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Abstract. In this paper, we establish several new bounds for the Wallis ratio W,, = (2n — 1)!!/ (2n)!! in the
form of 1/ /nG,, (a, b), where

1 b
Gn(a,b)—n+z+ p—
witha > -1 and b > —=5(a + 1) /4. In particular, we find that

1 1
—_—— < W, < ——
VG (1/4,1/32) s VG (a0,1/32)

for n € IN with the best constants 1/4 and ay = 5(16 — 57) / (167), where the lower and upper bounds are
the sharpest.

1. Introduction

The well-known Wallis ratio is defined by

2n -1
n=———— f p
W, @) orn € N,

where n!! denotes the double factorial. It is known that

W, = @En-D!'  @2n)! Ll’(n+1/2)

@)t 222 g T(n+1)
satisfying the recurrence relation
n+1/2
Wit = ——W,,

n+1
where I' is the classical Euler’s gamma function.
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Kazarinoff [7] proved that
1 1

—_— < W, < ————.
Vrt(n+1/2) ) ) \Vr(n+1/4)

The best lower and upper bounds for W,, were obtained by Chen and Qi [4]:

! <W, < !

Vi ain—1)  Jrm+1/4)

A simple proof and its generalization were provided in [8] by Koumandos.
Gurland in [6] established a closer approximation to 7t

an+3 [ o\ 4 [ e
(2n+1)2((2n—1)!) <7 4n+1((2n—1)!) , n€N,

which can be rearranged as
1 W, < 1
Ja(n+ 1+ Etn) m(n+1)
In 1962, Chu [5, Theorem 1] demonstrated that
1 1
<W, < —— 3)
Jr(+ (n+1)/(@n +3)) Jr(n+1/4)
for n € N, which is actually the same as (2). Boyd [1] pointed out that for n € IN it holds that

! <W, < ! . 4)

1, 1_ 4n+ll 1
\/7"(”+Z+132n21;2n+37) \/n(n"'%"'alzm)
In 2004, Zhao [17] gave an improvement for the double inequality (1) as follows:

! <W, < !

Jin(+1/@n—-1/2)) = Jan(1+1/@n-1/3))

, neN. (2)

which is equivalent to
! <W, < ! .
V(e b+ ) V(e b+ dmim)
In 2007, Cao et al. [2] proved that for n € IN, the double inequality
\Vr o _emt \Vr
2Vn+9n/16-1 @n+D!!'  2+n+3/4
is valid with the best constants 97t/16 — 1 ~ 0.76715 and 3/4, which can be written as

2yn+3/4 24Yn+9n/16 — 1
—— < W,
Vi (2n +1) Vi (2n+1)

or equivalently,

1 1
<W, < . (6)

1, 1 1 gy
\/n(n+z+ﬁn+3/4) \/n(n+2—19—6n+%n$z/fg_l)
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Zhang [16] showed that

! <W, < !
A+ 1/[A-4/@n+3)])  Nam+1/[A—1/@n+1)])

or equivalently,

1 1

<W, < . (7)
Vil b dimdm) (b )
The left hand side inequality in (7) was generalized in [9] as
W, < ! 8)

11 1
\/ T (” titx n+(8/\+3)/(32/\+8))

for A € [0,00) and 7 € [(724% + 271 + 3) / (121 + 3) ,00) N N.
From the inequalities (2), (3), (4), (5), (6), (7) and (8), we find that Wallis ratio W, has the bounds in the

form of 1/ \nG,, (a, b), where

1 b
G"(a'b)_n+1+n+a'

Comparing the inequalities (2), (3), (4), (5), (6), we easily see that

1 . 1 . 3212 + 72n + 37
JrG,(3/4,1/16)  \/rG, (~1/8,1/32) 41 (2n +1)* (2n + 3)
1 1

< <W, <
G, (1/4,1/32) G, (3/8,1/32)

< min ! , ! < !
VnG, (1,1/32) \/nG, (-1/12,1/48) |  /rm(n+1/4)

for n € IN. These inequalities show that Zhang’s bounds for the Wallis ratio given in (7) is better than
Gurland’s (2), Chu’s (3), Boyd’s (4) and Zhao’s (5) ones.
It is natural to ask that what are the conditions such that the inequality

1
\7G,, (a,b)

holds for n € IN? wherea > —1 and b > —5(a + 1) /4. The aim of this paper is to answer this question by
considering the monotonicity of the sequence

Wi < (>)

1 b
_ W2 ) 1
Vn(a,b)—WnGn(a,b)—Wn(n+4+n+a). 9)

2. Monotonicity pattern of V, (a, b)

In this section, we will investigate the monotonicity of the sequence {V,, (4, b)} defined by (9). First, we
claim that

lim V, (a,b) = l,
n—oo TT
which follows from the double inequality

1 <1’(x+c)< 1
(x+0' T+1) xl
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for all x > 0 and all ¢ € (0,1) (see [13], [10, (2.8)]). Now we observe the monotonicity of the sequence
{V.(a,b)}. A direct computation yields

Vs (@) (n+1/2°n+1+1/4+b/(n+1+a)

V. (a,b) (n+1)> n+1/4+b/(n+a)

Vi1 (a,b) 1= f" (a,)
Vi (a,D) 4n+1’m+1+a)@n2+@a+1)n+a+4b)

where
fu(a,b) = (1 = 32b) n® + (22 — 44b — 16ab + 1) n + (a — 16b — 12ab + a?).

To obtain the monotonicity of the sequence {V, (4, b)}, we write f, (a,b) as

fala,b) = —4(8n2+(11+4a)n+3a+4)(b—4 (n+a)(n+1+a) )

(8n2 + (11 +4a)n+3a+4)
= —4(8n% + (11 +4a)n+3a +4) (b - g, (1)),

where
m+a)(n+1+a)

4(8n2+(11+4a)n+3a+4)

In (a) =

A simple calculation leads us to

m+1+a)y(n+2+a) m+a)y(n+1+a)
gt (@)= gn0) = 4(8(n+1)2+(4a+11)(n+1)+(3a+4))_4(8n2+(4a+11)n+(3a+4))
_ n+l+a Iy (a),
[8n2 + (4a+11)n + (Ba + 4)] [8n2 + (4a + 27) n + (7a + 23)]
where
hy (a) = a® + (3n + %)u - (Zn + 2) =(@—-a(n)@—-a(n), (10)
with

a(n)—§ 112+§n+§—§n—E a(n)——§ nz+§n+§—§n—E
W=V "2 T 20 T g YT 2" 16 2 8"

It is easy to check that x + a5 (x) is decreasing on (0, o), which implies that so is a; (1) for n € IN with

a (1) = W@T_% =0.412... and a4 (c0) = lim aq (n) = 31;
n—oo
while
—a(n) = —-a,(1) = w@+25 =6.662... > 1,
which means that a —a, (n) > 0 for a > —1. These together with (a,b) € {a > —-1,b > =5 (a + 1) /4} indicate
that
Vn+1 (a/ b) _ _ _
n( V. @b 1) = sgnf,(a,b) =sgn(g,(a)-b), (11)
sgn (gn+1 (@) — ga (@) = —sgnhy (a) = —sgn(a —a1 (n)). (12)

We next distinguish three cases to discuss.
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Case 1: —1 < a < 1/4. By (12) the sequence {g, (a)} is strictly increasing for n > 1. Therefore, we get

@+1)@+2) !
s = 710 <0,0) <0 0) = 5.

Subcase 1.1: b > g, (1) = 1/32. Then by (11) we see that f, (a,b) < 0, and then, the {V,, (4, b)} is decreasing
forn > 1.

Subcase 1.2: b < g1 (1) = (271 ;frazg). Similarly, we see that {V,, (a, b)} is increasing for n > 1.

Subcase 1.3: g1 (a) < b < g (a). Since g1 (@) —b < 0 and g (@) — b > 0, there is an integer n; > 1 such
thatg, (@) —b <0forl <n <n; —1and g,(a) —b > 0 for n > ny + 1. This, by (11), shows that {V, (a, D)} is
decreasing for 1 < n < n; and increasing for n > ;.

Case 2: q > (3 V89 — 25) /8. By (12), this case implies that the sequence {g, (a)} is strictly decreasing for
n > 1. Therefore, we get

1 _@+1)@+2)
3 = 0= @ <0a @ <91(0) = = m

Being analogous to Subcases 1.2-1.3, we have

Subcase 2.1: b > g1 (a) = (2?71;?2;?' The sequence {V,, (4, b)} is decreasing for n > 1.

Subcase 2.2: b < g, (1) = 1/32. The sequence {V, (g, b)} is increasing for n > 1.

Subcase 2.3: g, (@) < b < g1 (a). There is an integer n, > 1 such that the sequence {V,, (g, b)} is increasing
for 1 < n < ny and decreasing for nn > n,.

Case3:1/4<a< (3 V89 — 25) /8. From (10) there is an integer n3 > 2 such thath, (1) > 0for1 <n <nz-1
and h, (a) < 0 for n > n3 + 1, which, by (12), indicates that {g, (2)} is increasing for 1 < n < n3 and decreasing
for n > ns. It is obtained that

%:glm)<gn(a)§gm(ﬂ) forl<n<ns

3l2 = oo (@) < gn (a) < gy, (a) forn > n3,

that is,
1 @+1)(@+2)
mm{32’ 4(7a +23) < gn (@) < gn, (a),
where
(@a+1)(@+2) .f1 357 _ 17
min lw _ m 11<a<T/
32" 4(7a+23) 1 if@<a<3\/@——25
32 6 - .

Subcase 3.1: b > g, (2). Likewise, we see that the sequence {V,, (1, b)} is decreasing for n > 1.

Subcase 3.2: b < min{g; (1), g (a)}. The sequence {V, (a,b)} is increasing for n > 1.

Subcase 3.3: min {g1 (1), g (1)} < b < max{g1 (4), Joo (2)} < gn, (2). This subcase can be divided into two
subsubcases:

Subsubcase 3.3.1: 71 (1) < g (1), thatis, 1/4 <a < (3 V57 — 17) /16. Then we have g1 (1) < b < g (1) <
Jn, (a). Since {g, (2)} is increasing for 1 < n < n3 and decreasing for n > n3, so is {g, (a) — b} := {g;, (a)}. This
in combination with

g1(@)=g1(a)—-b<0 and g, (1) = g (a) = b >0,

yields that there is an integer n4 with 1 < ny < n3 such that g;, (@) = 9,(@) —b <0for1 <n < ny —1 and

gn@) = g,(@) —b > 0forn > ny +1. This, by (11), shows that the sequence {V, (a,b)} is decreasing for
1 < n < ny and increasing for n > ny.
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Subsubcase 3.3.2: g1 (7) > g (a), that is, (3 V57 - 17) /16 <a < (3 V89 — 25) /8. Then we have g (a) <
b < g1 (a) < gn, (a). Since {g;, (a)} is increasing for 1 < n < n3 and decreasing for n > nz with
g91@=g1@)—-b>0 and g, (1) = g (@) = b <0,

there is an integer ns > n3z such that g5, (@) = g, (@) —b > 0for1 <n <ns—1and g, (@) = g, (@) — b < 0 for
n > ns + 1. This, by (11), shows that the sequence {V,, (4, )} is increasing for 1 < n < n5 and decreasing for
n = ns.
Subcase 3.4: min{g; (1), 9 (@)} < max{g: (@), 9~ (@)} < b < g4, (a). Since {g;, (a)} is increasing for
1 < n < n3 and decreasing for n > n3 with
g1@=g1(a)-b<0, g*nS(a) = g, (@) —b>0 and g, (4) = goo (a) —b <O,
there is two integers n3; and n3 with 1 < n13; < n3 and n3 > n3 such that

gn@) =gy(@)—b<0forl<mn<nzg -1,

QZ(ﬂ)Zgn(a)—b>0forn31+1Sn<n32—1,
9:1(01)=gn(ﬂ)—b<0forn2n32+l.

Thus it can be seen by (11) that the sequence {V, (1, b)} is decreasing for 1 < n < n3; or n > n3; and increasing
for nz; < n < nsp.
To sum up, the monotonicity pattern of V,, (a,b) can be listed in Table 1.

Table 1: The monotonicity pattern of V,, (a, b)

Cases Subcases V. (a,b)
1.1: 0 > g () Ny
1:—1<a§}1 1.2: b < g1 (a) /
1.3: g1 (a) < b < g (a) %
21: b > g1 (a) N
2: g > 2825 22: b < goo (2) ~
2.3: goo () < b < g1 (a) N\
3.1: b > gy, (a) N
3.2: b <min{g; (2), g (2)} S
3:1<a< 25 | 33 min{g (1), g (@)} < b < max{g1 (@), g (@)}
3.3.1: g1 (2) < g (a) Y
3.3.2: g1 (a) > goo (a) N\
3.4: max{g1 (1), g (1)} < b < gy, (a) NN\

Further, the monotonicity results for the sequence {V, (a,b)} and corresponding inequalities can be
summarized as follows.

Theorem 2.1. Let (a,b) € {b > —5(a+1) /4,a > =1} = E and let the sequence {V,, (a, b)} be defined by (9). The
following statements are valid.
(i) The sequence {V, (a, b)} is decreasing for n > 1 if (a,b) € Eq, where

~ 1 1 3189 - 25 @+1)@+2)
El—{—1<aS1,b23—2}U{ﬂZ 3 ,b> 4(7a+23)

U 1<a<3«/@—25,b2 (n3 +a) (3 + 1 +a) ’
4 8 4(8n2 + (11 + 4a) n3 + 3a + 4)

here ng is given in Case 3 for 1/4 < a < (3 V89 — 25) /8.
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Consequently, it holds that

1 “W. < V7tA (a,b)
JiG,@b)  \/nGy(a,b)

for n € IN with the best constants 1 and

5a+4b+5

16(a+1) (13)

niA(a,b) =mn

(ii) The sequence {V,, (a, b)} is increasing for n > 1 if (a, b) € E,, where

(a+1)(a+2)}u{a23\/8_9—25 b<l}

1
=< = < — <
2 {1<”—4'b— 4(7a+23) g '=m

U{1 <a< —3\/8_2_25,17Smin{—(a+1)(a+2) l}}

4 4(7a +23) ' 32

Then it holds that

VA @b w1
JiG,@b)  \/nG,(a,b)

for n € N with the best constants 1 and 1A (a, b) given in (13).
(iii) There is an 71 (= ny,ng) > 1 such that {V, (a,b)} is decreasing for 1 < n < 11 and increasing for n > 1 if
(a,b) € E3, where

B 1 (@a+1)@+2) 1 1 3V57-17 (a+1)(a+2) 1
E3_{ 1<as 0 TG+ m P m(\a """ 16 igarm ‘<mp

Therefore, we have

7V (a,b) max {1, A (a, b)}

— < W, <
Gy, (a,b) \71tG;, (a, b)
for n € N, where iV (a,b) and max {1, A (a, b)} are the best, here tA (a, D) is given in (13).
(iv) There is an i (= ny, ns) > 1 such that the sequence {V,, (a, b)} is increasing for 1 < n < i and decreasing for
n > fif (a,b) € E4, where

3v89-25 1 @+1)@+2)) (3V57-17 3v89-25 1 @+1)@+2)
= > — PR i — ~ 7 N
Es {“— 5 %2 ' Tmrm (YT 18 T 5 m ' Imm

(15)

Then the inequalities

min {1, A (a, b)} A1V (a,b)

<W, < ——
VG, (a,b) nGy (a,b)
hold for n € N, where 1V (a,b) and min {1, A (a, b)} are the best.
(v) Let n3 be given in Case 3 for 1/4 <a < (3 V89 — 25) /8. Then there are nz; and nzp with 1 < nz; < nz < nzp
such that {V,, (a, b)} is decreasing for 1 < n < nzy or n > nzp and increasing for nz1 < n < ngz; if (a,b) € Es, where

{1<a<3\/8_98+_25}ﬂ{max{w l}<b< (n3+a)(n3+1+a) }

4(7a+23) ' 32 4(8n2 + (11 + 4a) n3 + 3a + 4)
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Thus the double inequality

v/ma (a, b) < W, < np (a,b) ‘
G, (a,b) nGy (a, b)

holds for n € IN with the best constants ria (a,b) = min{nV,, (a,b),1} and B (a,b) = max{nV,,, (a,b), A (a,b)},
where mA (a, b) is given in (13).

Remark 2.2. It is clear that E3 and E4 given in (14) and (15) can be reduced to

6 10a+m <m

E3={_1<M3«/5_7—17 (@a+1)@+2) 1 }U{i <”<3\/5?6_17’b=31_2}'

- g>3«/5—7—17 i<b<(a+1)(a+2) U 3x/5_7—17<a<3«/@—25b_(a+1)(a+2)
+T 16 32 4(7a + 23) 16 8 U7 4(7a+23) |

3. Bounds for W,

In this section, we will present some bounds for W, by using Theorem 2.1. First, we give a general
result.

3.1. In the general case

Theorem 3.1. Let (a,b) € Eg = {b> -5(a + 1) /4,a > —1}. The inequality
1

VG, (a,b)

< W,

holds for n € N if

(a,b)eE14<:Elu(E4m{5a+4b+5 1})

- T < =
16@+1) ~ =«

While the inequality
1

) \V7G,, (a,b)

holds for n € IN if

(a,b)eE23>:EZU(E30{5Q+4b+5 S 1})

16@+1) “n

Second, we establish several bounds for W, in certain special cases.

3.2. Inthe case of a = 1/4

Theorem 3.2. Let b > —25/16 and let the sequence {V,, (a, b)} be defined by (9). The following statements are valid.
(i) If b > 1/32, then it holds that

1 3 (b)
- W, <——
VG (1/4,b) s VG, (1/4,0)

forn € N, where 1 and

S(b):m(%,b):%
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are the best constants. In particular, when b = 1/32, we have

1 <W. < V517t/160 (16)

VG, (1/4,1/32)  /nG, (1/4,1/32)

(ii) If b < 5/176, then it holds that

& < W < ;
VG, (/&4 b)  nG, (1/4,b)

forn € N, where 9 (b) = 7 (16b + 25) /80 and 1 are the best constants. In particular, when b = 5/176, we have

/22 <W, < ! (17)

VG, (1/4,5/176)  [nG, (1/4,5/176)

(iii) If 5/176 < b < 1/32 then there is an 71 > 1 such that the double inequality

AV (1/4,0) W, < max {1, 9 (b)}

<

VG, (/4 b)  \[nG,(1/4b)

holds for n € N, where nVy; (1/4, b) and max {1, 9 (b)} are the best, here S (b) = 7 (16b + 25) /80. In particular, when
3 (b) = m(16b + 25) /80 = 1, that is, b = by = (80 — 257) / (1671), we have

7+ 10 1 <W. < 1
V' 32 \nG, (/4 b)) Gy (1/4 by)

Proof. 1t is easy to check that whena = 1/4,

1.1 1 5 1 5 1
= e >_ = —_— - <_ = —_ - — — = = .
= {” b= } k2 {” =1 6}’ Es {” 17176 <0< 32}’ Ea=E5=0

Then the assertions (i), (ii) and the first part of (iii) follow from Theorem 2.1. Finally, when b = by =
(80 — 25m) / (167), a simple computation leads to

1,y 1 1.\ 72+10 1, \_2501+5)
Vl(Z’bO)‘E>V2(Z’bO)_ o <V3(Z’b°)_ son

which shows that 71 = 2. Therefore, ©V5 (1/4, by) = (77 + 10) /32, and the required double inequality follows.
This completes the proof. [J

From Theorem 3.2 we immediately obtain the following corollary.

Corollary 3.3. The double inequality

! Wy <—t (18)

VG, (/4 b)) [nG, (1/4,bo)

holds for n € IN with the best constants by = 1/32 = 0.031... and by = (80 — 257) / (167) = 0.029....
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3.3. Inthe case of b =1/32
Taking b = 1/32 in Theorem 2.1, we have

Theorem 3.4. Leta € (=1, 00). (i) If =1 < a < 1/4, then the double inequality

Y e N0@ (19)
VG, @,1/32)  [nG,(a,1/32)

holds for n € IN, where 1 and

1 )_ 7t (40a + 41)

0(a) =nA (“’ 32) 7 128@+1)

are the best possible. In particular, when a = 1/4, the double inequality (16) holds for n € IN.
(ii) If a > (3 V57 — 17) /16 =~ 0.35309, then for n € IN, the double inequality (19) is reversed, that is,

& < W, < ;
VG, @ 1/32) G, @, 1/32)

In particular, when a = 3/8, we have

V77t/22 < 1 (20)

W, <

VG, (3/8,1/32)  +[nG,(3/8,1/32)

(ii)) If1/4 <a < (3 V57 - 17) /16 ~ 0.35309, then there is a unique integer it > 1 such that the double inequality

ViV (a,1/32) W. < max {1, 6 (a)}

<

VaG, @ 1/32)  \[nG,@1/32)

holds for n € IN. In particular, when

41— 128

we have

\71tV3 (ao, 1/32) W, < 1 o1

< Wy
v Gy (Clo, 1/32) \' nGy, (ﬂo, 1/32)
holds for n € IN, where

1 ) _9n@92-891) _ oo 00r

V( S| = e )
T2\ 35 | T 64 (128 — 397)

and 1 are the best constants.

Proof. It is easy to check that when b = 1/32,

1 1 3vVv57-17 1 1 3vV57-17 1
={— < - = — = > = — =< = PR — = —
Eq { 1<a_4,b 32}, E, {ﬂ_ 16 ,b 32}, E3 {4<a< 16 ,b 32}

and E; = Es5 = (0. Then the assertions (i), (ii) and the first part of (iii) follow from Theorem 2.1. When
a=ay = (41 — 128) / (128 — 40m), we see that O (a9) = 1. By a simple computation we get
v (a 1 )_ v (a )_ 9 89m-292 (a 1 )_ 25 1297 — 418
W32) 77 7 "2 32) T e439m—128 T P\"32) T 128 79— 256 7

which indicates that 7 = 2. This yields (21), and the proof is done. O

1 1
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Denote by
A, (@) = 1 _1 32(n +a)
" G, (a,1/32)  m8@An+1)(n+a)+1
B, (a) = 0 (a) _ 40a +41 32(n+a)

Gy (a,1/32)  128(a+1)8@n+1)(n+a)+1°

It is clear that G, (a,1/32) is strictly decreasing with respect to the parameter 4, and that A, (a) is increasing
ina on (-1, 00). Also, we claim that B,, () is strictly decreasing in a on (-1, o). Indeed, differentiation gives

_(n-1) R2m+a)+40(n+2a+1)+1 -0
4(a+1)* (3202 +8(4a + 1) n + (8a + 1))

B, (@) =

fora € (-1,00) and n € IN.
Then by Theorem 3.4 together with the decreasing property of G, (a, 1/32) with respect to the parameter
a on (=1, ), the following corollary is immediate.

Corollary 3.5. For n € N, the double inequality

S <W, < S S (22)
holds with the best constant a; = 1/4 and ag = (411t — 128) / (8 (16 — 5m)) ~ 0.34469.
Remark 3.6. Since
63 t0)-Gofoo )= T e = e @D <
we have
1 W 1 1 23)

— < W,< <
VG, (a1,1/32) VG (a0,1/32)  \nG, (1/4,bo)
for n € N. This shows that the upper bound 1/ /Gy, (a9, 1/32) is sharper than 1/ \|nG, (1/4, b).

Remark 3.7. Since ay = (41t — 128) / (8 (16 — 571)) ~ 0.34469 < 3/8, we have

1 1 1
—_— < W, .
G, (a1,1/32) = s G, (ap, 1/32) ) \nG, (3/8,1/32)

This means that the upper bound is better than one in (7). As shown in Introduction, Zhang's bounds for the Wallis
ratio given in (7) is better than Gurland’s (2), Chu'’s (3), Boyd’s (4) and Zhao's (5) ones, so are our bounds given (22).

Remark 3.8. It is easy to check that for —1/8 < a < 1/4, the inequalities

ViF /A _ 1 W 1 3 1 _ NnFon/16=1
VA +1/2)  \[nG,(@,1/32)  nGu(@0,1/32) +nG,(1/4,b)  Vm(n+1/2)

hold for n € IN. Therefore, our inequalities (22) and (18) improve Cao et al.’s inequalities (6).
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3.4. Other special cases
Similarly, using Theorem 2.1 we can obtain the following corollary in the case of a = 3/4.

Corollary 3.9. Let b,b* > —35/16. Then the double inequality
; < Wn < ;
V71Gu (3/4,b) VG, (3/4,b%)

holds for n € N if and only if b > by = 7 (16 — 57) / (16m) and —35/16 < b* <1/32.

(24)

Remark 3.10. Taking b = 1/16 and b* = 0 in (24) gives (2).
In the case of (a,b) = (1/3,1/33), we can deduce the following corollary.

Corollary 3.11. The double inequality

/22 <W, < ! (25)

JnG,(1/3,1/33)  +/rG.(1/3,1/33)

holds for n € IN.

4. Conclusions

In this paper, we presented some bounds for the Wallis ratio W, by considering the monotonicity of the
sequence {V,, (a,)} for suitable (a,b) € {b > =5(a + 1) /4,a > —1}. In particular, we found the sharp bounds
for W, given in (22), that is,

1 1
<W, < ,
1 1 1 1 11
\/n(n+1+3_2n+1/4) \/”(”+Z+3_2n+ao)

where qy = (4171 — 128) / (8 (16 — 5m)) = 0.344.... This double inequality is better than those ones introduced
in the first section. Moreover, we obtain three interesting double inequalities (17), (20) and (25), which are
related to Archimedes’ famous approximation 22/7 (also named “yuelu” in China) to the transcendental
number 1. Comparing them we find that

\7rj22 B V7r/2 \7rj22 -w
JrG, (3/8,1/32) VnG,(1/3,1/33)  +/nG, (1/4,5/176)

1 1 1
VnG, (3/8,1/32) ) \JnG, (1/3,1/33) ) \JnG, (1/4,5/176)

(26)

<

for n € IN.

Finally, due to Corollaries 3.3 and 3.5 with the inequalities (23), we claim that the lower and upper bounds
in (26) are the sharpest. To this end, let us recall several asymptotic expansions of I' (x + 1) /T (x + 1/2). It
was proved in [11] (see also [3], [12]) that

Fx+1) 1 i (2 —21-21)B,,

P S A _1 + - e
"Tar12) T2 Lan@n -1

asx — oo,

where By, is the Bernoulli numbers. The following asymptotic expansion appeared in [15, Corollary 3]:

R ACES)) n(x+1)+l 1 5 1,6l L
T(x+1/2) 4) 7 32+ 1/42 1024 (x4 1/4)" 24576 (x + 1/4)°

- asx — 00,
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Recently, a new asymptotic expansion was established in [14, Eq, (1.15)], which states that

oo _ k v L k
o LG+ ln(x+i)+z(k+1)( /4" +2(1 = (=1 + (<1/2)) Bean

I'(x+1/2) - k(k+ 1) xk
= 1n(x+1)+ 1 + ! + asx — oo
B 4)  32x2  64x3  1024x4 '

Now we first show that the coefficient 1/32 is the best. In fact, using the second asymptotic formula, we
have

r<n_+1>2( Do (e e (2 —2) 1]~ L asns
Tn+1/2) _"+4) (’”4 P\ r1jap) | 1A T

L_(,Hl)_
W32 4/

which yields that, for real a,

En(a) := ——(Tl+1) (n+a) l;(11+a)—>iasn—>oo
LR T 4 302n+1/4 32 '
Second, we show that 1/4 and ay are the best. Using the asymptotic formula (4) again we obtain
Ny = ! L n~n+ n asn — oo
n =< ————hn-~ - —n= - ,
32— (n+1) 4 4
and
_Mn-18
M= 8d6-5n)

Remark 4.1. Note that &1 (1/4) =516 —-5n) / (16m) = by < 1/32 = & (1/4) and 11 = 0.344... > 1/4 = 1. We
Quess that the sequences {&,, (1/4)} and {n,,} are increasing and decreasing for n € IN, respectively.
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