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Abstract. This research investigates the Ulam-Hyers and Ulam-Hyers-Rassias stability of the Riemann-
Liouville fractional integro-differential equation with fractional non-local integral boundary conditions, em-
ploying the successive approximation method. Additionally, the study explores stability analysis through
the Ulam-Hyers stability concept. The validity of the main results is demonstrated with several concrete
examples.

1. Introduction and preliminaries

Ulam-Hyers stability refers to a concept in the field of functional equations and mathematical analysis.
It is concerned with the stability of functional equations under small perturbations. Specifically, it describes
the behavior of a functional equation when its solution is approximately satisfied rather than exactly. The
Ulam-Hyers stability property ensures that if a function nearly satisfies a functional equation, there exists
a true solution close to it.

In simple terms, Ulam-Hyers stability investigates the robustness of the solutions of a functional equa-
tion. If a small perturbation is made to the functional equation, the original solution should still be close
to the perturbed solution. This property is useful in many areas of mathematics, including the study of
differential equations and integral equations, and in various applications of approximation theory.

Research into stability problems for a broad spectrum of functional equations began with Ulam’s
renowned lecture in 1940 at the University of Wisconsin. During his talk, Ulam explored numerous
significant open mathematical problems. These issues were later compiled in [50]. Among these problems,
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one concerning the stability of group homomorphisms led to the development of the concept known as
Ulam stability. Hyers addressed this question partially and affirmatively for Banach spaces in [13].

Many years later, Rassias [35] expanded upon Hyers’ findings by allowing for an unbounded Cauchy
difference. Since then, extensive research has been conducted on the stability of various functional equations
within different abstract spaces [12, 19, 36]. However, it seems that Obloza was the first mathematician to
specifically study the Hyers-Ulam stability of functional equations, [32, 33]. For more details on Ulam-Hyers
stability and its applications in different areas, we can refer to [1–3, 5–11, 14, 21–25, 28, 30, 31, 39–49, 52]
and the references therein.

Recently, researchers have increasingly examined boundary value problems for nonlinear fractional
differential equations. Fractional derivatives provide a valuable tool for characterizing the memory and
hereditary properties of various materials and processes [34], making fractional-order models often more
practical and accurate than their traditional integer-order counterparts. Fractional differential equations
impact numerous scientific and technical fields, including physics, chemistry, biology, economics, control
theory, signal and image processing, biophysics, blood flow phenomena, aerodynamics, and the fitting of
experimental data [34, 37].

In particular, significant progress has been made in understanding fractional boundary value problems,
from theoretical studies to numerical simulations. The nonlocal nature of fractional differential operators
has indeed played a key role in advancing the field, offering insight into the memory and hereditary
characteristics of various systems. See, for example, [4, 26, 34, 37].

In the study of fractional differential equations, the concept of a fractional-order derivative with γ = 0 is
approached using the Riemann-Liouville method. The fractional Riemann-Liouville derivative is a natural
generalization of the Cauchy formula for the anti-derivative function u(t) and serves as the left inverse of the
corresponding fractional integral. Initial conditions in the Riemann-Liouville form are used for the initial
value problem of ordinary differential equations with fractional order γ = 0 and fractional derivatives.

To address physical constraints, Caputo developed a modified definition of the fractional derivative.
Caputo and Mainard further refined this concept, which offers a more intuitive approach to handling initial
conditions in integro-differential equations of non-integer orders. This modified derivative is often referred
to as the Caputo derivative or the regularized fractional derivative for 0 < γ < 1 .

Considerable research has been conducted on integral-differential equations, both from theoretical
and practical perspectives. Notable references include the Volterra monograph [51], and the papers by
[15, 17, 18], Lakshmi Kantham [27], and Medlock [29]. In recent years, there has been a surge of interest in
studying Ulam-Hyers and Ulam-Hyers-Rassias stability for differential and integro-differential equations
(see [16, 20, 38, 48, 53]). Using the fixed point theorem approach, the authors of [16, 38] explored several
forms of Hyers-Ulam-Rassias stability for Volterra integro-differential equations.

Our goal in this paper is to study the Ulam-Hyers and Ulam-Hyers-Rassias stability for fractional
non-local integral boundary conditions of the type for the Riemann liouville fractional integro-differential
equations :

Dαu(t) = f
(
t,u(t), (ϕu)(t), (ψu)(t)

)
, t ∈ [0,T], α ∈ (1, 2], (1.1)

subject to the boundary conditions of fractional order given by

Dα−2u(0+) = 0

Dα−1u(0+) = vIα−1u(η), 0 < η < T, v is a constant.

and

(ϕx)(t) =
∫ t

0
γ(t, s)x(s)ds, (ψx)(t) =

∫ t

0
δ(t, s)x(s)ds.

with γ and δ being continuous functions on [0,T] ×[0,T]. The unique solution of (1.1), subject to the
boundary conditions, is given by Dα , where Dα denotes the Riemann-Liouville fractional derivative of
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order α and f : [0,T] ×R ×R ×R→ R is a continuous function,

u(t) =
∫ t

0

(t − s)α−1

τ(α)
σ(s)ds +

vtα−1

τ(α) − A
I2α−1σ(η) (1.2)

where t ∈ J = [a, b], σ ∈ C([0,T]), that is, σ is a continuous function from [0,T] into R, and T > 0.
Section 2 discusses the Ulam-Hyers stability of equation (1.2), while Section 4 addresses the Ulam-

Hyers-Rassias stability of the same equation. The definitions of the Ulam-Hyers stability categories utilized
in this article are provided next.

Consider ε > 0, ψ ∈ C(J,R+), and σ ∈ C(J,R+). We examine the following disparities:

|υ′(t) − ρ(t)| ≤ ε, t ∈ J, (1.3)

and

|υ′(t) − ρ(t)| ≤ εψ(t), t ∈ J, (1.4)

also

|υ′(t) − ρ(t)| ≤ εσ(t), t ∈ J, (1.5)

where

ρ(t) :=
∫ t

0

(t − s)α−1

τ(α)
σ(s)ds +

vtα−1

[τ(α) − A]
I2α−1σ(η).

Definition 1.1. The problem (1.2) is Ulam-Hyers stable if there is a constant K f > 0 such that for each ε > 0 and for
each solution υ ∈ C1(J,R) of (1.3) there is a solution u of (1.2) satisfying

|υ(t) − u(t)| ≤ K fε.

Definition 1.2. The problem (1.2) is Ulam-Hyers-Rassias stable concerning ϕ ∈ C(J,R+) if there is a constant
C f > 0 such that for each ε > 0 and for each solution υ ∈ C1(J,R) of (1.4) there is a solution u of (1.2) satisfying

|υ(t) − u(t)| ≤ C fεϕ.

Definition 1.3. The problem (1.2) is σ-semi-Ulam-Hyers stable if there is a constant K f > 0 and σ be a non-decreasing
function and for each solution υ ∈ C1(J,R) of (1.5) there is a solution u of (1.2) satisfying

|υ(t) − u(t)| ≤ K fεσ(t).

2. Ulam-Hyers stability for Riemann-Liouville fractional I.D.E with fractional non-local integral bound-
ary conditions

The Ulam-Hyers stability for Riemann-Liouville fractional integro-differential equation with fractional
non-local boundary conditions (1.2) will be presented in this section using the successive approximation
approach.

Remark 2.1. We note that there is a continuous function δ(t) on J such that |δ(t)| ≤ ε and that if the function υ is a
solution of 1.3.

υ′(t) = ρ(t) + δ(t).

Let f : J × R → R, (ϕx)(t) : J × J × R → R and (δx)(t) : J × J × R → R are continuous functions. We consider the
following hypotheses:
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(H1) There exist positive constants L1,L2 such that for each (t, s) ∈ J × J and w1,w2 ∈ R one has∣∣∣∣∣∣ vtα−1

τ(α) − A
I2α−1w1 −

vtα−1

τ(α) − A
I2α−1w2

∣∣∣∣∣∣ ≤ L1|w1 − w2|,

∣∣∣∣∣∣
∫ t

0

(t − s)α−1

τ(α)
w1 −

∫ t

0

(t − s)α−1

τ(α)
w2

∣∣∣∣∣∣ ≤ L1|w1 − w2|.

(H2) Let us consider the inequality (1.4) where ψ ∈ C(J,R+). Assume that C > 0 is a constant such that kCk =
(b − 0)Ck−1, for all k ≥ 1, and 0 < CL < 1, and that, for t ∈ J, the following hypothesis is met.∫ t

0
ψ(s)ds ≤ Cψ(t).

Theorem 2.2. Assume that
vtα−1

τ(α) − A
I2α−1σ(η) and

∫ t

0

(t − s)α−1

τ(α)
σ(s)ds satisfy the (H1).

Then , for each ε > 0 if the function v satisfies (1.3), there exists a unique solution u of (1.2) provided u0 = υ0 and
u satisfies the following estimate

|u(t) − υ(t)| ≤ εb exp((b − 0)(1 + L)). (2.1)

Proof.
For each ε > 0 and let the function υ satisfy 1.3, then basing on Remark 2.1,one has that then there is a

continuous function δ(t) on J such that |δ(t)| ≤ ε and υ′ (t)= ρ(t)+δ(t). This yields that the function υ satisfies
the integral equation

υ(t) = υ0 +

∫ t

0
ρ(s)ds +

∫ t

O
δ(s)ds, (2.2)

where∫ t

0
ρ(s)ds =

∫ t

0

[ ∫ s

0

(s − s)α−1

τ(α)
σ(s)ds +

vsα−1

[τ(α) − A]
I2α−1σ(η)

]
ds

=

∫ t

0

vsα−1

[τ(α) − A]
I2α−1σ(η)ds.

We consider the sequence (un)n≥0 defined as follows: u0(t) = υ(t) and for n = 1, 2, · · ·,

un(t) = υ0 +

∫ t

o
ρn−1(s)ds, (2.3)

where∫ t

o
ρn−1(s)ds =

∫ t

o

vsα−1

[τ(α) − A]
I2α−1σ(η)n−1ds.

by (2.2) and (2.3) , for n=1 one has

|u1(t) − u0(t)| =
∣∣∣∣υ0 +

∫ t

0
ρ0(s)ds − υ(t)

∣∣∣∣
=

∣∣∣∣υ0 +

∫ t

0
ρ0(s)ds − υ0 −

∫ t

0
ρ0(s)ds −

∫ t

o
δ(s)ds

∣∣∣∣
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=
∣∣∣∣ ∫ t

o
δ(s)ds

∣∣∣∣ ≤ ε(t − 0),∀t ∈ J. (2.4)

For n = 1, 2, · · ·, from the hypothesis (H1) one has

|un+1(t) − un(t)| =
∣∣∣∣ ∫ t

0
ρ0(s)ds −

∫ t

0
ρn−1(s)ds

∣∣∣∣
≤ L

∫ t

0
|un(s) − un−1(s)|ds + L

∫ t

0

∫ s

o
|un(r) − un−1(r)|drds,

where L = max L1,L2. In particular, for n =1 and by (2.4) one gets

|u2(t) − u1(t)| ≤ εL
∫ t

0
(s − 0)ds + εL

∫ t

0

∫ s

o
(r − 0)drds

= εL
( (t − 0)2

2!
+

(t − 0)3

3!

)
and so, for n = 2, one also obtains

|u3(t) − u2(t)| ≤ εL2
∫ t

0

( (s − 0)2

2!
+

(s − 0)3

3!

)
ds + εL2

∫ t

0

∫ s

o

( (r − 0)2

2!
+

(r − 0)3

3!

)
drds

= εL2
( (t − 0)3

3!
+

(t − 0)4

4!
+

(t − 0)5

5!

)
≤ 3εL2

( (t − 0)3

3!
+

(t − 0)4

4!
+

(t − 0)5

5!

)
and for n ≥ 4 we have

|un(t) − un−1(t)| ≤ εnLn−1
( (t − 0)n

n!
+

(t − 0)n+1

(n + 1)!
+ · · · +

(t − 0)2n

(2n)!
+

(t − 0)2n+1

(2n + 1)!

)
. (2.5)

Then, the estimation (2.5) can be rewritten by:

|un(t) − un−1(t)| ≤
ε(t − 0)(L(t − 0))n−1

(n − 1)!

(
1 +

(t − 0)
n + 1

+
(t − 0)2

(n + 1)(n + 2)

+ · · · +
(t − 0)n

(n + 1)(n + 2) · · ·
+

(t − 0)n+1

(n + 1)(n + 2) · · · 2n(2n + 1)

)
≤
εb(L(t − 0))n−1

(n − 1)!

(
1 +

(t − 0)
1!

+
(t − 0)2

2!
+ · · · +

(t − 0)n

n!
+

(t − 0)n+1

(n + 1)!

)
≤
εb(L(t − 0))n−1

(n − 1)!
exp(t − 0).

Furthermore, if we assume that

|un(t) − un−1(t)| ≤
εb(L(t − 0))n−1

(n − 1)!
exp(t − 0), (2.6)

then, one also gets

|un+1(t) − un(t)| ≤
εb(L(t − 0))n

n!
exp(t − 0),∀t ∈ J.

This yields :

∞∑
n=0

|un+1(t) − un(t)| ≤ εb exp(t − 0)
∞∑

n=0

(L(t − 0))n

n!
. (2.7)



R. Shah et al. / Filomat 39:20 (2025), 7103–7121 7108

Since the right-hand series is convergent to the function exp(L(t − 0)), for each ε > 0 we deduce the series

u0(t) +
∞∑

n=1

[un+1(t) − un(t)] is uniformly convergent with respect to the norm | · | and

∞∑
n=0

|un+1(t) − un(t)| ≤ εb exp((b − 0)(1 + L)). (2.8)

Assume that

u(t) == u0(t) +
∞∑

n=0

[un+1(t) − un(t)]. (2.9)

Then,

u j(t) = u0(t) +
j∑

n=0

[un+1(t) − un(t)] (2.10)

is the jth partial of the series (2.9). From (2.9) and (2.10), we obtain

lim
j→∞
|u(t) − u j(t)| = 0,∀t ∈ J.

Define u(t) = u(t), for t ∈ J. We remark that the limit of the above sequence is a solution to the following
equation:

u(t) = υ0 +

∫ t

0
ρ(s)ds, for all t ∈ J, (2.11)

where we denote by :

ρ(t) :=
∫ t

0

(t − s)α−1

τα
σ(s)ds +

vtα−1

[τ(α) − A]
I2α−1σ(η).

By (2.3), (2.11) and the hypothesis (H1), one has that∣∣∣∣∣∣u(t) − υ0 −

∫ t

0
ρ(s)ds

∣∣∣∣∣∣ =
∣∣∣∣∣∣u(t) − (u j(t) −

∫ t

0
ρ j−1(s)ds −

∫ t

o
ρ(s)ds

∣∣∣∣∣∣
≤ |u(t) − u j(t)| +

∫ t

0

∣∣∣ρ j−1(s)ds − ρ(s)
∣∣∣ ds

≤ |u(t) − u j(t)| + L
∫ t

0
|u j−1(s) − u(s)|ds

+ L
∫ t

0

∫ s

0
|u j−1(r) − u(r)|drds (2.12)

Combining (2.9) and (2.10), we get

|u(t) − u j(t)| ≤
∞∑

n= j+1

|un+1(t) − un(t)|

and by the estimation (2.7), one has for all t ∈ J

|u(t) − u j(t)| ≤ εb exp(b − 0)
∞∑

n= j+1

(L(b − 0))n

n!
. (2.13)
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Hence, it follows from the inequalities (2.12) and (2.13) that

|u(t) − υ0 −

∫ t

0
ρ(s)ds| ≤ εbe(b−o)

∞∑
n= j+1

(L(t − 0))n

n!
+ εLbe(b−o)

( ∫ t

0

∞∑
n= j+1

(L(s − 0))n

n!
ds

+

∫ t

0

∫ s

0

∞∑
n= j+1

(L(r − 0))n

n!
drds

)
≤ εbe(b−o)

[ ∞∑
n= j+1

t(L(t − 0))n

n!
ds +

∞∑
n= j+1

Ln+1

(
(t − 0)n+1

(n + 1)!
+

(t − 0)n+2

(n + 2)!

) ]
. (2.14)

Taking limit as n→∞, we see that the right-hand series of (2.14) is convergent.
Therefore, one deduces that for all t ∈ J

|u(t) − υ0 −

∫ t

0
ρ(s)ds| ≤ 0.

This means that for all t ∈ J

u(t) = υ0 +

∫ t

0
ρ(s)ds, (2.15)

which is a solution of (1.2). In addition, from the estimation (2.8), we have the estimate as follows:

|u(t) − υ(t)| ≤ εb exp ((b − 0)(1 + L)) .

To show the uniqueness of solution to the problem (1.2), we assume that u(t) is another solution of (1.1),
which has the following form for all t ∈ J

u(t) = υ0 +

∫ t

0
ρ(s)ds, (2.16)

where

ρ(t) :=
∫ t

0

(t − s)α−1

τα
σ(s)ds +

vtα−1

[τ(α) − A]
I2α−1σ(η).

By using the hypothesis (H1), one obtains that for all t ∈ J

w(t) ≤ L
∫ t

0
w(s)ds + L

∫ t

0

∫ s

0
w(r)dsds.

where w(t) = |u(t) − u(t)|.
Then, applying Gronwall’s lemma, we infer that w(t)=0 on J and so that, u(t) = u(t). This completes the

proof. ■

3. σ-Semi-Ulam-Hyers stability for Riemann-Liouville fractional I.D.E. with fractional non-local inte-
gral boundary conditions

We will introduce theσ-semi-Ulam-Hyers stability for Riemann-Liouville fractional I.D.E. with fractional
non-local boundary conditions (1.2) in this section using the successive approximation approach.
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Theorem 3.1. Assume that vtα−1

τ(α)−A I2α−1σ(η) and
∫ t

0
(t−s)α−1

τ(α) σ(s)ds satisfy (H1). Next, for any ε > 0 and σ : [a, b] →
(o,∞), if the function v satisfies (1.5), then there is a unique solution. Using u from (1.2), we derive u0 = υ0, and u
satisfies the constraint provided.

|u(t) − υ(t)| ≤ εb exp((b − 0)(1 + L))
σ(t)
σ(o)

. (3.1)

Proof.
According to Remark (2.1), for any ε > 0 and given the function υ satisfying (1.5), there exists a

continuous function δ(t) on J such that |δ(t)| ≤ ε and υ′ (t)= ρ(t)+δ(t). This indicates that the integral
equation is satisfied by the function υ.

υ(t) = υ0 +

∫ t

0
ρ(s)ds +

∫ t

O
δ(s)ds, (3.2)

where∫ t

0
ρ(s)ds =

∫ t

0

[ ∫ s

0

(s − s)α−1

τ(α)
σ(s)ds +

vsα−1

[τ(α) − A]
I2α−1σ(η)

]
ds

=

∫ t

0

vsα−1

[τ(α) − A]
I2α−1σ(η)]ds.

We consider the sequence (un)n≥0 defined as follows: u0(t) = υ(t) and for n = 1, 2, · · ·,

un(t) = υ0 +

∫ t

o
ρn−1(s)ds, (3.3)

where∫ t

o
ρn−1(s)ds =

∫ t

o

vsα−1

[τ(α) − A]
I2α−1σ(η)n−1ds.

by (3.2) and (3.3) , for n=1 one has

|u1(t) − u0(t)| =
∣∣∣∣υ0 +

∫ t

0
ρ0(s)ds − υ(t)

∣∣∣∣
=

∣∣∣∣υ0 +

∫ t

0
ρ0(s)ds − υ0 −

∫ t

0
ρ0(s)ds −

∫ t

o
δ(s)ds

∣∣∣∣
=

∣∣∣∣ ∫ t

o
δ(s)ds

∣∣∣∣ ≤ ε(t − 0)
σ(t)
σ(0)

,∀t ∈ J. (3.4)

From the hypothesis (H1), one has for all n = 1, 2, · · ·

|un+1(t) − un(t)| =
∣∣∣∣ ∫ t

0
ρ0(s)ds −

∫ t

0
ρn−1(s)ds

∣∣∣∣
≤ L

∫ t

0
|un(s) − un−1(s)|ds + L

∫ t

0

∫ s

o
|un(r) − un−1(r)|drds,

where L = max L1,L2. In particular, for n =1 and by (3.4) one gets

|u2(t) − u1(t)| ≤ εL
∫ t

0
(s − 0)ds

σ(t)
σ(0)

+ εL
∫ t

0

∫ s

o
(r − 0)drds

σ(t)
σ(0)

= εL
( (t − 0)2

2!
+

(t − 0)3

3!

) σ(t)
σ(0)
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and so, for n = 2, one also obtains that

|u3(t) − u2(t)| ≤ εL2
∫ t

0

( (s − 0)2

2!
+

(s − 0)3

3!

)
ds
σ(t)
σ(0)

+ εL2
∫ t

0

∫ s

o

( (r − 0)2

2!
+

(r − 0)3

3!

)
drds

σ(t)
σ(0)

= εL2
( (t − 0)3

3!
+

(t − 0)4

4!
+

(t − 0)5

5!

) σ(t)
σ(0)

≤ 3εL2
( (t − 0)3

3!
+

(t − 0)4

4!
+

(t − 0)5

5!

) σ(t)
σ(0)

and for n ≥ 4 we have

|un(t) − un−1(t)| ≤ εnLn−1
( (t − 0)n

n!
+ · · · +

(t − 0)2n

(2n)!
+

(t − 0)2n+1

(2n + 1)!

) σ(t)
σ(0)

(3.5)

Then, the estimation (3.5) can be rewritten as:

|un(t) − un−1(t)|

≤
ε(t − 0)(L(t − 0))n−1

(n − 1)!

(
1 +

(t − 0)
n + 1

+
(t − 0)2

(n + 1)(n + 2)

+ · · · +
(t − 0)n

(n + 1)(n + 2) · · ·
+

(t − 0)n+1

(n + 1)(n + 2) · · · 2n(2n + 1)

) σ(t)
σ(0)

≤
εb(L(t − 0))n−1

(n − 1)!

(
1 +

(t − 0)
1!

+ · · · +
(t − 0)n

n!
+

(t − 0)n+1

(n + 1)!

) σ(t)
σ(0)

≤
εb(L(t − 0))n−1

(n − 1)!
exp(t − 0)

σ(t)
σ(0)

.

Furthermore, if we assume that

|un(t) − un−1(t)| ≤
εb(L(t − 0))n−1

(n − 1)!
exp(t − 0)

σ(t)
σ(0)

, (3.6)

then, we obtain for all t ∈ J that :

|un+1(t) − un(t)| ≤
εb(L(t − 0))n

n!
exp(t − 0)

σ(t)
σ(0)

.

This yields :

∞∑
n=0

|un+1(t) − un(t)| ≤ εb
σ(t)
σ(0)

exp(t − 0)
∞∑

n=0

(L(t − 0))n

n!
. (3.7)

Since the right-hand series is convergent to the function exp(L(t−0)), for each ε > 0 we deduce the series

u0(t) +
∞∑

n=1

[un+1(t) − un(t)] is uniformly convergent concerning the norm | · | and

∞∑
n=0

|un+1(t) − un(t)| ≤ εb exp((b − 0)(1 + L))
σ(t)
σ(0)

. (3.8)



R. Shah et al. / Filomat 39:20 (2025), 7103–7121 7112

Assuming that

u(t) == u0(t) +
∞∑

n=0

[un+1(t) − un(t)], (3.9)

we have :

u j(t) = u0(t) +
j∑

n=0

[un+1(t) − un(t)], (3.10)

which is the j-th partial of the series (3.9).
From (3.9) and (3.10), we obtain for all t ∈ J :

lim
j→∞
|u(t) − u j(t)| = 0.

Define u(t) = ũ(t), for t ∈ J. We remark that the limit of the above sequence is a solution to the following
equation:

u(t) = υ0 +

∫ t

0
ρ(s)ds, t ∈ J, (3.11)

where we set :

ρ(t) :=
∫ t

0

(t − s)α−1

τα
σ(s)ds +

vtα−1

[τ(α) − A]
I2α−1σ(η).

By (3.4), (3.11) and using the hypothesis (H1), we get :∣∣∣∣u(t) − υ0 −

∫ t

0
ρ(s)ds

∣∣∣∣ = ∣∣∣∣u(t) −
(
u j(t) −

∫ t

0
ρ j−1(s)ds

)
−

∫ t

o
ρ(s)ds

∣∣∣∣
≤ |u(t) − u j(t)| +

∫ t

0
|ρ j−1(s)ds − ρ(s)|ds

≤ |u(t) − u j(t)| + L
∫ t

0
|u j−1(s) − u(s)|ds

+ L
∫ t

0

∫ s

0
|u j−1(r) − u(r)|drds. (3.12)

Combining (3.9) and (3.10), we deduce that :∣∣∣∣u(t) − u j(t)
∣∣∣∣ ≤ ∞∑

n= j+1

∣∣∣∣un+1(t) − un(t)
∣∣∣∣,

and by the estimation (3.7), we obtain for all t ∈ J that :∣∣∣∣u(t) − u j(t)
∣∣∣∣ ≤ εb exp(b − 0)

∞∑
n= j+1

(L(b − 0))n

n!
σ(t)
σ(0)

. (3.13)

Hence, it follows from the inequalities (3.12) and (3.13) that∣∣∣∣u(t) − υ0 −

∫ t

0
ρ(s)ds

∣∣∣∣ ≤ εbe(b−o)
∞∑

n= j+1

(L(t − 0))n

n!
σ(t)
σ(0)

+ εLbe(b−o)
( ∫ t

0

∞∑
n= j+1

(L(s − 0))n

n!
ds

+

∫ t

0

∫ s

0

∞∑
n= j+1

(L(r − 0))n

n!
drds

) σ(t)
σ(0)

.
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Therefore, we deduce that :∣∣∣∣u(t) − υ0 −

∫ t

0
ρ(s)ds

∣∣∣∣ ≤ εbe(b−o)
[ ∞∑

n= j+1

(L(t − 0))n

n!
ds

+

∞∑
n= j+1

Ln+1
( (t − 0)n+1

(n + 1)!
+

(t − 0)n+2

(n + 2)!

)] σ(t)
σ(0)

. (3.14)

Taking limit as n → ∞, we see that the right-hand series of (3.14) is convergent. Therefore, we obtain
for all t ∈ J :∣∣∣∣u(t) − υ0 −

∫ t

0
ρ(s)ds

∣∣∣∣ ≤ 0.

This means that for all t ∈ J :

u(t) = υ0 +

∫ t

0
ρ(s)ds, (3.15)

which is a solution of (1.2).
In addition, from the estimation (3.8), we have the estimate as follows:

|u(t) − υ(t)| ≤ εb exp((b − 0)(1 + L))
σ(t)
σ(0)

.

To show the uniqueness of solution to the problem (1.2), we assume that u(t) is another solution of 1.2,
which has the following form for any t ∈ J :

u(t) = υ0 +

∫ t

0
ρ(s)ds, (3.16)

where we put :

ρ(t) :=
∫ t

0

(t − s)α−1

τα
σ (s)ds +

vtα−1

[τ(α) − A]
I2α−1σ(η).

By using the hypothesis (H1), we have for any t ∈ J :

w(t) ≤ L
∫ t

0
w(s)ds + L

∫ t

0

∫ s

0
w(r)dsds,

where w(t) = |u(t) − u(t)|.
Then, according to Gronwall’s Lemma, we infer that w(t) = 0 on J and so that u(t) = u(t). This achieves

the proof. ■

4. Ulam-Hyers-Rassias stability for Riemann-Liouville fractional integro-differential equations with
fractional nonlocal integral boundary conditions

The Ulam-Hyers-Rassias stability for Riemann-Liouville fractional integro-differential equations with
fractional nonlocal boundary conditions 1.2 shall be presented in this section, using the successive approx-
imation approach.

Remark 4.1. We note that there exists a continuous function ξ(t) on J such that |ξ(t)| ≤ εψ(t) and that if the function
υ is a solution of (1.4).

υ′(t) = ρ(t) + ξ(t).
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Theorem 4.2. Assume (H1) and (H2) hold true. There exists a unique solution u of (1.2) with u0 = υ0 and u verifies
the following estimate, for t ∈ J, for each ε > 0 if the function υ satisfies (1.4).

|υ(t) − u(t)| ≤ ε
b − 0

(1 − C)(1 − CL)
ψ(t). (4.1)

Proof.
Based on Remark (4.1), we have that for any ε > 0, the function υ verifies (1.4).
This means that there exists a continuous function ξ(t) on J such that |ξ(t)| ≤ εψ(t) and υ′(t) = ρ(t)+ ξ(t).

Consequently, the integral equation is satisfied by the function υ defined as :

υ(t) = υ0 +

∫ t

0
ρ(s)d(s) +

∫ t

0
ξ(s)d(s), (4.2)

where∫ t

0
ρ(s)d(s) =

∫ t

0

[ ∫ s

0

(s − s)α−1

τ(α)
σ(s)d(s) +

vsα−1

[τ(α) − A]
I2α−1σ(η)

]
ds

=

∫ t

0

vsα−1

[τ(α) − A]
I2α−1σ(η)ds.

Similarly to Theorem (2.2), we reconsider the sequence (un)n ≥ 0 defined as in (2.3) with u0(t) = υ(t),
∀t ∈ J. Now, by (2.3), the hypothesis (H3) and (4.2), for n = 1, one has for all t ∈ J :

|u1(t) − u0(t)| =
∣∣∣∣υ0 +

∫ t

0
ρ0(s)ds − υ(t)

∣∣∣∣ ≤ ε∫ t

0
ψ(s)d(s) ≤ εCψ(t).

For n = 1, 2, . . . , and from the hypothesis (H1), we have :

|un+1(t) − un(t)| ≤ L
∫ t

0

(
|un(s) − un−1(s)|ds +

∫ s

0
|un(r) − un−1(r)|dr

)
ds,

where L = max{L1,L2}.
In particular for n = 1, for all t ∈ J

|u2(t) − u1(t)| ≤ εLC
∫ t

0
ψ(s)ds + εLC

∫ t

0

∫ s

0
ψ(r)drds

= εL(C2 + C3)ψ(t),

and so that, for n = 2, we obtain

|u3(t) − u2(t)| ≤ L
∫ s

0
|u2(s) − u1(s)|ds + L

∫ t

0

∫ s

0
|u2(r) − u1(r)|drds

≤ 3εL2(C3 + C4 + C5)ψ(t).

For n ≥ 4, we have

|un(t) − un−1(t)| ≤ nε(Cn + Cn+1 + · · · + C2n + C2n+1)Ln−1ψ(t). (4.3)

Now, by the hypothesis (H3), the estimation (2.5) may be differently rewritten, for all t ∈ J, as :

|un(t) − un−1(t)| ≤ ε(b − 0)(CL)n−1(1 + C1 + · · · + Cn+1)ψ(t)

≤ ε(b − 0)
(1 − Cn+1

1 − C

)
(CL)n−1ψ(t).
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Besides, if the assumption

|un(t) − un−1(t)| ≤ ε(b − 0)
(1 − Cn+1

1 − C

)
(CL)n−1ψ(t), (4.4)

is satisfied for all t ∈ J, then by induction, we get

|un+1(t) − un(t) ≤ ε(b − 0)
(1 − Cn+2

1 − C

)
(CL)nψ(t),∀t ∈ J.

This yields :

∞∑
n=0

|un+1(t) − un(t)| ≤ ε(b − 0)
( 1
1 − C

) ∞∑
n=0

(CL)nψ(t). (4.5)

Due to the hypothesis (H3), we observe that
∞∑

n=0

(CL)n
→

1
1 − CL

as n→∞.

Hence, for every ε > 0 we infer that the series u0(t)+
∞∑

n=0

[un+1(t)−un(t)] is uniformly convergent on J and

∞∑
n=0

|un+1(t) − un(t)| ≤ ε
b − 0

(1 − C)(1 − CL
ψ(t),∀t ∈ J. (4.6)

Similarly to the proof of Theorem (2.2), we can show that u(·) is a solution of (1.2) which has the following
form for each t ∈ J :

u(t) = υ0 +

∫ t

0
ρ(s)d(s),

where

ρ(t) =
∫ t

0

(t − s)α−1

τ(α)
σ(s)d(s) +

vtα−1

[τ(α) − A]
I2α−1σ(η).

Additionally, the following estimate :

|u(t) − υ(t)| ≤ ε
b − 0

(1 − C)(1 − CL)
ψ(t),

is satisfied for any t ∈ J. ■

5. σ-Semi-Ulam-Hyers-Rassias stability for Riemann-Liouville fractional integro-differential equations
with fractional nonlocal integral boundary conditions

Using the successive approximation method, this section will provide the σ-Semi-Ulam-Hyers-Rassias
stability for Riemann-Liouville fractional integro-differential equations with fractional nonlocal boundary
conditions (1.2).

Remark 5.1. We note that there exists a continuous function ξ(t) on J such that |ξ(t)| ≤ εσ(t)| and that if the function
υ is a solution of (1.4).

υ′(t) = ρ(t) + ξ(t).
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Theorem 5.2. Assume that both hypothesis (H1) and hypothesis (H2) are true.
There exists a unique solution u of (1.2) with u0 = υ0 and u fulfils the following estimate, for t ∈ J, for each ε > 0

and the σ : [a, b]→ (0,∞) if the function υ satisfies (1.5).

|υ(t) − u(t)| ≤ ε
b − 0

(1 − C)(1 − CL)
ψ(t)

σ(t)
σ(0)

. (5.1)

Proof.
Let υ verifying (1.5) for each ε > 0.
Thanks to Remark (5.1), there exists a continuous function ξ(t) on J such that |ξ(t)| ≤ εσ(t) and υ′(t) =

ρ(t) + ξ(t).
We deduce that the integral equation is satisfied by the function υ :

υ(t) = υ0 +

∫ t

0
ρ(s)d(s) +

∫ t

0
ξ(s)d(s), (5.2)

where∫ t

0
ρ(s)d(s) =

∫ t

0

[ ∫ s

0

(s − s)α−1

τ(α)
σ(s)d(s) +

vsα−1

[τ(α) − A]
I2α−1σ(η)

]
ds

=

∫ t

0

vsα−1

[τ(α) − A]
I2α−1σ(η)ds.

Analogously to Theorem (3.1), we shall consider the sequence (un)n ≥ 0 defined as as in (3.3) with
u0(t) = υ(t), ∀t ∈ J. Now, by (3.3), the hypothesis (H3) and (5.2), for n = 1, we have

|u1(t) − u0(t)| =
∣∣∣∣υ0 +

∫ t

0
ρ0(s)ds − υ(t)

∣∣∣∣ ≤ ε∫ t

0
ψ(s)d(s)

σ(t)
σ(0)

≤ εCψ(t)
σ(t)
σ(0)

,∀t ∈ J.

From the hypothesis (H1), we have for n = 1, 2, · · ·

|un+1(t) − un(t)| ≤ L
∫ t

0

(
|un(s) − un−1(s)|ds +

∫ s

0
|un(r) − un−1(r)|dr

)
ds,

where L = max{L1,L2}. In particular for n = 1, one has

|u2(t) − u1(t)| ≤ εLC
∫ t

0
ψ(s)ds

σ(t)
σ(0)

+ εLC
∫ t

0

∫ s

0
ψ(r)drds

σ(t)
σ(0)

= εL(C2 + C3)ψ(t)
σ(t)
σ(0)

,∀t ∈ J

and so that, for n = 2, we also obtain

|u3(t) − u2(t)| ≤ L
∫ s

0
|u2(s) − u1(s)|ds + L

∫ t

0

∫ s

0
|u2(r) − u1(r)|drds

≤ 3εL2(C3 + C4 + C5)ψ(t)
σ(t)
σ(0)

.

and for n ≥ 4 we have

|un(t) − un−1(t)| ≤ nε
(
Cn + Cn+1 + · · · + C2n + C2n+1

)
Ln−1ψ(t)

σ(t)
σ(0)

. (5.3)
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Now, by the hypothesis (H3), the estimation (3.5) can be expressed as :

|un(t) − un−1(t)| ≤ ε(b − 0)(CL)n−1
(
1 + C1 + · · · + Cn+1

)
ψ(t)

σ(t)
σ(0)

≤ ε(b − 0)
(1 − Cn+1

1 − C

)
(CL)n−1ψ(t)

σ(t)
σ(0)

,∀t ∈ J.

If the assumption

|un(t) − un−1(t)| ≤ ε(b − 0)
(1 − Cn+1

1 − C

)
(CL)n−1ψ(t)

σ(t)
σ(0)

,∀t ∈ J, (5.4)

is satisfied, then by induction, we also get that :

|un+1(t) − un(t) ≤ ε(b − 0)
(1 − Cn+2

1 − C

)
(CL)nψ(t)

σ(t)
σ(0)

,∀t ∈ J.

This yields :

∞∑
n=0

|un+1(t) − un(t)| ≤ ε(b − 0)
( 1
1 − C

) ∞∑
n=0

(CL)nψ(t)
σ(t)
σ(0)

. (5.5)

Using the hypothesis (H3), we observe that
∞∑

n=0

(CL)n
→

1
1 − CL

as n → ∞. Hence for every ε > 0 we

infer that the series u0(t) +
∞∑

n=0

[un+1(t) − un(t)] is uniformly convergent on J and for all t ∈ J

∞∑
n=0

|un+1(t) − un(t)| ≤ ε
b − 0

(1 − C)(1 − CL
ψ(t)

σ(t)
σ(0)

. (5.6)

With the same manner as in the proof of theorem (3.1), we can show that u(·) is a solution of (1.2) which
has the following form :

u(t) = υ0 +

∫ t

0
ρ(s)d(s), for all t ∈ J,

where

ρ(t) =
∫ t

0

(t − s)α−1

τ(α)
σ(s)d(s) +

vtα−1

[τ(α) − A]
I2α−1σ(η).

The following estimate is also satisfied for all t ∈ J :

|u(t) − υ(t)| ≤ ε
b − 0

(1 − C)(1 − CL)
ψ(t)

σ(t)
σ(0)

,

which ends the proof. ■

6. Examples

In this section, some examples are presented to illustrate our results.
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Example 6.1. Consider the following problem

u′(t) = 4 +
∫ t

o
u(s)ds, for all t ∈ [0, 4], u(0) = 4, (6.1)

We see that υ(t) = 4, for all t ∈ [0, 4] complies with the following inequality∣∣∣∣∣∣υ′(t) − 4 −
∫ 4

0
υ(s)ds

∣∣∣∣∣∣ ≤ 5.

Now, we can choose υ0(t) = u(0) = 4. By using the successive approximation method as in theorem (2.2) ,
we obtain the following successive solution to (6.1) as

υ0(t) = 4,

u1(t) = υ(0) +
∫ t

o

(
4 +

∫ s

o
u(r)dr

)
ds = 4 + t +

t2

2!

Then, it is no difficult to see that u(t) = 4 + t +
t2

2!
forms a solution (6.1) and one gets the estimate :

|υ(t) − u(t)| =

∣∣∣∣∣∣4 − (4 + t +
t2

2!
)

∣∣∣∣∣∣ ≤ 3
5
.

Next, we define the function u∗(t) = 4 + t +
t2

2!
+

t3

3!
+

t4

4!
+ · · · is also a solution of (6.1) and we also have

|υ(t) − u∗(t)| =

∣∣∣∣∣∣4 − (4 + t +
t2

2!
+

t3

3!
+

t4

4!

∣∣∣∣∣∣ ≤ 25
33
.

Therefore, it shows the function u∗(t) is better approximate solution than the function u(t).

Example 6.2. Consider the following problem

u′(t) = 2 +
∫ t

0

[
(t − s)

4
+

t
5

]
σ(s)ds, for all t ∈ [0, 2],u(0) = 2. (6.2)

where, ρ(t) =
(t − s)

4
+

t
5

is continuous and integrable for t ∈ [0, 2] and σ(s) ∈ C[0, 2].
Now, we can choose υ0(t) = u(0) = 2. By using the successive approximation method as in theorem (3.1) ,
we obtain the following successive solution to (6.2) as

u1(t) = υ(0) +
∫ t

0

[
(t − s)

4
+

t
5

]
σ(s)ds = 2 +

[
t2

8
+

t2

10

]
= 2 +

9t2

40
.

There is no difficult to see that u(t) = 2 +
9t2

40
forms a solution (6.2) and one gets the estimate

|υ(t) − u(t)| =

∣∣∣∣∣∣2 −
(
2 +

9t2

40

)∣∣∣∣∣∣ ≤ 5
8
.

Next we define the function u∗(t) = 2 +
9t2

40
+

9t3

50
+ · · · is also a solution of (6.2) and we also have∣∣∣∣∣∣υ(t) − u∗(t)| = |2 −

(
2 +

9t2

40
+

9t3

50

)∣∣∣∣∣∣ ≤ 23
34
.

Therefore , it shows the function u∗(t) is better approximate solution than the function u(t).
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Example 6.3. Consider the following problem

u′(t) = u(t) +
∫ t

0

u(s)
1 + u(s)

ds, (6.3)

here t ∈ [0, 1]. We set

vtα−1

[τ(α) − A]
I2α−1σ(η) = u(t)

and ∫ t

0

(t − s)α−1

τ(α)
σ(s)d(s) =

∫ t

0

u(s)
1 + u(s)

ds

Then we see that∣∣∣ f (t,w1) − f (t,w2)
∣∣∣ = |w1 − w2|

and ∣∣∣∣∣∣ vtα−1

[τ(α) − A]
I2α−1w1 −

vtα−1

[τ(α) − A]
I2α−1w2

∣∣∣∣∣∣ = |w1 − w2|

or also∣∣∣∣∣∣ (t − s)α−1

τ(α)
w1(s) −

(t − s)α−1

τ(α)
w2(s)

∣∣∣∣∣∣ =
∣∣∣∣∣ w1(s)
1 + w1(s)

−
w2(s)

1 + w2(s)

∣∣∣∣∣
≤

|w1 − w2|

(1 + w1)(1 + w2)
≤ |w1 − w2|

This yields that the hypotheses of Theorem (2.2) is satisfied. That means (1.2) has unique solution on [0, 1].
Furthermore, if the function υ satisfies∣∣∣∣∣∣υ′(t) − υ(t) −

∫ t

0

υ(s)
1 + υ(s)

ds

∣∣∣∣∣∣ ≤ ε
then according to Theorem (2.2), there exists a solution u of (1.2) satisfying

|u(t) − υ(t)| ≤ ε exp(4), for all t ∈ [0, 1]

This means that the problem (6.3) is Ulam-Hyers stable.

Example 6.4. Consider the functional equation:

f (x) = 3 f
(x

3

)
, for all x ∈ [0, 1] (6.4)

To demonstrate Hyers-Ulam-Rassias stability via successive approximation, we set up an iterative scheme
starting with an initial guess f0(x) and refining it by iteration.

Let us choose f0(x) = 0 as an initial approximation.
Define the sequence ( fn(x))n as follows:

fn+1(x) = 3 fn
(x

3

)
.
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To apply the theorem (4.2), we need to show that the sequence ( fn(x))n converges uniformly to a solution of
the original functional equation.

Start with f0(x) = 0.

f1(x) = 3 f0
(x

3

)
= 2 × 0 = 0.

f2(x) = 3 f1
(x

3

)
= 2 × 0 = 0.

f3(x) = 3 f2
(x

3

)
= 2 × 0 = 0.

so fn(x) = 0, for all n ≥ 0 and all x ∈ [0, 1].
To apply the Hyers-Ulam-Rassias stability theorem rigorously, we need to verify uniform convergence

of fn(x) to f (x) = 0.
For any ε > 0 choose N such that for all n ≥ N,| fn(x) − 0| < ε for all x ∈ [0, 1].
Since fn(x) = 0 for all n ≥ N and x ∈ [0, 1],| fn(x) − 0| = 0 < ε.

Therefore, fn(x) converges uniformly to f (x) = 0, for all x ∈ [0, 1].
This means that the problem (6.4) is Hyers-Ulam-Rassias stable.

7. Conclusion

Ulam type Stability results are obtained using the successive approximation method. Also, the out-
comes show that the Ulam stability study field finds the successive approximation to be more practical
and efficient. The findings prove that the fractional integral differential equations of Riemann-Liouville
with non-local boundary conditions have a unique solution and that the approximate solutions may be
successfully constrained. A detailed grasp of the differential equation’s integral form as well as the effects
of non-local boundary conditions on solution and approximation accuracy are necessary for the study of
these problems. The results of this investigation confirm pertinent cases.
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