrix}$$
, where $M = \begin{pmatrix} 1 & \beta & \cdots & \beta^{d-1} \\ 1 & \beta^{(2)} & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & (\beta^{(d-1)})^{d-1} \\ 1 & \beta^{(d)} & \dots & \dots & (\beta^{(d)})^{d-1} \end{pmatrix}$.

We have det $M = \prod_{i < j} (\beta^{(i)} - \beta^{(j)}) \neq 0$ which implies that M is invertible, therefore it transforms a bounded

vector in a bounded vector. since $|x_i^{(j)}|_p \le B$ for j = 2, 3, ... and $|x_i|_p \le 1$, we have $\begin{pmatrix} x_i \\ x_i^{(2)} \\ \vdots \\ x_i^{(d)} \end{pmatrix}$ is bounded, so $\begin{pmatrix} A_0^i \\ A_1^i \end{pmatrix}$

$$\begin{pmatrix} A_0^i \\ A_1^i \\ \vdots \\ A_{d-1}^i \end{pmatrix} \text{ is also bounded in } \mathbb{Q}_p. \text{ Furthermore, } \beta \text{ has d archimedean conjugates } \beta^{(j)}, \text{ such that } |\beta^{(j)}| < 1 \text{ where } k$$

We have, on one hand,

$$x_i^{(j)} = A_0^i + A_1^i \beta^{(j)} + \dots + A_{d-1}^i (\beta^{(j)})^{d-1}.$$

Moreover, on the other hand, we have $\forall j \in \{d+1,\ldots,2d\}$,

$$|x_i^{(j)}| = |\sum_{i=0}^{n_i} a_i (\beta^{(j)})^i| \le \sum_{i=0}^{n_i} |a_i| |\beta^{(j)}|^i \le \frac{1}{1 - |\beta^{(j)}|}.$$

So
$$\begin{pmatrix} x_i^{(d+1)} \\ x_i^{(d+2)} \\ \vdots \\ x_i^{(2d)} \end{pmatrix}$$
 is bounded. Recall that M is invertible, then $\begin{pmatrix} A_0^i \\ A_1^i \\ \vdots \\ A_{d-1}^i \end{pmatrix}$ is also bounded in \mathbb{R} . Finally, by Lemma

4.1, we conclude that
$$\begin{pmatrix} A_0^i \\ A_1^i \\ \vdots \\ A_{d-1}^i \end{pmatrix}$$
 takes a finite values. Consequently, these x_i are finite. This is absurd, which

proves the lemma

Proposition 4.3. Let $\beta \in \mathbb{Q}(\beta)$ be a PC unit number. Then there exists r > 0 such that for every $h \in Fin(\beta) \cap Q'(\beta)$ satisfying $ord_{\beta}(h) \leq -1$, we have $||\bar{h}||_{p} > r$.

Proof.

According to Lemma 4.2, there exists s > 0 such that for every $x \in Fin(\beta) \cap Q'(\beta)$ satisfying $|x|_p \le 1$ and

 $ord_{\beta}(x) \leq -s$, we have $||\overline{x}||_{p} > |\beta|_{p}$.

Put $r = \inf_{j \in \{2, \dots, d\}} |(\beta^{(j)})^{s-1}|_p |\beta|_p$, where $\beta^{(2)}, \dots, \beta^{(d)}$ are the non-archimedean conjugates of β . Now, let $h \in Fin(\beta) \cap Q'(\beta)$ be with $ord_{\beta}(h) \le -1$. Then $h = \beta^{s-1}g$ where $ord_{\beta}(g) \le -s$. Moreover h can be written such that $h = \beta^{s-1}(g_1 + g_2)$ where $ord_{\beta}(g_1) \ge 0$, $ord_{\beta}(g_2) = ord_{\beta}(g) \le -s$ and $|g_2|_p \le 1$. Since $h = \beta^{s-1}(g_1 + g_2)$, we have

$$\overline{h} = \begin{pmatrix} (\beta^{(2)})^{s-1}(g_1^{(2)} + g_2^{(2)}) \\ \vdots \\ (\beta^{(d)})^{s-1}(g_1^{(d)} + g_2^{(d)}) \end{pmatrix}$$

As β is a PC unit number and $g_1 = c_0 + c_1\beta + \cdots + c_{d-1}\beta^{d-1}$ with $|c_i|_p < |\beta|_p$, we have,

$$\begin{split} |g_1^{(2)}|_p &= |c_0 + c_1\beta^{(2)} + \dots + c_{d-1}(\beta^{(2)})^{d-1}|_p \le |\beta|_p \\ |g_1^{(3)}|_p &= |c_0 + c_1\beta^{(3)} + \dots + c_{d-1}(\beta^{(3)})^{d-1}|_p \le |\beta|_p \\ &\vdots \\ |g_1^{(d)}|_p &= |c_0 + c_1\beta^{(d)} + \dots + c_{d-1}(\beta^{(d)})^{d-1}|_p \le |\beta|_p. \end{split}$$

Since $ord_{\beta}(g_2) \leq -s$ and $|g_2|_p \leq 1$, we have $||\overline{g_2}||_p > |\beta|_p$. Which involves that there exists $j_0 \in \{2, \dots, d\}$ with $|g_2^{j_0}|_p > |\beta|_p$. So $|g_1^{(j_0)} + g_2^{(j_0)}|_p > |\beta|_p$, which implies that $|(\beta^{(j_0)})^{s-1}|_p |g_1^{(j_0)} + g_2^{(j_0)}|_p > \inf_{j \in [2, \dots, d]} |(\beta^{(j)})^{s-1}|_p |\beta|_p = r$. Finally we infer that $||\overline{h}||_p > r$.

Before giving our main theorem, we need moreover the following lemmas. We begin by this lemma in which we characterize the β -expansion of p-adic numbers.

Lemma 4.4. Let $\beta \in \mathbb{Q}_p$ where $|\beta|_p > 1$ and $(a_i)_{i \geq 1}$ is a β -representation of x. Then $d_{\beta}(x) = (a_i)_{i \geq 1}$ if and only if $a_i \in \mathbb{N}_p$, for all $i \geq 1$.

Proof:

The necessary condition is trivial. For the sufficient condition, by assumption we have $(a_i)_{i\geq 1}$ is a β -representation of x and $|a_i|_p \leq |\beta|_p$ for all $i\geq 1$, so

$$x = \sum_{i>1} \frac{a_i}{\beta^i}.$$

If we multiply by β , we get

$$\beta x = a_1 + \sum_{i \ge 2} \frac{a_i}{\beta^{i-1}}.$$

As $|\sum_{i>2} \frac{a_i}{\beta^{i-1}}|_p < 1$ and $a_1 \in \mathbb{A}'_p$, we obtain that $a_1 = \{\beta x\}_p$. Put now $r_0 = x$. We have

$$\beta x - a_1 = \sum_{i>2} \frac{a_i}{\beta^{i-1}}$$

and if we multiply again by β , we get

$$\beta(\beta x - a_1) = a_2 + \sum_{i \ge 3} \frac{a_i}{\beta^{i-2}}.$$

Since $|\sum_{i>3} \frac{a_i}{\beta^{i-2}}|_p < 1$ and $a_2 \in \mathbb{A}'_p$, we get $a_2 = \{\beta r_1\}_p$ where $r_1 = \beta x - a_1$.

Therefore, it's clear that the sequence $(a_k)_{k>1}$ verifies the recurrent condition

$$r_0 = x$$
; $a_k = \{\beta r_{k-1}\}_p$ and $r_k = \lfloor \beta r_{k-1} \rfloor_p$,

which implies that $d_{\beta}(x) = (a_i)_{i \geq 1}$.

Lemma 4.5. *Let* $a_i \neq a_j \in \mathbb{N}_p$. *Then* $|a_i - a_j|_p > 1$.

Proof.

Let $a_i = \frac{b_i}{p^{v_p(\beta)}}$ such that $b_i \in \mathbb{N}$ and $b_i < p^{v_p(\beta)}$. Let now $a_j = \frac{b_j}{p^{v_p(\beta)}}$ with $b_j \in \mathbb{N}$ and $b_j < p^{v_p(\beta)}$. We have

$$|a_i - a_j|_p = \frac{|b_i - b_j|_p}{|p^{v_p(\beta)}|_p}.$$

We have $|b_i - b_j|_{\infty} < p^{v_p(\beta)}$ and this yield that $|b_i - b_j|_p > p^{-v_p(\beta)}$. Then, we obtain the result.

Lemma 4.6. Let $\beta \in \mathbb{Q}_p$ where $|\beta|_p > 1$, $c_i \in \mathbb{Q}_p$ and $M = \sum_{i=1}^l \frac{c_i}{\beta^i}$ with $1 < |c_i|_p \le |\beta|_p$. If there exists j such that $c_i \ne 0$, then $M \ne 0$.

Proof:

Let $c_i \in \mathbb{Q}_p$ and suppose that $M = \sum_{i=1}^{l} \frac{c_i}{\beta^i}$ with $1 < |c_i|_p \le |\beta|_p$. Let i_0 be the smallest integer $j \in \{1, \dots, l\}$ such that $c_j \ne 0$. We have $M = \sum_{i=1}^{l} \frac{c_i}{\beta^i}$, then $|M|_p = |\frac{c_{i_0}}{\beta^{i_0}}|_p \ne 0$ since $|\frac{c_{i_0}}{\beta^{i_0}}|_p > |\frac{c_k}{\beta^k}|_p$ for all $i_0 < k \le l$. Therefore $M \ne 0$.

It is natural now to present our main theorem.

Theorem 4.7. Let $\beta \in \mathbb{Q}_p$ be a PC unit number such that the finiteness property (F) is satisfied, then $\gamma'(\beta) > 0$.

Proof:

We will show that there exists a positive constant c such that every rational x with $|x|_p < c$ has a purely periodic β -expansion. Let $x \in \mathbb{Q}$ such that $|x|_p \le 1$, |x| < 1 and assume that x does not have a purely periodic β -expansion. Since β is a PC unit number, we know that $d_{\beta}(x)$ is eventually periodic and let s be the length of the period and n the length of the pre-period. So $d_{\beta}(x) = 0 \cdot a_1...a_s\overline{a_{s+1}...a_{n+s}}$ and $a_s \ne a_{n+s}$. Hence $x(\beta^s - 1) \in Q'\beta$ and

$$x(\beta^s-1) = a_1\beta^{s-1} + \dots + a_s + \frac{a_{s+1}-a_1}{\beta} + \frac{a_{s+2}-a_2}{\beta^2} + \dots + \frac{a_{n+s}-a_n}{\beta^n}.$$

If we note $H = \frac{a_{s+1}-a_1}{\beta} + \frac{a_{s+2}-a_2}{\beta^2} + \cdots + \frac{a_{n+s}-a_n}{\beta^n}$, we have $H \in \mathbb{A}_p[\beta^{-1}]$. So by the property (F), we have $d_\beta(H)$ is finite i.e $H = \frac{b_1}{\beta} + \frac{b_2}{\beta^2} + \cdots + \frac{b_l}{\beta^l}$. Which implies from Lemma 4.4, $d_\beta(x(\beta^s - 1)) = a_1...a_s.b_1...b_l$.

Moreover, then it's clear that $|H|_p < 1$. Since $a_{n+s} - a_n \neq 0$ and through Lemma 4.6 and Lemma 4.5, we obtain $H \neq 0$. Thus $ord_{\beta}(x(\beta^s - 1)) < 0$. Moreover, we have $x(\beta^s - 1) \in Fin(\beta) \cap Q'(\beta)$, thereby by Proposition 4.3, there exists c > 0 such that $||x\beta^s - x||_p > c$, where

$$\overline{x\beta^s - x} = \begin{pmatrix} x^{(2)}(\beta^{(2)})^s - x^{(2)} \\ \vdots \\ x^{(d)}(\beta^{(d)})^s - x^{(d)}. \end{pmatrix}$$

However $x \in \mathbb{Q}$, then for all $j \in \{2, ..., d\}$; $|x(\beta^{(j)})^s - x|_p = |x|_p$ and for this, we conclude that $|x|_p > c$ and finally the proof of our theorem is reached.

Remark 4.8. The "unit" condition is necessary in Theorem 4.7. Indeed: Let $\beta \in \mathbb{Q}_p$ a not unit PC number and let $P(x) = b_n x^n + b_{n-1} x^{n-1} + \cdots + b_0 \in \mathbb{A}_p[x]$ be the minimal polynomial of β . Since the modulus of all archimedean conjugates of β is < 1, then $|b_0| < 1$, so $|b_0|_p > 1$. For $n \ge 1$, set $x_n = \frac{1}{b_0^n}$. We will prove that x_n does not have purely periodic β -expansion. For this, we suppose that $d_{\beta}(x_n) = 0 \cdot \overline{a_1 \dots a_k}$, we get

$$x_{n} = \frac{a_{1}}{\beta} + \dots + \frac{a_{k}}{\beta^{k}} + \frac{x_{n}}{\beta^{k}},$$

$$= (\frac{a_{1}}{\beta} + \dots + \frac{a_{k}}{\beta^{k}})(1 + \frac{1}{\beta^{k}} + \frac{1}{\beta^{2k}} + \dots),$$

$$= (\sum_{i=1}^{k} a_{i}\beta^{-i})(\sum_{i\geq 0} \frac{1}{\beta^{ik}}),$$

$$= \sum_{i=1}^{k} a_{i}\beta^{-i}$$

$$= \frac{\sum_{i=1}^{k} a_{i}\beta^{-i}}{1 - \beta^{-k}},$$

$$= \frac{\sum_{i=0}^{k-1} a_{k-i}\beta^{i}}{\beta^{k} - 1}.$$

This gives
$$x_n(1-\beta^k) = \sum_{i=0}^{k-1} (-a_{k-i})\beta^i = \frac{1-\beta^k}{b_0^n} \in \mathbb{A}_p[\beta],$$

so $\frac{1-\beta^k}{b_0^n} = c_{n-1}\beta^{n-1} + c_{n-2}\beta^{n-2} + \dots + c_0$ with $c_{n-1}, \dots, c_0 \in \mathbb{A}_p$. Consequently,

$$1-\beta^k = b_0^n(c_{n-1}\beta^{n-1} + c_{n-2}\beta^{n-2} + \dots + c_0)$$

$$= (-b_n\beta^n - b_{n-1}\beta^{n-1} - \dots - b_1\beta)^n(c_{n-1}\beta^{n-1} + c_{n-2}\beta^{n-2} + \dots + c_0).$$

As a result $1 = \beta(z_t \beta^t + \dots + z_0)$ and this contradicts the hypothesis that β is not unit.

References

- [1] B. Adamczewski, C. Frougny, A. Siegel and W. Steiner, *Rational numbers with purely periodic β-expansion*, Proc. London Math. Soc, **101** (2010), 1–31.
- [2] S. Akiyama, Pisot number and greedy algorithm, Number theory, Diophantine, Computational and Algebraic Aspects, de Gruyter (1998), 9–21.
- [3] V. Berthé, A. Siegel, Purely periodic β-expansions in the Pisot non unit case, J. Number Theory, 127 (2007), 153–172.
- [4] R. Ghorbel, M. Hbaib and S. Zouari, Purely Periodic Beta-expansions over Laurent Series, Int. J. Alg. Comp, 22 (2012).
- [5] S. Ito, H. Rao, Purely periodic β-expansions with Pisot unit base, Proceedings of the AMS, 133 (2005), 953–964.
- [6] M. Jelleli, M. Mkaouar, K. Scheicher, Purely periodic β–expansions with Pisot unit base over Laurent series, Int. J. Contemp. Math. Sciences, 3 (2008), 357–369.
- [7] K. Scheicher, V. F. Sirvent and P. Surer, Beta-expansions of p-adic numbers, Ergod. Th. Dynam. Sys, 36, (2016), 924-943.
- [8] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung, 8 (1975), 477–493.
- [9] K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc, 12 (1980), 269–278.