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Abstract. In this paper, we establish several new bounds for the Wallis ratio Wn = (2n − 1)!!/ (2n)!! in the
form of 1/

√
πGn (a, b), where

Gn (a, b) = n +
1
4
+

b
n + a

with a > −1 and b > −5 (a + 1) /4. In particular, we find that

1√
πGn (1/4, 1/32)

<Wn <
1√

πGn (a0, 1/32)

for n ∈ N with the best constants 1/4 and a0 = 5 (16 − 5π) / (16π), where the lower and upper bounds are
the sharpest.

1. Introduction

The well-known Wallis ratio is defined by

Wn =
(2n − 1)!!

(2n)!
for n ∈N,

where n!! denotes the double factorial. It is known that

Wn =
(2n − 1)!!

(2n)!!
=

(2n)!
22nn!2

=
1
√
π

Γ (n + 1/2)
Γ (n + 1)

satisfying the recurrence relation

Wn+1 =
n + 1/2
n + 1

Wn,

where Γ is the classical Euler’s gamma function.
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Kazarinoff [7] proved that

1√
π (n + 1/2)

<Wn <
1√

π (n + 1/4)
. (1)

The best lower and upper bounds for Wn were obtained by Chen and Qi [4]:

1√
π (n + 4/π − 1)

<Wn <
1√

π (n + 1/4)
.

A simple proof and its generalization were provided in [8] by Koumandos.
Gurland in [6] established a closer approximation to π

4n + 3

(2n + 1)2

(
(2n)!!

(2n − 1)!

)2

< π <
4

4n + 1

(
(2n)!!

(2n − 1)!

)2

, n ∈N,

which can be rearranged as

1√
π

(
n + 1

4 +
1

16
1

n+3/4

)Wn <
1√

π
(
n + 1

4

) , n ∈N. (2)

In 1962, Chu [5, Theorem 1] demonstrated that

1√
π (n + (n + 1) / (4n + 3))

<Wn <
1√

π (n + 1/4)
(3)

for n ∈N, which is actually the same as (2). Boyd [1] pointed out that for n ∈N it holds that

1√
π

(
n + 1

4 +
1
4

4n+11
32n2+72n+37

) <Wn <
1√

π
(
n + 1

4 +
1

32
1

n+1

) . (4)

In 2004, Zhao [17] gave an improvement for the double inequality (1) as follows:

1√
πn (1 + 1/ (4n − 1/2))

<Wn <
1√

πn (1 + 1/ (4n − 1/3))
,

which is equivalent to

1√
π

(
n + 1

4 +
1

32
1

n−1/8

) <Wn <
1√

π
(
n + 1

4 +
1
48

1
n−1/12

) . (5)

In 2007, Cao et al. [2] proved that for n ∈N, the double inequality
√
π

2
√

n + 9π/16 − 1
<

(2n)!!
(2n + 1)!!

<

√
π

2
√

n + 3/4

is valid with the best constants 9π/16 − 1 ≈ 0.76715 and 3/4, which can be written as

2
√

n + 3/4
√
π (2n + 1)

<Wn <
2
√

n + 9π/16 − 1
√
π (2n + 1)

,

or equivalently,

1√
π

(
n + 1

4 +
1

16
1

n+3/4

) <Wn <
1√

π
(
n + 2 − 9

16π +
9

256
(3π−8)2

n+9π/16−1

) . (6)
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Zhang [16] showed that

1√
π (n + 1/ [4 − 4/ (8n + 3)])

<Wn <
1√

π (n + 1/ [4 − 1/ (2n + 1)])
,

or equivalently,

1√
π

(
n + 1

4 +
1

32
1

n+1/4

) <Wn <
1√

π
(
n + 1

4 +
1
32

1
n+3/8

) . (7)

The left hand side inequality in (7) was generalized in [9] as

Wn <
1√

π
(
n + 1

4 +
1

32
1

n+(8λ+3)/(32λ+8)

) (8)

for λ ∈ [0,∞) and n ∈ [
(
72λ2 + 27λ + 3

)
/ (12λ + 3) ,∞) ∩N.

From the inequalities (2), (3), (4), (5), (6), (7) and (8), we find that Wallis ratio Wn has the bounds in the
form of 1/

√
πGn (a, b), where

Gn (a, b) = n +
1
4
+

b
n + a

.

Comparing the inequalities (2), (3), (4), (5), (6), we easily see that

1√
πGn (3/4, 1/16)

<
1√

πGn (−1/8, 1/32)
<

√
32n2 + 72n + 37

4π (2n + 1)2 (2n + 3)

<
1√

πGn (1/4, 1/32)
<Wn <

1√
πGn (3/8, 1/32)

< min

 1√
πGn (1, 1/32)

,
1√

πGn (−1/12, 1/48)

 < 1√
π (n + 1/4)

for n ∈ N. These inequalities show that Zhang’s bounds for the Wallis ratio given in (7) is better than
Gurland’s (2), Chu’s (3), Boyd’s (4) and Zhao’s (5) ones.

It is natural to ask that what are the conditions such that the inequality

Wn < (>)
1√

πGn (a, b)

holds for n ∈ N? where a > −1 and b > −5 (a + 1) /4. The aim of this paper is to answer this question by
considering the monotonicity of the sequence

Vn (a, b) =W2
nGn (a, b) =W2

n

(
n +

1
4
+

b
n + a

)
. (9)

2. Monotonicity pattern of Vn (a, b)

In this section, we will investigate the monotonicity of the sequence {Vn (a, b)} defined by (9). First, we
claim that

lim
n→∞

Vn (a, b) =
1
π
,

which follows from the double inequality

1

(x + c)1−c <
Γ (x + c)
Γ (x + 1)

<
1

x1−c .
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for all x > 0 and all c ∈ (0, 1) (see [13], [10, (2.8)]). Now we observe the monotonicity of the sequence
{Vn (a, b)}. A direct computation yields

Vn+1 (a, b)
Vn (a, b)

=
(n + 1/2)2

(n + 1)2

n + 1 + 1/4 + b/ (n + 1 + a)
n + 1/4 + b/ (n + a)

,

Vn+1 (a, b)
Vn (a, b)

− 1 =
fn (a, b)

4 (n + 1)2 (n + 1 + a) (4n2 + (4a + 1) n + a + 4b)
,

where
fn (a, b) = (1 − 32b) n2 + (2a − 44b − 16ab + 1) n +

(
a − 16b − 12ab + a2

)
.

To obtain the monotonicity of the sequence {Vn (a, b)}, we write fn (a, b) as

fn (a, b) = −4
(
8n2 + (11 + 4a) n + 3a + 4

) (
b −

(n + a) (n + 1 + a)
4 (8n2 + (11 + 4a) n + 3a + 4)

)
=: −4

(
8n2 + (11 + 4a) n + 3a + 4

) (
b − 1n (a)

)
,

where

1n (a) =
(n + a) (n + 1 + a)

4 (8n2 + (11 + 4a) n + 3a + 4)
.

A simple calculation leads us to

1n+1 (a) − 1n (a) =
(n + 1 + a) (n + 2 + a)

4
(
8 (n + 1)2 + (4a + 11) (n + 1) + (3a + 4)

) − (n + a) (n + 1 + a)
4 (8n2 + (4a + 11) n + (3a + 4))

= −
n + 1 + a

[8n2 + (4a + 11) n + (3a + 4)] [8n2 + (4a + 27) n + (7a + 23)]
hn (a) ,

where

hn (a) = a2 +
(
3n +

13
4

)
a −

(3
4

n + 2
)
= (a − a1 (n)) (a − a2 (n)) , (10)

with

a1 (n) =
3
2

√
n2 +

5
2

n +
33
16
−

3
2

n −
13
8
, a2 (n) = −

3
2

√
n2 +

5
2

n +
33
16
−

3
2

n −
13
8
.

It is easy to check that x 7→ a1 (x) is decreasing on (0,∞), which implies that so is a1 (n) for n ∈Nwith

a1 (1) =
3
√

89 − 25
8

= 0.412... and a1 (∞) = lim
n→∞

a1 (n) =
1
4

;

while

−a2 (n) ≥ −a2 (1) =
3
√

89 + 25
8

= 6.662... > 1,

which means that a − a2 (n) > 0 for a > −1. These together with (a, b) ∈ {a > −1, b > −5 (a + 1) /4} indicate
that

sgn
(

Vn+1 (a, b)
Vn (a, b)

− 1
)
= sgn fn (a, b) = sgn

(
1n (a) − b

)
, (11)

sgn
(
1n+1 (a) − 1n (a)

)
= −sgnhn (a) = −sgn (a − a1 (n)) . (12)

We next distinguish three cases to discuss.
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Case 1: −1 < a ≤ 1/4. By (12) the sequence {1n (a)} is strictly increasing for n ≥ 1. Therefore, we get

(a + 1) (a + 2)
4 (7a + 23)

= 11 (a) < 1n (a) < 1∞ (a) =
1
32
.

Subcase 1.1: b ≥ 1∞ (a) = 1/32. Then by (11) we see that fn (a, b) ≤ 0, and then, the {Vn (a, b)} is decreasing
for n ≥ 1.

Subcase 1.2: b ≤ 11 (a) = (a+1)(a+2)
4(7a+23) . Similarly, we see that {Vn (a, b)} is increasing for n ≥ 1.

Subcase 1.3: 11 (a) < b < 1∞ (a). Since 11 (a) − b < 0 and 1∞ (a) − b > 0, there is an integer n1 > 1 such
that 1n (a) − b < 0 for 1 ≤ n ≤ n1 − 1 and 1n (a) − b > 0 for n ≥ n1 + 1. This, by (11), shows that {Vn (a, b)} is
decreasing for 1 ≤ n ≤ n1 and increasing for n ≥ n1.

Case 2: a ≥
(
3
√

89 − 25
)
/8. By (12), this case implies that the sequence {1n (a)} is strictly decreasing for

n ≥ 1. Therefore, we get
1
32
= 1∞ (a) < 1n (a) < 11 (a) =

(a + 1) (a + 2)
4 (7a + 23)

.

Being analogous to Subcases 1.2–1.3, we have
Subcase 2.1: b ≥ 11 (a) = (a+1)(a+2)

4(7a+23) . The sequence {Vn (a, b)} is decreasing for n ≥ 1.
Subcase 2.2: b ≤ 1∞ (a) = 1/32. The sequence {Vn (a, b)} is increasing for n ≥ 1.
Subcase 2.3: 1∞ (a) < b < 11 (a). There is an integer n2 > 1 such that the sequence {Vn (a, b)} is increasing

for 1 ≤ n ≤ n2 and decreasing for n ≥ n2.
Case 3: 1/4 < a <

(
3
√

89 − 25
)
/8. From (10) there is an integer n3 ≥ 2 such that hn (a) ≥ 0 for 1 ≤ n ≤ n3−1

and hn (a) < 0 for n ≥ n3 + 1, which, by (12), indicates that {1n (a)} is increasing for 1 ≤ n ≤ n3 and decreasing
for n ≥ n3. It is obtained that

(a + 1) (a + 2)
4 (7a + 23)

= 11 (a) < 1n (a) ≤ 1n3 (a) for 1 ≤ n ≤ n3

1
32
= 1∞ (a) < 1n (a) ≤ 1n3 (a) for n ≥ n3,

that is,

min
{

1
32
,

(a + 1) (a + 2)
4 (7a + 23)

}
< 1n (a) < 1n3 (a) ,

where

min
{

1
32
,

(a + 1) (a + 2)
4 (7a + 23)

}
=


(a + 1) (a + 2)

4 (7a + 23)
if

1
4
< a <

3
√

57 − 17
16

,

1
32

if
3
√

57 − 17
16

≤ a <
3
√

89 − 25
8

.

Subcase 3.1: b ≥ 1n3 (a). Likewise, we see that the sequence {Vn (a, b)} is decreasing for n ≥ 1.
Subcase 3.2: b ≤ min

{
11 (a) , 1∞ (a)

}
. The sequence {Vn (a, b)} is increasing for n ≥ 1.

Subcase 3.3: min
{
11 (a) , 1∞ (a)

}
< b < max

{
11 (a) , 1∞ (a)

}
< 1n3 (a). This subcase can be divided into two

subsubcases:
Subsubcase 3.3.1: 11 (a) < 1∞ (a), that is, 1/4 < a <

(
3
√

57 − 17
)
/16. Then we have 11 (a) < b ≤ 1∞ (a) <

1n3 (a). Since {1n (a)} is increasing for 1 ≤ n ≤ n3 and decreasing for n ≥ n3, so is {1n (a) − b} := {1∗n (a)}. This
in combination with

1∗1 (a) = 11 (a) − b < 0 and 1∗∞ (a) = 1∞ (a) − b > 0,

yields that there is an integer n4 with 1 < n4 ≤ n3 such that 1∗n (a) = 1n (a) − b < 0 for 1 ≤ n ≤ n4 − 1 and
1∗n (a) = 1n (a) − b > 0 for n ≥ n4 + 1. This, by (11), shows that the sequence {Vn (a, b)} is decreasing for
1 ≤ n ≤ n4 and increasing for n ≥ n4.
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Subsubcase 3.3.2: 11 (a) > 1∞ (a), that is,
(
3
√

57 − 17
)
/16 < a <

(
3
√

89 − 25
)
/8. Then we have 1∞ (a) <

b ≤ 11 (a) < 1n3 (a). Since {1∗n (a)} is increasing for 1 ≤ n ≤ n3 and decreasing for n ≥ n3 with

1∗1 (a) = 11 (a) − b > 0 and 1∗∞ (a) = 1∞ (a) − b < 0,

there is an integer n5 > n3 such that 1∗n (a) = 1n (a) − b ≥ 0 for 1 ≤ n ≤ n5 − 1 and 1∗n (a) = 1n (a) − b ≤ 0 for
n ≥ n5 + 1. This, by (11), shows that the sequence {Vn (a, b)} is increasing for 1 ≤ n ≤ n5 and decreasing for
n ≥ n5.

Subcase 3.4: min
{
11 (a) , 1∞ (a)

}
≤ max

{
11 (a) , 1∞ (a)

}
< b < 1n3 (a). Since {1∗n (a)} is increasing for

1 ≤ n ≤ n3 and decreasing for n ≥ n3 with

1∗1 (a) = 11 (a) − b < 0, 1∗n3
(a) = 1n3 (a) − b > 0 and 1∗∞ (a) = 1∞ (a) − b < 0,

there is two integers n31 and n32 with 1 < n31 < n3 and n32 > n3 such that

1∗n (a) = 1n (a) − b < 0 for 1 ≤ n ≤ n31 − 1,

1∗n (a) = 1n (a) − b > 0 for n31 + 1 ≤ n < n32 − 1,

1∗n (a) = 1n (a) − b < 0 for n ≥ n32 + 1.

Thus it can be seen by (11) that the sequence {Vn (a, b)} is decreasing for 1 ≤ n ≤ n31 or n ≥ n32 and increasing
for n31 ≤ n ≤ n32.

To sum up, the monotonicity pattern of Vn (a, b) can be listed in Table 1.

Table 1: The monotonicity pattern of Vn (a, b)
Cases Subcases Vn (a, b)

1.1: b ≥ 1∞ (a) ↘

1: −1 < a ≤ 1
4 1.2: b ≤ 11 (a) ↗

1.3: 11 (a) < b < 1∞ (a) ↘↗

2.1: b ≥ 11 (a) ↘

2: a ≥ 3
√

89−25
8 2.2: b ≤ 1∞ (a) ↗

2.3: 1∞ (a) < b < 11 (a) ↗↘

3.1: b ≥ 1n3 (a) ↘

3.2: b ≤ min
{
11 (a) , 1∞ (a)

}
↗

3: 1
4 < a < 3

√
89−25
8 3.3: min

{
11 (a) , 1∞ (a)

}
< b ≤ max

{
11 (a) , 1∞ (a)

}
3.3.1: 11 (a) < 1∞ (a) ↘↗

3.3.2: 11 (a) > 1∞ (a) ↗↘

3.4: max
{
11 (a) , 1∞ (a)

}
< b < 1n3 (a) ↘↗↘

Further, the monotonicity results for the sequence {Vn (a, b)} and corresponding inequalities can be
summarized as follows.

Theorem 2.1. Let (a, b) ∈ {b > −5 (a + 1) /4, a > −1} = E0 and let the sequence {Vn (a, b)} be defined by (9). The
following statements are valid.

(i) The sequence {Vn (a, b)} is decreasing for n ≥ 1 if (a, b) ∈ E1, where

E1 =
{
−1 < a ≤

1
4
, b ≥

1
32

}
∪

{
a ≥

3
√

89 − 25
8

, b ≥
(a + 1) (a + 2)

4 (7a + 23)

}

∪

1
4
< a <

3
√

89 − 25
8

, b ≥
(n3 + a) (n3 + 1 + a)

4
(
8n2

3 + (11 + 4a) n3 + 3a + 4
) ,

here n3 is given in Case 3 for 1/4 < a <
(
3
√

89 − 25
)
/8.
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Consequently, it holds that

1√
πGn (a, b)

<Wn <

√
πλ (a, b)√
πGn (a, b)

for n ∈N with the best constants 1 and

πλ (a, b) = π
5a + 4b + 5
16 (a + 1)

. (13)

(ii) The sequence {Vn (a, b)} is increasing for n ≥ 1 if (a, b) ∈ E2, where

E2 =

{
−1 < a ≤

1
4
, b ≤

(a + 1) (a + 2)
4 (7a + 23)

}
∪

{
a ≥

3
√

89 − 25
8

, b ≤
1

32

}

∪

{
1
4
< a <

3
√

89 − 25
8

, b ≤ min
{

(a + 1) (a + 2)
4 (7a + 23)

,
1

32

}}
.

Then it holds that √
πλ (a, b)√
πGn (a, b)

<Wn <
1√

πGn (a, b)

for n ∈N with the best constants 1 and πλ (a, b) given in (13).
(iii) There is an ň (= n1,n4) > 1 such that {Vn (a, b)} is decreasing for 1 ≤ n ≤ ň and increasing for n ≥ ň if

(a, b) ∈ E3, where

E3 =

{
−1 < a ≤

1
4
,

(a + 1) (a + 2)
4 (7a + 23)

< b <
1

32

}
∪

{
1
4
< a <

3
√

57 − 17
16

,
(a + 1) (a + 2)

4 (7a + 23)
< b ≤

1
32

}
. (14)

Therefore, we have √
πVň (a, b)√
πGn (a, b)

<Wn <

√
max {1, πλ (a, b)}√
πGn (a, b)

for n ∈N, where πVň (a, b) and max {1, πλ (a, b)} are the best, here πλ (a, b) is given in (13).
(iv) There is an n̂ (= n2,n5) > 1 such that the sequence {Vn (a, b)} is increasing for 1 ≤ n ≤ n̂ and decreasing for

n ≥ n̂ if (a, b) ∈ E4, where

E4 =

{
a ≥

3
√

89 − 25
8

,
1

32
< b <

(a + 1) (a + 2)
4 (7a + 23)

}
∪

{
3
√

57 − 17
16

< a <
3
√

89 − 25
8

,
1

32
< b ≤

(a + 1) (a + 2)
4 (7a + 23)

}
.

(15)

Then the inequalities √
min {1, πλ (a, b)}√
πGn (a, b)

<Wn <

√
πVň (a, b)√
πGn (a, b)

hold for n ∈N, where πVn̂ (a, b) and min {1, πλ (a, b)} are the best.
(v) Let n3 be given in Case 3 for 1/4 < a <

(
3
√

89 − 25
)
/8. Then there are n31 and n32 with 1 < n31 < n3 < n32

such that {Vn (a, b)} is decreasing for 1 ≤ n ≤ n31 or n ≥ n32 and increasing for n31 ≤ n ≤ n32 if (a, b) ∈ E5, where

E5 =

{
1
4
< a <

3
√

89 − 25
8

}
∩

max
{

(a + 1) (a + 2)
4 (7a + 23)

,
1

32

}
< b <

(n3 + a) (n3 + 1 + a)

4
(
8n2

3 + (11 + 4a) n3 + 3a + 4
) .
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Thus the double inequality √
πα (a, b)√
πGn (a, b)

<Wn <

√
πβ (a, b)√
πGn (a, b)

.

holds for n ∈N with the best constants πα (a, b) = min
{
πVn31 (a, b) , 1

}
and πβ (a, b) = max

{
πVn32 (a, b) , πλ (a, b)

}
,

where πλ (a, b) is given in (13).

Remark 2.2. It is clear that E3 and E4 given in (14) and (15) can be reduced to

E3 =

{
−1 < a ≤

3
√

57 − 17
16

,
(a + 1) (a + 2)

4 (7a + 23)
< b <

1
32

}
∪

{
1
4
< a <

3
√

57 − 17
16

, b =
1

32

}
.

E4 =

{
a >

3
√

57 − 17
16

,
1

32
< b <

(a + 1) (a + 2)
4 (7a + 23)

}
∪

{
3
√

57 − 17
16

< a <
3
√

89 − 25
8

, b =
(a + 1) (a + 2)

4 (7a + 23)

}
.

3. Bounds for Wn

In this section, we will present some bounds for Wn by using Theorem 2.1. First, we give a general
result.

3.1. In the general case

Theorem 3.1. Let (a, b) ∈ E0 = {b > −5 (a + 1) /4, a > −1}. The inequality

1√
πGn (a, b)

<Wn

holds for n ∈N if

(a, b) ∈ E14< = E1 ∪

(
E4 ∩

{
5a + 4b + 5
16 (a + 1)

≤
1
π

})
.

While the inequality

Wn <
1√

πGn (a, b)

holds for n ∈N if

(a, b) ∈ E23> = E2 ∪

(
E3 ∩

{
5a + 4b + 5
16 (a + 1)

≥
1
π

})
.

Second, we establish several bounds for Wn in certain special cases.

3.2. In the case of a = 1/4

Theorem 3.2. Let b > −25/16 and let the sequence {Vn (a, b)} be defined by (9). The following statements are valid.
(i) If b ≥ 1/32, then it holds that

1√
πGn (1/4, b)

<Wn <

√
ϑ (b)√

πGn (1/4, b)

for n ∈N, where 1 and

ϑ (b) = πλ
(1

4
, b

)
=
π (16b + 25)

80
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are the best constants. In particular, when b = 1/32, we have

1√
πGn (1/4, 1/32)

<Wn <

√
51π/160√

πGn (1/4, 1/32)
(16)

(ii) If b ≤ 5/176, then it holds that √
ϑ (b)√

πGn (1/4, b)
<Wn <

1√
πGn (1/4, b)

for n ∈N, where ϑ (b) = π (16b + 25) /80 and 1 are the best constants. In particular, when b = 5/176, we have

√
7π/22√

πGn (1/4, 5/176)
<Wn <

1√
πGn (1/4, 5/176)

(17)

(iii) If 5/176 < b < 1/32 then there is an ň > 1 such that the double inequality√
πVň (1/4, b)√
πGn (1/4, b)

<Wn <

√
max {1, ϑ (b)}√
πGn (1/4, b)

holds for n ∈N, where πVň (1/4, b) and max {1, ϑ (b)} are the best, here ϑ (b) = π (16b + 25) /80. In particular, when
ϑ (b) = π (16b + 25) /80 = 1, that is, b = b0 = (80 − 25π) / (16π), we have√

7π + 10
32

1√
πGn (1/4, b0)

<Wn <
1√

πGn (1/4, b0)

Proof. It is easy to check that when a = 1/4,

E1 =
{
a =

1
4
, b ≥

1
32

}
, E2 =

{
a =

1
4
, b ≤

5
176

}
, E3 =

{
a =

1
4
,

5
176
< b <

1
32

}
, E4 = E5 = ∅.

Then the assertions (i), (ii) and the first part of (iii) follow from Theorem 2.1. Finally, when b = b0 =
(80 − 25π) / (16π), a simple computation leads to

V1

(1
4
, b0

)
=

1
π
> V2

(1
4
, b0

)
=

7π + 10
32π

< V3

(1
4
, b0

)
=

25 (9π + 5)
832π

,

which shows that ň = 2. Therefore,πV2 (1/4, b0) = (7π + 10) /32, and the required double inequality follows.
This completes the proof.

From Theorem 3.2 we immediately obtain the following corollary.

Corollary 3.3. The double inequality

1√
πGn (1/4, b1)

<Wn <
1√

πGn (1/4, b0)
(18)

holds for n ∈N with the best constants b1 = 1/32 = 0.031... and b0 = (80 − 25π) / (16π) = 0.029....
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3.3. In the case of b = 1/32
Taking b = 1/32 in Theorem 2.1, we have

Theorem 3.4. Let a ∈ (−1,∞). (i) If −1 < a ≤ 1/4, then the double inequality

1√
πGn (a, 1/32)

<Wn <

√
θ (a)√

πGn (a, 1/32)
(19)

holds for n ∈N, where π and

θ (a) = πλ
(
a,

1
32

)
=
π (40a + 41)
128 (a + 1)

are the best possible. In particular, when a = 1/4, the double inequality (16) holds for n ∈N.
(ii) If a ≥

(
3
√

57 − 17
)
/16 ≈ 0.35309, then for n ∈N, the double inequality (19) is reversed, that is,√

θ (a)√
πGn (a, 1/32)

<Wn <
1√

πGn (a, 1/32)
.

In particular, when a = 3/8, we have
√

7π/22√
πGn (3/8, 1/32)

<Wn <
1√

πGn (3/8, 1/32)
. (20)

(iii) If 1/4 < a <
(
3
√

57 − 17
)
/16 ≈ 0.35309, then there is a unique integer ň > 1 such that the double inequality√

πVň (a, 1/32)√
πGn (a, 1/32)

<Wn <

√
max {1, θ (a)}√
πGn (a, 1/32)

holds for n ∈N. In particular, when

a = a0 =
41π − 128
128 − 40π

= 0.344 690...,

we have√
πV2 (a0, 1/32)√
πGn (a0, 1/32)

<Wn <
1√

πGn (a0, 1/32)
(21)

holds for n ∈N, where

πV2

(
a0,

1
32

)
=

9π (292 − 89π)
64 (128 − 39π)

= 0.999 907...

and 1 are the best constants.

Proof. It is easy to check that when b = 1/32,

E1 =
{
−1 < a ≤

1
4
, b =

1
32

}
, E2 =

{
a ≥

3
√

57 − 17
16

, b =
1

32

}
, E3 =

{
1
4
< a <

3
√

57 − 17
16

, b =
1

32

}
and E4 = E5 = ∅. Then the assertions (i), (ii) and the first part of (iii) follow from Theorem 2.1. When
a = a0 = (41π − 128) / (128 − 40π), we see that θ (a0) = 1. By a simple computation we get

V1

(
a0,

1
32

)
=

1
π
> V2

(
a0,

1
32

)
=

9
64

89π − 292
39π − 128

< V3

(
a0,

1
32

)
=

25
128

129π − 418
79π − 256

,

which indicates that ň = 2. This yields (21), and the proof is done.
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Denote by

An (a) =
1

πGn (a, 1/32)
=

1
π

32 (n + a)
8 (4n + 1) (n + a) + 1

Bn (a) =
θ (a)

πGn (a, 1/32)
=

40a + 41
128 (a + 1)

32 (n + a)
8 (4n + 1) (n + a) + 1

.

It is clear that Gn (a, 1/32) is strictly decreasing with respect to the parameter a, and that An (a) is increasing
in a on (−1,∞). Also, we claim that Bn (a) is strictly decreasing in a on (−1,∞). Indeed, differentiation gives

B′n (a) = −
(n − 1)

4 (a + 1)2

32 (n + a)2 + 40 (n + 2a + 1) + 1

(32n2 + 8 (4a + 1) n + (8a + 1))2 < 0

for a ∈ (−1,∞) and n ∈N.
Then by Theorem 3.4 together with the decreasing property of Gn (a, 1/32) with respect to the parameter

a on (−1,∞), the following corollary is immediate.

Corollary 3.5. For n ∈N, the double inequality

1√
πGn (a1, 1/32)

<Wn <
1√

πGn (a0, 1/32)
(22)

holds with the best constant a1 = 1/4 and a0 = (41π − 128) / (8 (16 − 5π)) ≈ 0.34469.

Remark 3.6. Since

Gn

(1
4
, b0

)
− Gn

(
a0,

1
32

)
=

b0

n + 1/4
−

1/32
n + a0

= −
51π − 160

8π
n − 1

(4n + 1) (n + a0)
< 0,

we have

1√
πGn (a1, 1/32)

<Wn <
1√

πGn (a0, 1/32)
<

1√
πGn (1/4, b0)

(23)

for n ∈N. This shows that the upper bound 1/
√
πGn (a0, 1/32) is sharper than 1/

√
πGn (1/4, b0).

Remark 3.7. Since a0 = (41π − 128) / (8 (16 − 5π)) ≈ 0.34469 < 3/8, we have

1√
πGn (a1, 1/32)

<Wn <
1√

πGn (a0, 1/32)
<

1√
πGn (3/8, 1/32)

.

This means that the upper bound is better than one in (7). As shown in Introduction, Zhang’s bounds for the Wallis
ratio given in (7) is better than Gurland’s (2), Chu’s (3), Boyd’s (4) and Zhao’s (5) ones, so are our bounds given (22).

Remark 3.8. It is easy to check that for −1/8 ≤ a ≤ 1/4, the inequalities

√
n + 3/4

√
π (n + 1/2)

<
1√

πGn (a, 1/32)
<Wn <

1√
πGn (a0, 1/32)

<
1√

πGn (1/4, b0)
<

√
n + 9π/16 − 1
√
π (n + 1/2)

hold for n ∈N. Therefore, our inequalities (22) and (18) improve Cao et al.’s inequalities (6).
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3.4. Other special cases
Similarly, using Theorem 2.1 we can obtain the following corollary in the case of a = 3/4.

Corollary 3.9. Let b, b∗ > −35/16. Then the double inequality

1√
πGn (3/4, b)

<Wn <
1√

πGn (3/4, b∗)
(24)

holds for n ∈N if and only if b ≥ b0 = 7 (16 − 5π) / (16π) and −35/16 < b∗ ≤ 1/32.

Remark 3.10. Taking b = 1/16 and b∗ = 0 in (24) gives (2).

In the case of (a, b) = (1/3, 1/33), we can deduce the following corollary.

Corollary 3.11. The double inequality
√

7π/22√
πGn (1/3, 1/33)

<Wn <
1√

πGn (1/3, 1/33)
(25)

holds for n ∈N.

4. Conclusions

In this paper, we presented some bounds for the Wallis ratio Wn by considering the monotonicity of the
sequence {Vn (a, b)} for suitable (a, b) ∈ {b > −5 (a + 1) /4, a > −1}. In particular, we found the sharp bounds
for Wn given in (22), that is,

1√
π

(
n + 1

4 +
1

32
1

n+1/4

) <Wn <
1√

π
(
n + 1

4 +
1
32

1
n+a0

) , (26)

where a0 = (41π − 128) / (8 (16 − 5π)) = 0.344.... This double inequality is better than those ones introduced
in the first section. Moreover, we obtain three interesting double inequalities (17), (20) and (25), which are
related to Archimedes’ famous approximation 22/7 (also named “yuelu” in China) to the transcendental
number π. Comparing them we find that

√
7π/22√

πGn (3/8, 1/32)
<

√
7π/22√

πGn (1/3, 1/33)
<

√
7π/22√

πGn (1/4, 5/176)
<Wn

<
1√

πGn (3/8, 1/32)
<

1√
πGn (1/3, 1/33)

<
1√

πGn (1/4, 5/176)

for n ∈N.
Finally, due to Corollaries 3.3 and 3.5 with the inequalities (23), we claim that the lower and upper bounds

in (26) are the sharpest. To this end, let us recall several asymptotic expansions of Γ (x + 1) /Γ (x + 1/2). It
was proved in [11] (see also [3], [12]) that

ln
Γ (x + 1)
Γ (x + 1/2)

∼
1
2

ln x +
∞∑

k=1

(2 − 21−2n)B2n

2n (2n − 1) x2n−1 as x→∞,

where B2n is the Bernoulli numbers. The following asymptotic expansion appeared in [15, Corollary 3]:

2 ln
Γ (x + 1)
Γ (x + 1/2)

∼ ln
(
x +

1
4

)
+

1
32

1

(x + 1/4)2 −
5

1024
1

(x + 1/4)4 +
61

24 576
1

(x + 1/4)6 + · · · as x→∞.
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Recently, a new asymptotic expansion was established in [14, Eq, (1.15)], which states that

2 ln
Γ (x + 1)
Γ (x + 1/2)

∼ ln
(
x +

1
4

)
+

∞∑
k=2

(k + 1) (−1/4)k + 2
(
1 − (−1)k + (−1/2)k

)
Bk+1

k (k + 1) xk

= ln
(
x +

1
4

)
+

1
32x2 −

1
64x3 +

1
1024x4 + · · · as x→∞.

Now we first show that the coefficient 1/32 is the best. In fact, using the second asymptotic formula, we
have

1
πW2

n
−

(
n +

1
4

)
=

[
Γ (n + 1)
Γ (n + 1/2)

]2

−

(
n +

1
4

)
∼

(
n +

1
4

) [
exp

(
1

32
1

(n + 1/4)2

)
− 1

]
∼

1
32

1
n + 1/4

as n→∞,

which yields that, for real a,

ξn (a) :=
[

1
πW2

n
−

(
n +

1
4

)]
(n + a) ∼

1
32

1
n + 1/4

(n + a)→
1

32
as n→∞.

Second, we show that 1/4 and a0 are the best. Using the asymptotic formula (4) again we obtain

ηn :=
1

32
1

1
πW2

n
−

(
n + 1

4

) − n ∼ n +
1
4
− n =

1
4

as n→∞,

and
η1 =

41π − 128
8 (16 − 5π)

= a0.

Remark 4.1. Note that ξ1 (1/4) = 5 (16 − 5π) / (16π) = b0 < 1/32 = ξ∞ (1/4) and η1 = 0.344... > 1/4 = η∞. We
guess that the sequences {ξn (1/4)} and

{
ηn

}
are increasing and decreasing for n ∈N, respectively.
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