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Abstract. In this paper, we establish some existence results for the extended generalized complementarity
problems in topological vector spaces, using the concept of minimax inequality and copositivity. We then
proceed to find some existence of solutions for the generalized complementarity problems in reflexive
Banach spaces as well as finite dimensional normed spaces.

1. Introduction

Complementarity problem unifies many mathematical problems, like optimization, economics, finance,
game theory, and mathematical programming. It has various applications in science, engineering, mechan-
ics, variational inequalities and equilibrium problems [2, 5], etc. The complementarity problem is closely
related to the variational inequality problem. It was Karamardian [14] who first built up an equivalence
between these two problems. Afterwards, various authors [6, 17, 20] established equivalences with their
various generalized forms. The concept of monotonicity takes a key role in establishing the existence
results of complementarity problems. The existence results of the complementarity problems as well as the
variational inequalities under different kinds of generalized monotonicities, such as pseudomonotonicity
and quasimonotonicity were established by many authors, like [9, 14, 20]. The general form of the com-

plementarity problem is: given a mapping F from the n-dimensional Euclidean space R" into itself, find a
vector x € IR” satisfying

x>0, F(x)>0, xTF(x) = 0. D

Problem (1) is called the linear complementarity problem (LCP) if F is of the form F(x) = Mx + b, where M
is a n X n matrix and b is an n-vector, otherwise it is called the nonlinear complementarity problem (NCP).

Many investigators have been concerned with both the computational as well as the theoretical aspects
of the problem (1). There are a large number of results on the existence and uniqueness of solutions for
the problem (1), see [13, 16, 19] for instance. In particular, Habetler and Price [11] generalized the NCP, by
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replacing the usual nonnegative partial ordering on R” by partial orderings generated by a given cone and
its polar. Karamardian [14] extended this work to a locally convex Hausdorff topological vector space X,
that is given a mapping F from a closed convex cone K of a locally convex Hausdorff, topological vector
space X into a vector space Y, then the generalized complementarity problem (GCP) given by Karamardian
[14] is to find a vector x € X such that

x € K, F(x) € K and {x,F(x)) = 0, 2)

where (., .) is a bilinear form from X X Y into R and K* be the polar of Kin Y. He used the finite intersection
property and proved that the complementarity problem (2) has a solution if the function (1, v) = (u, F(v)) is
continuous on K X K and there exists a nonempty compact and convex subset D in K with the property that
for every x € K\D, there exists z € D such that (x —z, F(x)) > 0. Saigal [19] extended the problem considered
by Habetler and Price by assuming the function F to be multivalued, that is given a closed, convex cone K,
its polar K* and a multivalued mapping F : K — IR", the complementarity problem considered by Saigal is
to find a vector x € R” such that

xeK, yeFx)NK and xTy =0. (3)

Park [17] generalized the complementarity problem (1) to a topological vector space in the form of (2)
and proved an existence result by first proving a Karamardian- type equilibrium theorem and using it he
established the existence of solutions. On the other hand, Fan [7] extended fixed point theorems of FE.
Browder [3, Theorem 1] and [4, Theorem 3] and established the following result in normed spaces: Given
a non-empty compact and convex set K in a normed space X, and a continuous mapping f : K — X, there
exists a point yp € K such that

lyo = (o)l = min I = f(yo)l

If f(K) C K, then y is a fixed point of f.

Inspired and motivated by the above works, in this paper we have established some existence of
solutions for the extended generalized complementarity problems in the general setting of vector spaces
in duality using the minimax inequality with a lopsided saddle point given by Ha [10]. We then proved
some existence of solutions for the generalized complementarity problems and the associated regularized
complementarity problems in reflexive Banach spaces with lack of coercivity assumptions. After which we
restrict ourselves to the finite dimensional normed spaces in order to achieve the existence of solutions for
the generalized complementarity problems using the notion of feasible points. The results in this paper
extend and generalize the results of Sahu et al. [18], Yao and Chadli [20], Karamardian [15], Saigal [19] and
many other results in the literature.

The rest of the paper is organized as follows. In Section 2, we state the extended generalized com-
plementarity problem in the general setting of vector spaces in duality and provide some basic concepts
and results that will be needed in the sequel. Section 3 is devoted to finding the existence of solutions for
the extended generalized complementarity problems using the minimax inequality with a lopsided saddle
point given by Ha [10]. In Section 4, we find some existence results for the generalized complementarity
problems in reflexive Banach spaces with copositivity assumptions. Finally, in Section 4, we have used
the concept of feasible points and found some existence of solutions for the generalized complementarity
problems in the finite dimensional normed spaces.

2. Preliminaries

Let X and Y be Hausdorff topological vector spaces and (-,-) : X X Y — R be a bilinear form between X
and Y. A nonempty subset K of X is called a cone if x € K implies ax € K, for all reals a > 0. The polar K* of
the cone Kin Y'is

K={y:yeY(x,y)>0, Vx € K}.

A collection A of subsets of a topological space X is said to have the finite intersection property if for every
finite subcollection {Cy, Cy, - - - , C,} of A, the intersection C; NC, N ---N C,, is nonempty. A topological space
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X is compact if and only if for every collection A of closed sets in X having the finite intersection property,
the intersection (ces C of all the elements of A is nonempty. A real valued function f defined on a convex
set X is called quasiconvex if, for each real number ¢, the set {x € X : f(x) < t} is convex. For a multivalued
mapping F from X into Y, the graph of F denoted by G(F) is the set {(x, ) € X X Y : y € F(x)}.

Let X and Y be Hausdorff topological vector spaces, K be a closed convex cone in X and K* be the polar of
KinY. IfF : K — 2¥ be a multivalued mapping, then the extended generalized complementarity problem(EGCP)
is to find an x € X and a y € F(x) such that

x€K, yeK and(x,y) =0. (4)

The problem (4) was considered by Sahu et al. [18] in the year of 2021, in a general setting of vector spaces
in duality. In this paper we shall find the existence of solutions for the problem (4) in a different approach,
that is minimax inequality with a lopsided saddle point developed by Ha [10].

Example 2.1. Let K = [0, 00) X 0 and F : K — 2% be a multivalued map defined by
Fx)={y € R%: (x,y) > 0}.

Then it is clear that K* = [0, 00) X R and F(x) = K*,VYx € K. For every x € K we can find a vector y € 0 X R c K*
such that (x,y) = 0.

Remark 2.2. If we take X = Y = R" and the bilinear form <., .) as the usual inner product in R", then (4) reduces
to the complementarity problem considered by Saigal [19]. If F is single valued function, then (4) reduces to the
complementarity problem considered by Karamardian [14]. If we take X =Y = R", the bilinear form (., .) as the usual
inner product in R" and F is a single valued function, then (4) reduces to the complementarity problem considered by
Habetler and Price [11].

The generalized variational inequality problem associated with the complementarity problem (4) is: Given
a closed convex cone K in X and its polar K* in Y. If F : K — 2¥ be a multivalued mapping, then the
generalized variational inequality problem (GVI) is to find a vector x € K and a vector y € F(x) such that

(u—x,y) >0, Yue Kk (5)
The equivalence between problem (4) and problem (5) was established by Sahu et al. [18].

Theorem 2.3 ([18]). A vector x € K is a solution of the extended generalized complementarity problem (4) if and
only if x is a solution of the generalized variational inequality problem (5).

Now we recall some basic concepts and results that will be needed in the sequel.

Definition 2.4. Let X and Y be the Hausdorff topological vector spaces. A multivalued mapping F : X — 2V is said
to be

(a) monotone if for any x,y € X,

(V' =x",y—x) 20, forall x* € F(x) and y* € F(y);
(b) strictly monotone if for any x,y € X withx # y

(V' =x",y—x)>0, forall x* € F(x) and y* € F(y);
(c) pseudomonotone, if for each x,y € X

@, y—x)20= <y, y—x)=0, forall x € F(x) and y* € F(y).
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Definition 2.5 (Aubin [1]). Let X and Y be two Hausdorff topological vector spaces. A multivalued mapping
F: X — 2Y is said to be upper semicontinuous at a point xo € X (for short, u.s.c. at xo), if and only if, for any open
set O C Y such that F(xy) C O, there exists a neighborhood U of xo such that F(x) C O for every x € U. We say that
F is upper semicontinuous (for short, u.s.c.) if F is u.s.c. for every xp € X.

Proposition 2.6 (Aubin [1]). The graph of an u.s.c. set- valued map F with closed values from a Hausdorff
topological vector space X to a Hausdorff topological vector space Y is closed. If Y is compact and the graph G(F) of F
is closed, then F is upper semicontinuous.

Ha [10] extended the minimax inequality of Fan [8] and given the following minimax inequality with a
lopsided saddle point.

Lemma 2.7 (Ha [10]). Let X and Y be Hausdorff topological vector spaces and K C X, L C Y be the nonempty
compact convex subsets. If g is a continuous real valued bifunction defined on KXL, and if F is an upper semicontinuous
multivalued map defined on K such that

(a) Foreachy €L, g(x,y) is quasiconvex in x € K;

(b) Foreach x € K, F(x) is a nonempty closed convex subset of L.

Then, there exist xo € K and yo € F(xo) satisfying

g(xo0, yo) < g(x, yo), Yx € K.

In order to achieve our goal, we need the following special forms of the Lemma 2.7. By taking g(x, y) =
(x, ), we deduce the following result.

Corollary 2.8. Let X and Y be Hausdorff topological vector spaces, K C X, L C Y be nonempty compact convex sets.
Assume that the mapping (u,v) > (u,v) is continuous on K X L and let F : K — 2Y be a multivalued mapping such
that

(i) F is upper semicontinuous on K;
(if) For each x € K, F(x) is a nonempty closed convex subset of L.

Then there exists a point X € K and a y € F(X) such that
(x-%1y)20, Vxe K

Further, by taking X = Y, K = L and replacing the real valued bifunction g(u, v) by the functional ||z —v||,
in Lemma 2.7, we derive the following result.

Corollary 2.9. Let X be a normed space and K be a nonempty compact and convex set in X. If F: K = X be a
multivalued mapping such that

(i) F is upper semicontinuous on K;
(if) For each x € K, F(x) is a nonempty closed convex subset of K.

Then, there is a X € K and y € F(X) such that
I =yl < llx = yll, x € K.
Remark 2.10. If F is a single valued mapping, then Theorem 2 of Fan [7] follows from the Corollary 2.9.

Definition 2.11. [18] Let X be a real reflexive Banach space with its dual X* and the value of x* € X* at x € X
be {x,x*). Let K be a nonempty closed convex cone in X, and K* be the polar of K in X*. A multivalued mapping
F: K — 2% is said to be

(i) copositive on K, if there is a z* € F(0) such that for all x € K and y* € F(x), (x,y* —z*) 2 0;
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(ii) strictly copositive on K, if there is a z* € F(0) such that for all 0 # x € Kand y* € F(x), (x,y* —z") > 0;
(iii) strongly copositive on K, if there is a scalar a > 0 and a vector z* € F(0) such that for all x € K and y* € F(x),

(v, y =z > allxl.

Definition 2.12. Let X be a real reflexive Banach space with its dual X* and the value of x* € X at x € X be (x,x").
Let K be a nonempty closed convex cone in X, and K* be the polar of K in X*. A multivalued monotone mapping
F: X — 2% is said to be proper at x € K if the set

Bx)={yeK:y—xeK y —x"eK'and(y —x,y" —x*) = 0 for all x* € F(x) and y* € F(y)}

is bounded.

3. Existence of Solutions for Extended Generalized Complementarity Problems

Our principal aim in this section is to establish an existence of solution for the generalized complemen-
tarity problems in the general settings of vector spaces in duality.

Theorem 3.1. Let X and Y be Hausdor{f topological vector spaces and K and L be closed convex cones of X and Y
respectively. Assume that the mapping (u,v) v+ u,v) is continuous on K X L and let F : K — 2Y be a multivalued
mapping such that

(i) F is upper semicontinuous on K;
(if) For each nonempty compact convex set C of K, there exists a nonempty compact convex set E of L, such that for
each x € C, F(x) is nonempty closed convex subset of E;
(iii) There exists a nonempty compact and convex subset D of K, with the property that for every x € K\D, there is
z € D such that

(x=2z,y)>0, Yy e F(x). (6)
Then, the extended generalized complementarity problem (4) has a solution.
Proof. For every u € K, consider the set
D, ={x e D: Ty € F(x) such that (u — x,y) > 0}.

Since F is upper semicontinuous on K and the mapping (u,v) — (u,v) is continuous on K X L by using
condition (ii), we conclude from Lemma 3 of Sahu et al. [18] that the set D,, is closed in D for all u € K. Now
we wish to prove that the intersection of any finite number of the D,,’s is nonempty. That is, we want to
prove that for arbitrary uy, ua, -+ ,uy, € K, (ii; Dy, # 0. Let D be the convex closure of D U {1y, s, -+ - , ).
Since D is nonempty compact and convex subset in K. By Corollary 2.8, there exists a point £ € D and a
y € F(%) such that

(x=2%1)20, VxeD. 7)

In particular,
(ui—=2,y)20,for i=1,2,--- ,m.

From the construction of D,, it remains only to show that £ € D. Suppose £ ¢ D, but as £ € K\D, from
relation (6) there exists an element z € D such that

(z—2%,y) <0, Yy € F(%),

which contradicts (7). Therefore, 2 € D and N, D', # 0. Hence by finite intersection property of compact
sets, we have (),cx Dy # 0. Thus, there exists an element X € D and an element y € F(X) such that

x-%y)=20, Vxek

Therefore, ¥ is a solution of generalized variational inequality problem (5) and Theorem 2.3, forces that ¥ is
a solution of extended generalized complementarity problem (4). O
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Remark 3.2. Theorem 3.1 improves Theorem 2 of Sahu et al. [18] in the way that the condition (ii) of Theorem 2
in [18] which is weaker than the pseudomonotonicity in the sense of Brézis have been avoided. Further, Theorem 3.1
generalizes Theorem 3.1 of Karamardian [14] from single valued case to multivalued case and Theorem 2.1 of Saigal
[19] to the context of Hausdorff topological spaces.

4. Generalized Complementarity Problems in Reflexive Banach Spaces

In this section, we shall assume that X is a reflexive Banach space and X" be its topological dual. Let the
value of x* € X" at x € X be (x,x*). Let K be a nonempty closed convex cone in X, and K* be the polar of K
in X* that is

K'={y €X', (x,y) >0, ¥x €K}

If F : K — 2% be a multivalued mapping, then the complementarity problem (CP) in Banach spaces is to
find an x € X and a y* € F(x) such that

x€K, y €K', and (x,y") = 0. (8)
Let ] : X — 2% be the duality mapping defined by
J(x) = =x* € X : (x,x") = |xll” and |Ix"|| = ||X||}~

Clearly for any x € X, J(x) # 0 and since X and X" are Banach spaces, the duality mapping ] is single-valued
and continuous. For ¢ > 0, let F, : K — 2% be the multivalued mapping defined by F,(x) := F(x) + ¢](x), for
x € K. For ¢ > 0, the regularized complementarity problem (EGCP), in X defined by Sahu et al. [18] is to
find a vector x. € X and vector y; € F.(x) such that

x. €K y; € K'and (x,,y;) = 0. 9)

Theorem 4.1. Let X be a reflexive Banach space and X* be its topological dual. Let K and L be closed convex cones
of X and X" respectively and F : K — 2% be a strongly copositive multivalued mapping such that

(i) F is upper semicontinuous on K from weak topology o(X, X*) of X to the weak topology o(X*, X) of X*;
(i) For each nonempty compact convex set C of K, there exists a nonempty compact convex set E of L, such that for
each x € C, F(x) is nonempty closed convex subset of E.

Then, the generalized complementarity problem (8) has a solution.

Proof. 1f we take Y = X*, where X and X* are endowed with the weak topology then the condition (i) and
condition (ii) of Theorem 3.1 are satisfied. Since F is strongly copositive, by applying the similar procedure
as in the proof of Theorem 4 of [18], we deduce that condition (iii) is satisfied with z = 0. Therefore from
Theorem 3.1, x is a solution of the generalized complementarity problem (8). [

If F is copositive instead of strongly copositive, we have the following result on the existence of solutions
for the regularized complementarity problem (9).

Theorem 4.2. Let X be a reflexive Banach space and X* be its topological dual. Let K and L be closed convex cones
of X and X" respectively and F : K — 2% be a copositive multivalued mapping such that

(i) F is upper semicontinuous on K from weak topology o(X, X*) of X to the weak topology o(X*, X) of X*;

(if) For each nonempty compact convex set C of K, there exists a nonempty compact convex set E of L, such that for
each x € C, F(x) is nonempty closed convex subset of E.

Then, the regularized complementarity problem (9) has a solution.
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Proof. Since F is upper semicontinuous on K from weak topology o(X, X*) of X to the weak topology
o(X*, X) of X* and duality mapping ] is continuous, we conclude that the multi-valued mapping F, is upper
semicontinuous on K from weak topology o(X, X") of X to the weak topology o(X*, X) of X*. Since | is
single-valued, condition (ii) holds for F,. Since F is copositive on K, there is a z* € F(0) such that for all x € K
and y* € F(x), we have

(x,y =z 20.
We can rewrite the above expression as

Xy =27+ ex, J(x) = J(0)) = &x, J(x) = J(0)). (10)

Since (-, -) is linear in second argument, from relation (10) we have

Yy =2') +<x, e](x) = €](0)) = &x, J(x) = J(0)).

Again by linearity of (-,-) in second argument, we have
oy + e](x) — (27 + €J(0))) = e, J(x) — J(0)).
Since J(0) = 0 and (x, J(x)) = [|x||* by the definition of ], we have
(x,y" + e](x) = (2" + €] (0))) = ellxll*. (11)

Since | is single valued, y* + €J(x) € F(x) + €]J(x) and z* + €J(0) € F(0) + €J(0). Taking y* + €J(x) = y; and
z' + €J(0) = z;, from relation (11), we have

(x, yp —z2) > ellnl.
Thus, F, is strongly copositive on K with constant ¢ and therefore, the result follows from Theorem 4.1. [

Theorem 4.3. Let X be a reflexive Banach space and X* be its topological dual. Let K and L be closed convex cones
of X and X* respectively and F : K — 2% be a multivalued mapping such that

(i) F is upper semicontinuous on K from weak topology o(X, X*) of X to the weak topology o(X*, X) of X*;
(i) For each nonempty compact convex set C of K, there exists a nonempty compact convex set E of L, such that for
each x € C, F(x) is nonempty closed convex subset of E;

(iii) There exists a nonempty compact and convex subset D of K, with the property that for every & > 0 and for every
x € K\D, there is z € D such that

(x=z,y)+e(x—zJ(x) >0, Yy € F(x). (12)

Then, the reqularized complementarity problem (9) has a solution.

Proof. Since F is upper semicontinuous on K from weak topology o(X, X*) of X to the weak topology
o(X*, X) of X* and duality mapping ] is continuous, we conclude that the multi-valued mapping F. is upper
semicontinuous on K from weak topology o(X, X*) of X to the weak topology o(X*, X) of X* and thus the
condition (i) of Theorem 3.1 is satisfied for F,. Since ] is single-valued, condition (ii) of Theorem 3.1 also
holds for F.. Finally from (iii), we see that condition (iii) of Theorem 3.1 holds for F. and therefore the
conclusion follows from Theorem 3.1.

O
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5. Generalized Complementarity Problems in Finite Dimensional Normed Spaces

In this section we shall assume that X be a finite dimensional normed space and X* be its topological
dual. Let the value of x* € X* at x € X be denoted by (x, x*). Let K be a nonempty closed convex cone in X,
and K* be the polar of K in X*. Let F be a multi-valued mapping from K into X*, then the complementarity
problem in finite dimensional normed spaces is to find an x € X and an x* € F(x) such that

xeK, x €K, and (x,x*) = 0. (13)

A point x € X is said to be feasible to the problem (13) if x € K and F(x) N K* # 0 and strict feasible to (13) if
x € Kand F(x) N int(K*) # 0.

The following lemma is a generalization of Lemma 2.1 of Karamardian [15], whose proof is similar to that
of Lemma 2.1 of Karamardian [15] and therefore omitted.

Lemma 5.1. Let K be a closed pointed solid and convex cone in X and x* € X* be any element. Then,
(a) x* € int(K*) if and only if (x,x*) > 0 forall 0 # x € K;
(b) x* € int(K*) if and only if for any real number r > 0, the set D = {x : x € K,0 < (x,x") < r} is compact.

Theorem 5.2. Let X be a finite dimensional normed space and X* be its topological dual. Let K and L be closed
convex cones of X and X* respectively and F : K — 2% be a multivalued mapping such that

(i) F is upper semicontinuous and pseudomonotone on K from weak topology o(X, X*) of X to the weak topology
o(X*, X) of X*;

(ii) For each nonempty compact convex set C of K, there exists a nonempty compact convex set E of L, such that for
each x € C, F(x) is nonempty closed convex subset of E.

If there exists a strict feasible point x € K to (13), then the problem (13) has a solution.

Proof. Since x € K is the strict feasible point to the problem (13), we have F(x) N int(K*) # 0. Let x* €
F(x) N int(K*). Consider the set

D={yeK:(y—xx") <0}

If (x,x*) = 0, then x is the solution of problem (13). Therefore, we assume that (x, x*) > 0. Since x* € int(K")
by Lemma 5.1, D is compact. Let x € K\D, then we have

(y—x,&) >0, for all £ € F(x). (14)

Thus assumption (iii) of Theorem 3.1 is satisfied. Therefore, the results follows from Theorem 3.1.
O

Remark 5.3. Theorem 5.2 generalizes Theorem 12.5 of Yao and Chadli [20] and Theorem 3.2 of Saigal [19].

Theorem 5.4. Let X be a finite dimensional normed space and X* be its topological dual. Let K and L be closed
convex cones of X and X* respectively and F : K — 2% be a multivalued mapping such that

(i) F is upper semicontinuous and monotone on K from weak topology o(X, X*) of X to the weak topology o(X*, X)
of X*;

(if) For each nonempty compact convex set C of K, there exists a nonempty compact convex set E of L, such that for
each x € C, F(x) is nonempty closed convex subset of E.

If there exists a feasible point x € K to (13) at which F is proper, then the problem (13) has a solution.
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Proof. Since x € K is the feasible point to the problem (13) at which F is proper, we have F(x) N K* # (. Let
x* € F(x) N K* and for z* € int(K*) and for every real r > 0, consider the set

D,={yeK:y-x€K (y—x,z") =r}.

Clearly D, is nonempty and convex. Since z* € int(K*) and by Lemma 5.1, D, is compact. Since the
multivalued mapping F(y) — x* is upper semicontinuous on D, for all r > 0, by Corollary 2.8, for all » > 0
there exists an x, € D, and an x; € F(x,) such that

(Y=x,x;,—x") >0, forall y € D,.
Which can be written as
(y—x—(x, —x),x; —x") >0, forall y € D,.
Since (-, -) is linear in first argument, we have
Y—xx—-x)=(x,—x,x; —x) 20, forall y € D,.
Which can be written as
(Y—xx,—x")>(x, —x,x; —x"), forall y € D,. (15)
Since F is monotone, we have
O —x,x,—x7) > 0. (16)
From relations (15) and (16), we deduce that
(y—x,x;—x") 20, forall y € D,.
Thus, x; — x* € K* and the properness of F at x implies that there exists an 7 > 0 and an x; € F(x;), such that
(Y=—x,x=x") 2 (xr—x,x; —x") >0, forall y € D,.
By Lemma 5.1, x; — x* € int(K*) and therefore the conclusion follows from Theorem 5.2. [

Corollary 5.5. Let X be a finite dimensional normed space and X* be its topological dual. Let K and L be closed
convex cones of X and X* respectively and F : K — 2% be a multivalued mapping such that

(i) F is upper semicontinuous and strictly monotone on K from weak topology o(X, X*) of X to the weak topology
o(X*, X) of X*;

(i) For each nonempty compact convex set C of K, there exists a nonempty compact convex set E of L, such that for
each x € C, F(x) is nonempty closed convex subset of E.

If there exists a feasible point x € K to (13), then the problem (13) has a unique solution.

Proof. Since F is strictly monotone, B(x) = {x}, for all x € K and therefore, F is proper at any x € K. Thus,
from Theorem 5.4 the problem (13) has a solution. To prove uniqueness, let there are two distinct solutions
x1 and x5. Then, for all Xy € F(x1) and x5 € F(x3), we have

0 <{x1 —x2,x] —x3) = —(x1,Xx5) — {x2,x7) <0,

which is a contradiction and hence the solution is unique.
0

Remark 5.6. Theorems 5.2, 5.4 and Corollary 5.5 generalize respectively Theorems 4.1, 4.2 and Corollary 4.1 of
Karamardian [15].
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Conclusion

We have established some existence of solutions for the extended generalized complementarity problems
in the context of topological vector spaces using the minimax inequality with a lopsided saddle point.
We then proved some existence results for generalized complementarity problems in reflexive Banach
spaces with the lack of coercivity assumptions using the notion of copositivity. Further, we used the
concept of feasible and strictly feasible points and derived some existence of solutions for the generalized
complementarity problems in the finite dimensional normed spaces. Our future aim is to investigate, under
what more assumptions, the results that we have established in this paper in the finite dimensional normed
spaces context to the context of general reflexive Banach spaces.
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