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p-expansions of rational numbers with Pisot Chabauty basis in Q,
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Abstract. The aim of this paper is to study some arithmetic properties about the periodicity of the -
expansion of p-adic numbers. We prove that for every Pisot Chabauty unit number such that the finiteness

property (F) is satisfied, there exists a constant )’(B) for which every rational in [0,)’()[ have a purely
periodic f-expansion, where

Y'(B) = sup{c € [0,1) : Vx € (Q N Z,) N[0, ¢), dy(x) is purely periodic}.

1. Introduction

The B-expansions of real numbers were first introduced by A. Rényi [8]. Since then, their arithmetic,
diophantine and ergodic properties have been extensively studied by several researchers.
Let > 1 be a real number. The f-expansion of a real number x € [0, 1] is defined as the sequence (x;);>1
with values in {0, 1, ..., []} produced by the p-transformation Tg : x — Bx (mod 1) as follows :
Vi>1, x;= [ﬁng_l(x)], and thus x = %
i>1

An expansion is finite if (x;);>1 is eventually 0. A -expansion is periodic if p > 1 and m > 1 exist in a way
Xk = Xg4p, holds for all k > m. When x; = xy;, holds for all k > 1, then it is purely periodic. The sets of real
numbers with periodic f-expansions, purely periodic f-expansions and finite f-expansions are respectively
denoted by Per(B), Pur(f) and Fin(g).

Let Q(B) be the smallest field containing Q and . An easy argument shows that Per(8) € Q(8) N[0, 1) for
every real number > 1.In the statement [9], K. Schmidt showed that if 8 is a Pisot number (an algebraic
integer whose conjugates have modulus <1), then Per(5)=Q(g) N [0, 1).

S.Ito and H. Rao discussed the purely periodic f-expansions in the statement [5] and they characterized
all reals in [0, 1) which have purely periodic p-expansions with Pisot unit base. In the statement [3], V.
Berthé and A. Siegel completed the characterization in the Pisot non unit base.
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Set y(B) = supf{c € [0,1) : Vx € QN D(0, ¢), dp(x) is purely periodic}.

S. Akiyama proved in the statement [2] that if B verifies the finiteness property (Fin(8) = Z[f'] N R,),
then y(B) > 0. In the quadratic case, K. Schmidt [9] has proved that if § satisfied ? = nf + 1 for some integer
n > 1, then y(f) = 1. Until now, it is the unique known family of reals for which y(8) = 1. In [1] the authors
has proved that if § is not Pisot unit, then y() = 0, they also showed that if § is a cubic Pisot unit satisfying
the finiteness property such that the number field Q(f) is not totally real, then 0 < y(f) < 1.

The f—expansion in the field of p—adic number was introduced by K.Scheicher, V. F. Sirvent and P. Surer
[7] . They have proved that if § is a PC number, then Per(8) = Q() N Z,.

The study of y(B) is an important problem that is still largely open. We can define analogous notion in

the case the field of the p-adic numbers that means in the similar case with the real number we can define
the constant )’(8). The main objective of this paper is to determine this problem in Q, where § is a PC or
SC numbers. Particulary, in this paper, we prove that y’(8) > 0, if § is a PC unit number in Q, satisfying the
finiteness property (F).
The purely periodicity of the f—expansion is a very important problem but still largely open until now.
Let’s remember also that in the case of the field of formal series, on the one hand, in [6], M.Jelleli, M.
Mkaouar and K. Scheicher have studied the characterization of purely periodic f—expansions in the Pisot
unit base. On the other hand, in [8], the authors characterize formal power series that have purely periodic
p—expansions in Pisot or Salem unit basis and they prove that every rational series in the unit disk has a
purely periodic f—expansion when f is a quadratic Pisot unit basis or Salem cubic unit basis.

This paper is organized as follows: In section 2, we introduce some basic definitions of p-adic numbers
in the field Q,. In section 3, we define the f-expansion algorithm for p-adic numbers and we recall some
recent results. In section 4, we prove that there exists a constant )’(B) for which every rational in the disk
D(0,y’(B)) have a purely periodic f-expansion if § is a PC unit number satisfying the finiteness property
(F). Furthermore, we show that the unit condition is necessary to have y’(8) > 0.

2. p-adic numbers

In order to introduce Q, in an harmonious way, we begin by presenting the following set: Let p be a
prime and A, = {mp",m,n € Z} = Z[%]. Particulary, we denote by Aj, = A, N[0, 1).

Recall that A, C Q is a principal ring, the unit group of A, is {+p¥, k € Z} and the field of fraction is Q.
Now, let us define the p-adic valuation:

vy A, — ZU{oo}

max{n € Z : p" divise x} ifx #0,
X .
00 ifx=0,

which verifies the following properties:

L4 UP(O) = OO/

b4 vp(xy) = vp(x)“" vp(y)/ ’ ‘ ‘

o Uy(x + y) 2 min{oy(x), v,(y)} with v,(x + y) = min{v,(x), v,(y)}, if vp(x) # Vp(Y).

Therefore vy(.) is an exponential valuation on A,. The p — adic norm |.|, is defined by

wp, =4 P i,
=10 if x = 0.

Then ||, is a non archimedean absolute value on A,. It fulfills the strict triangular inequality

|X + ]/'P < max{|x|p/ |{y|p} with
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Ix + yl, = max{|xlp, {yl,} if Ixlp # |ylp.
Let || be the archimedean absolute value. Then |x|, and |x| satisfy the following product formula
H x|, =1 forall xeQ\ {0}
pelPU{co}

where IP denote the set of primes. The completion of A, with respects to ||, is the field Q, of p — adic
numbers. Thus
ZchA,cQcCQ,

We mention that each element x € Q, (x # 0) admits a unique expansion of the form

(e8]

X = anp”, such that no € Z, x,, #0 andx, €{0,...,p—1}.

n=np

From expansions of the form, we will use the notation
X =...P2P1P0 ® P-1 - Py
Definition 2.1. Each x € Q, of the form mentioned above has a unique Artin decomposition
x = [x], + {x},

[x], = Z xap" and {x}, = Z Xup".

n>0 n<0

such that

The number [x], € Z,, is called p—adic integer part and {x}, € A, N [0,1) is called p—adic fractional part of x.
Furthermore, we can also define the extension v, in Q,:
vp(x) = ng if x # 0 and vy(x) = oo otherwise.
In addition Q, is equivalent to the fraction field of the p-adic integers Z,, where
Z,={xeQ,; x|, <1}.

Consequently
Z=ANZ,={xeAy; x|, <1}

Our purpose now is to define Pisot-Chabauty numbers. For this, we shall need some definitions:

Definition 2.2. An element a is called algebraic over A,, if there is a polynomial
f(x) = a0 +arx + - +a,x" € Ay[x] with f(a) = 0.

If f is irreducible over A, then f is called a minimal polynomial of a. If a, = p* for some k € Z, then a is called an
algebraic integer. Since p* is a unit of A, we can assume without loss of generality, that a, = 1. If ag = p* for some
kK € Z, then « is called an algebraic unit.

Proposition 2.3. Let K be complete field with respect to ( a non archimedean absolute value |.| ) and L/K (K c L)

be an algebraic extension of degree m. Then |.| has a unique extension to L defined by : |a| = A/INp/x(a)| and L is
complete with respect to this extension.

We apply this proposition to algebraic extension of Q,. Since Q, is complete, |.|, and v,(.) can be extended
uniquely to each algebraic field L of K = Q,. Thus, every algebraic element over A, can be valuated.
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Remark 2.4. In what follows, for algebraic elements p over A,, we will denote by BV, ..., B™ the non-archimedean
conjugates of B and by Y, ..., B the archimedean conjugates of B.
Finally, we reach to give the definition of Pisot-Chabauty numbers.
Definition 2.5. A Pisot-Chabauty number ( for short PC number) is a p-adic number € Q,, such that

o BV = Bis an algebraic integer over A,,.

e |BW], > 1 for one non-archimedean conjugate of p.

o |89, <1 for all non-archimedean conjugates B, i € {2,...,n} of B.

o |80 < 1 for all archimedean conjugates B9, i€ {n+1,...,2n} of .

3. B—expansion in the field Q,

Similary to the classical f—expansion for the real numbers, we introduce the f—expansion for p-adic
numbers. For this, Let § € Q, where ||, > 1, x € Z,, and denote by N, = [0,1) N {x € A, : |x], < |Bl}.
A representation in base f3 ( or f-representation) of x is a sequence (d;);>1, d; € Ay, such that
di
=1 P
A particular p-representation of x is called the -expansion of x and noted
dg(x) = (di)i»1 with values in N, produced by the g-transformation T : Z, — Z,, which is given by the

mapping z = [Bz],.
For k > 0, define

X =

TO(x) = x and T"(x) = T(TF(x)).
Then dj = {BT*"!(x)}, for all k > 1.

An equivalent definition of the f-expansion can be obtained by a greedy algorithm. This algorithm
works as follows :

ro = x; dy = {Bri-1}p and 1y = | Brr_1]p for all k > 1.

The B-expansion of x will be noted as dg(x) = (d)k>1-
Notice that, dg(x) is finite if and only if there is a k > 0 with Tk(x) =0, dp(x) is ultimately periodic if and only
if there is some smallest n > 0 (the pre-period length) and s > 1 (the period length) when T"**(x) = T"(x),
namely the period length. In a special case, where n = 0, dg(x) is purely periodic.
Afterwards, we will use the following notations :

Fin() = {x € Z,, : dg(x) is finite} and Per(f) = {x € Z,, : dg(x) is eventually periodic}.

Now, let x € Q, be an element, with |x|, > 1. Then there is a unique k € IN having Iﬁlk < |xp < |:B|]r§+1'
We can represent x by shifting ds(3~**Vx) by k digits to the left. Therefore, if dg(x) = 0 - didads..., then
dﬁ(ﬁX) = dl . d2d3 Ceen
If we have dg(x) = did)—1 ...do - d-1...d_,, then we put ordg(x) = —m.

Definition 3.1. Let B € Q,. B verifies the finiteness property (F) if Fin(B) = Ap[f~'].

Through the use of the previous set Per(f) and the PC numbers, K. Scheicher, V. F. Sirvent and P. Surer [7]
established the following theorem in the case of p-adic numbers.

Theorem 3.2. Let 8 be a PC number. Then Per(B) = Q(f) N Z,.

Moreover, in the same paper [7], geometric condition of the finiteness property (F) has been given by K.
Scheicher, V. F. Sirvent and P. Surer.



A. Ben Amor, R. Ghorbel / Filomat 39:20 (2025), 7093-7101 7097

4. Purely periodic f§ — expansion
We define for each g € Q, with ||, > 1 the quantity
Y (B) = supic € [0,1) : Vx € (Q N Z,) N[0, c),dg(x) is purely periodic},

In order to prove our main theorem, we need to introduce some basic notions: Let  be a PC unit number
with minimal polynomial P(8) = B + a4_1p*"' +--- + ag where q; € A, fori € {0,...,d — 1}. Let @,..., g
be the non-archimedean conjuguates of .

‘3(2)

We denote by B, the vector of non-archimedean conjuguates of § given by =

ﬁim
Put

ni

Q@) =1) a4 € QNZ, lal < 1}

=0
For x € Q'(B), the j-th non-archimedean conjuguate of x is given by x\) = Y a(BY, Vje{2,..., d.
i=0
NS

We define ¥, the vector of non-archimedean conjuguates of x by x = : and |[x||, = sup Ix(k)lp.
) 2<k<d
X

We begin with these results which are essential for the development of the proof of our main Theorem.

Lemma 4.1. [7]
Let A C A,. If A is bounded with respect to |. |, and |. |, i.e.

max |a|, < oo and max |a| < oo,
acA acA

then A is finite.

Lemma 4.2. Let § € Q, be a PC unit number. Put
X(k) = {x € Fin(B) N Q'(B); ordp(x) = —k}.
Then
lim min |[x]|, = .

k—o0 xeX(k)

Proof:
Assume that there exists a constant B and an infinite sequence x; (i = 1,2, ...) then that both

|xf])|p < B fOI' ] = 2/ 3/- ey |xi|p < 1 and hm OT’dﬁ(xi) = —00
1—00

holds.
We have x; = Y a;f, n; € N and xl(,j) =Y a:(B") for all B conjuqates of B.
=0 i=0

Let now B, ..., ¥ be the non-archimedean conjuguates of f. As f is unit, then x; € A,[f]. Hence
xi=Aj+Ap+..+ A, pland
A = A+ AL D+ + AL (BPY, V] € (2,...,d) whereB®, ..., are the non-archimedean conjuguates of f.
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X; Al 1 g ... ... pHt

%) A 1 @ :
Thus =M : , where M = :

: ; : : ) (@-1)yd-1

2 Al 1 gD L (@)

We have detM = H(ﬁ(i) — BY) # 0 which implies that M is invertible, therefore it transforms a bounded

i<j
Xi
x?
1
vector in a bounded vector. since le(.])l,, <B forj=23,...and [xi|, <1, we have : is bounded, so
N
i
o
A
: |isalso bounded in Q,. Furthermore, § has d archimedean conjugates 8, such that |3")| < 1 where
A )
d+1<j<2d

We have, on one hand,
O _ A 4 aigl (a1
x) = AL+ ALY + L+ AL (BT

Moreover, on the other hand, we have Vj e {d +1,...,2d},

n; n;
P =1 a0yl < Y ladipOf <
i=0 i=0

1- 160
(d+1) .
{d+2 o0
xE +2) Al
So : is bounded. Recall that M is invertible, then | : is also bounded in R. Finally, by Lemma
o | A
4
Al
4.1, we conclude that : takes a finite values. Consequently, these x; are finite. This is absurd, which
Aj

proves the lemma.

Proposition 4.3. Let f € Q(B) be a PC unit number. Then there exists r > O such that for every h € Fin(8) N Q’(B)
satisfying ordg(h) < —1, we have ||h||, > r.

Proof:
According to Lemma 4.2, there exists s > 0 such that for every x € Fin() N Q'(f) satisfying |x|, < 1 and
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ordg(x) < —s, we have [[x]|, > |Blp.

Putr = :iznfd}l(ﬁ(f))s‘llplﬁlp, where g?,...,8“ are the non-archimedean conjugates of . Now, let
j€(2,0m

h € Fin(B) N Q'(B) be with ordg(h) < —1. Then h = g5~ g where ordg(g) < —s. Moreover  can be written such
that h = p~1(g1 + g2) where ordg(g1) > 0,
ordg(g2) = ordg(g) < —s and |gal, < 1. Since I = g5 (g1 + g2), we have

B2y (g + ¢)

=
Il

By + g

As Bisa PCunitnumberand g =co+ 1 +--- + cd_LBd’l with [ci|, < [Bl,, we have,
2 _
1921 = leo + c1p® + -+ + caa (B, < Bl

3 _
1991, = Ico + 1B + -+ + cas (B, < 1Bl

191 = leo + 1pD + -+ caa (B, < 1Bl
Since ordg(g2) < —s and |g2], < 1, we have [|g2]l, > |Bl,. Which involves that there exists jo € {2,...,d} with
L1y > 1Bl- So 1877 + Y}, > 1Bl,, which implies that
|(ﬁ(10))5 lg " + ggf°)|,, i} 1nf |(/3<f>)s LI,IBl, = 7 . Finally we infer that ||, > r.

.....

Before giving our main theorem, we need moreover the following lemmas. We begin by this lemma in
which we characterize the -expansion of p—adic numbers.

Lemma 4.4. Let B € Q, where ||, > 1 and (a;)i>1 is a -representation of x. Then dg(x) = (a;)i>1 if and only if
a; € Ny, foralli>1.

Proof:
The necessary condition is trivial. For the sufficient condition, by assumption we have (4;);>1 is a f-
representation of x and |a;|, < |Bl, foralli>1,so

a;

= P

X =

If we multiply by , we get

X = a1+Zﬁll

i>2

As| Z I,, <landa; € A’), we obtain that a; = {x},. Put now ry = x. We have

1>2

px—ay = Zﬁ?_—ll

i>2
and if we multiply again by , we get

Bpx—a;) = a2+Z

-2
i>3 ﬁl
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Since | Z Ip <landa, € A’), we geta, = {fr1}, where r; = fx —a;.
Therefore it’s clear that the sequence (ax)x>1 verifies the recurrent condition
ro = x;a = {Bri-1}p and rx = | Bri-1lp,

which implies that dg(x) = (a;)i>1.

Lemma 4.5. Let a; # aj € Np. Then |a; — ajl, > 1.
Proof:
Leta; = pw(@ such that b; € N and b; < p%®. Let now a; = U(ﬁ) with b; € Nand b; < p%®.

We have
b; — bil,

|pvp(ﬁ)|p ’
We have [b; — bjle < p%® and this yield that |b; — b;|, > p). Then, we obtain the result.

la; — ajl, =

Lemma 4.6. Let € Q, where |Bl, > 1, ¢; € Q, and M = Z
cj # 0, then M # 0.

ﬁ, with 1 < |cil, < |Blp. If there exists j such that

Proof:

Let ¢; € Q, and suppose that M = Z with 1 <'|¢jf, < |Bly. Let ig be the smallest integer j € {1,..., I} such

that ¢; # 0. We have M = Z

ﬁ” then M|, = | ~|p # 0 since Iﬁ,0 lp > | t|p for all ip < k < I. Therefore M # 0.

It is natural now to present our main theorem.
Theorem 4.7. Let f € Q, be a PC unit number such that the finiteness property (F) is satisfied, then y’(8) > 0.

Proof:

We will show that there exists a positive constant ¢ such that every rational x with |x|, < c has a purely
periodic p-expansion. Let x € Q such that |x[, < 1, [x| < 1 and assume that x does not have a purely
periodic -expansion. Since f is a PC unit number, we know that dg(x) is eventually periodic and let s be the
length of the period and 7 the length of the pre-period. So dg(x) = 0 - a1...458541...05+s and a5 # a,4s. Hence

x(f ~1) € Q') and

A1 — a1 G5 —Q Apys —a
XBF-D=ap g+ LR T T

p p p"
If we note H = uHFT_M + ‘% +-o+ 222 we have H € A,[B']. So by the property (F), we have dg(H) is
finitei.e H = 781 + ﬁz + - %. Which implies from Lemma 4.4, dg(x(f° — 1)) = ay....a5.b1...b;.

Moreover, then it’s clear that |H|, < 1. Since 4,45 —a, # 0 and through Lemma 4.6 and Lemma 4.5, we obtain
H # 0. Thus ordg(x(f° — 1)) < 0. Moreover, we have x(° — 1) € Fin(8) N Q’(B), thereby by Proposition 4.3,

there exists ¢ > 0 such that ||xf* — x|, > ¢, where

XDy — x@

Xpe—x = :
AD(BDY — 3@,

However x € Q, then forall j € {2,...,d}; [x(B")* — x|, = |x|, and for this, we conclude that |x|, > c and finally
the proof of our theorem is reached.
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Remark 4.8. The "unit” condition is necessary in Theorem 4.7. Indeed: Let B € Q, a not unit PC number and let

P(x) = byx" + by1x" 1 + -+ + by € Ay[x] be the minimal polynomial of . Since the modulus of all archimedean

conjugates of B is < 1, then |bo| < 1, so |bgl, > 1. For n > 1, set x, = 3. We will prove that x,, does not have purely
0

periodic f—expansion. For this, we suppose that dg(x,) = 0- a1 ... ax, we get

a

X, = 5 44 E + ﬁk'
= (aﬁ—l+-. ﬁk)(“—l%-’-[%-‘_ ),
=@ﬁﬂzw
i>0
.Z aip”
_ i=1
= T
k-1 ,
L a-if’
_ =0
= T
This gives x,(1 — ) = Z( ax-i)p = L=\ (B,

1-p* _ _
s0 b—f = 1B + cuaf” 24t ceowithecy,q,...,c0 € A,. Consequently,

bp(cna1f" ™ + cuafE - + o)
(_bnﬁn - bn—lﬁn_l - blﬁ)n(cn—lﬁn_l + Cn_zﬁn_2 + e+ Co).

Asaresult 1 = B(zf + - -+ + zo) and this contradicts the hypothesis that B is not unit.

1-pF
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