

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Polynomial extension of the stronger Central Sets Theorem near zero

Sujan Pala,*, Anik Pramanickb

^aASHU Department, Guru Nanak Institute of Technology (GNIT), Sodepur, Panihati, Kolkata-700114, West Bengal, India ^bDepartment of Mathematics, University of Kalyani, Kalyani, Nadia-741235, West Bengal, India

Abstract. Furstenberg introduced the Central Sets Theorem in 1981. Later, in 1990, Bergelson and Hindman provided an algebraic proof of the Central Sets Theorem. In 2008, De, Hindman and Strauss proved a stronger version of Central Sets Theorem. On the other hand Hindman and Leader introduced in 1998, the Central Sets Theorem near zero for dense subsemigroup of \mathbb{R} . A stronger version of the Central Sets Theorem near zero was established by De and Hindman in [6]. Recently Goswami, Baglini and Patra developed a polynomial extension of the stronger Central Sets Theorem in 2023. In this article, we provide a polynomial version of the stronger Central Sets Theorem near zero.

1. Introduction and preliminaries

In [8] Furstenberg introduced the notion of central sets in $(\mathbb{N}, +)$ in terms of topological dynamics. (Specifically, a subset A of \mathbb{N} is central if and only if there exists a dynamical system (X, T), points x and y in X, and a neighborhood U of y such that y is uniformly recurrent, x and y are proximal, and $A = \{n \in \mathbb{N} : T_n(x) \in U\}$. (See [8] for the definitions of "dynamical system", "proximal"and "uniformly recurrent") He showed that if \mathbb{N} is divided into finitely many classes, then one of them must be central, and he proved the following theorem.

Theorem 1.1. Let $l \in \mathbb{N}$ and for each $i \in \{1, 2, ..., l\}$, let $(y_{i,n})_{n=1}^{\infty}$ be l-many sequences in \mathbb{Z} . Let $C \subseteq \mathbb{N}$ be a central set. Then there exist sequences $(a_n)_{n=1}^{\infty}$ in \mathbb{N} and $(H_n)_{n=1}^{\infty}$ in $\mathcal{P}_f(\mathbb{N})$ such that

- (1) for all n, $\max H_n < \min H_{n+1}$ and
- (2) for all $F \in \mathcal{P}_f(\mathbb{N})$ and all $i \in \{1, 2, ..., l\}$,

$$\sum_{n\in F} \left(a_n + \sum_{t\in H_n} y_{i,t} \right) \in C.$$

There are many extensions of this theorem in the literature in different directions. In one direction Bergelson, Moreira and Johnson [2] established a polynomial version of the above theorem.

2020 Mathematics Subject Classification. Primary 05D10; Secondary 22A15.

Keywords. Stone-Čech Compactification, Central sets theorem, Ultrafilter near zero.

Received: 13 December 2024; Revised: 17 May 2025; Accepted: 04 June 2025

Communicated by Pratulananda Das

st Corresponding author: Sujan Pal

Email addresses: sujan.pal@gnit.ac.in (Sujan Pal), pramanick.anik@gmail.com (Anik Pramanick)

ORCID iDs: https://orcid.org/0000-0001-7784-6600 (Sujan Pal)

Theorem 1.2. Let G be a countable abelian group, let $j \in \mathbb{N}$ and let $(y_{\alpha})_{\alpha \in \mathcal{F}}$ be an IP-set in \mathbb{Z}^j . Let $F \subset P(\mathbb{Z}^j, \mathbb{Z})$ and $A \subset \mathbb{Z}$ be a central set in \mathbb{Z} . Then there exist an IP-set $(x_{\alpha})_{\alpha \in \mathcal{F}}$ in \mathbb{Z} and a sub-IP-set $(z_{\alpha})_{\alpha \in \mathcal{F}}$ of $(y_{\alpha})_{\alpha \in \mathcal{F}}$ such that

$$\forall f \in F$$
 $\forall \beta \in \mathcal{F}$ $x_{\beta} + f(z_{\beta}) \in A.$

Both theorems have natural generalizations over arbitrary countable commutative groups. In fact, Hindman, Maleki and Strauss [13] extended the theorem 1.1 for arbitrary semigroup considering countably many sequences at a time. Further De, Hindman and Strauss [7] extended theorem 1.1 considering arbitrary many sequences at a time. In this article, we present only the commutative version.

Theorem 1.3. [7, Theorem 2.2] Let (S, +) be a commutative semigroup and let C be a central subset of S. Then there exist functions $\alpha : \mathcal{P}_f(S^{\mathbb{N}}) \to S$ and $H : \mathcal{P}_f(S^{\mathbb{N}}) \to \mathcal{P}_f(\mathbb{N})$ such that

- (1) If $F, G \in \mathcal{P}_f(S^{\mathbb{N}})$ and $F \subsetneq G$ then $\max H(F) < \min H(G)$ and
- (2) If $m \in \mathbb{N}$, $G_1, G_2, ..., G_m \in \mathcal{P}_f(S^{\mathbb{N}})$; $G_1 \subseteq G_2 \subseteq ... \subseteq G_m$; and for each $i \in \{1, 2, ..., m\}$, $(y_{i,n}) \in G_i$, then

$$\sum_{i=1}^{m} \left(\alpha \left(G_{i} \right) + \sum_{t \in H(G_{i})} y_{i,t} \right) \in C.$$

A very natural question arises here: does there exist a polynomial generalization of Theorem 1.3 in the direction of Theorem 1.2. In [9] Goswami, Baglini and Patra answered this question affirmatively.

Theorem 1.4. [9, Theorem 11] Let A be a central set and $T \in \mathcal{P}_f(\mathbb{P})$. Then there exist functions $\alpha : \mathcal{P}_f(\mathbb{N}^\mathbb{N}) \to \mathbb{N}$ and $H : \mathcal{P}_f(\mathbb{N}^\mathbb{N}) \to \mathcal{P}_f(\mathbb{N})$, such that

- (1) If $F \subseteq G$ are in $\mathcal{P}_f(\mathbb{N}^{\mathbb{N}})$, then H(F) < H(G) and
- (2) For any $n \in \mathbb{N}$, $G_1 \subseteq G_2 \subseteq ... \subseteq G_n$ in $\mathcal{P}_f(\mathbb{N}^\mathbb{N})$, we have for each $i \in \{1, 2, ..., n\}$, $f_i \in G_i$, and for all $P \in T$,

$$\sum_{i=1}^{n} \alpha(G_i) + P\left(\sum_{i=1}^{n} \sum_{t \in H(G_i)} f_i(t)\right) \in A.$$

Another direction of the Central Sets Theorem was due to Hindman and Leader [12]. The authors introduced the notion of central set near zero for dense subsemigroups of $(\mathbb{R}, +)$. In fact, where as central sets live at infinity, central sets near zero live near zero and satisfy conclusions similar to those of central sets.

Theorem 1.5. Let S be a dense subsemigroup of $(\mathbb{R}, +)$. For each $i \in \mathbb{N}$, let $(y_{i,n})_{n=1}^{\infty}$ be a sequence in S converging to zero in the usual topology of \mathbb{R} . Let C be a central set near zero in S. Then there exist sequences $(a_n)_{n=1}^{\infty}$ in S converging to zero in the usual topology of \mathbb{R} , and a sequence $(H_n)_{n=1}^{\infty}$ in $\mathcal{P}_f(\mathbb{N})$ such that

- (1) for all n, $\max H_n < \min H_{n+1}$ and
- (2) for all $F \in \mathcal{P}_f(\mathbb{N})$ and all $i \in \{1, 2, ..., l\}$,

$$\sum_{n\in F} \left(a_n + \sum_{t\in H_n} y_{i,t} \right) \in C.$$

Proof. [12, Theorem 4.11]. □

The polynomial generalization of the above theorem was established in [5].

Theorem 1.6. Let (S, +) be a dense subsemigroup of $(\mathbb{R}, +)$ containing 0 such that $(S \cap (0, 1), \cdot)$ is a subsemigroup of $((0, 1), \cdot)$. For each $i \in \mathbb{N}$, let $(y_{i,n})_{n=1}^{\infty}$ be a sequence in S converging to zero in the usual topology of \mathbb{R} . Let A be a central set near zero in S and $L \in \mathcal{P}_f(\mathbb{P}(S, S))$. Then for any $\delta > 0$, there exist sequence $(a_n)_{n=1}^{\infty}$ in $S \cap (0, \delta)$ converging to zero in the usual topology of \mathbb{R} and a sequence $(H_n)_{n=1}^{\infty}$ in $\mathcal{P}_f(\mathbb{N})$ such that

- (1) for all n, $\max H_n < \min H_{n+1}$ and
- (2) for all $F \in \mathcal{P}_f(\mathbb{N})$ and all $i \in \{1, 2, ..., l\}$,

$$\left(\sum_{n\in F}a_n+P\left(\sum_{n\in F}\sum_{t\in H_n}y_{i,t}\right)\right)\in A.$$

for all $P \in L$.

In the present article, our aim is to provide a stronger form of the above theorem. The notation C_p^0 used in the following theorem will be defined in the second section.

Theorem 1.7. Let (S, +) be a dense subsemigroup of $(\mathbb{R}, +)$ containing 0 such that $(S \cap (0, 1), \cdot)$ is a subsemigroup of $((0, 1), \cdot)$. Let A be a C_p^0 set in S and $L \in \mathcal{P}_f(\mathbb{P}(S, S))$. Then for each $\delta \in (0, 1)$, there exist functions $\alpha_\delta : \mathcal{P}_f(\mathcal{T}_0) \to S$ and $H_\delta : \mathcal{P}_f(\mathcal{T}_0) \to \mathcal{P}_f(\mathbb{N})$ such that

- 1. $\alpha_{\delta}(F) < \delta$ for each $F \in \mathcal{P}_{f}(\mathcal{T}_{0})$,
- 2. If $F, G \in \mathcal{P}_f(\mathcal{T}_0)$, $F \subseteq G$, then $\max H_{\delta}(F) < \min H_{\delta}(G)$ and
- 3. If $n \in \mathbb{N}$ and $G_1, G_2, ..., G_n \in \mathcal{P}_f(\mathcal{T}_0)$, $G_1 \subsetneq G_2 \subsetneq \subsetneq G_n$. For each $f_i \in G_i$, i = 1, 2, ..., n, we have

$$\sum_{i\in\mathbb{I}}^{n}\alpha_{\delta}\left(G_{i}\right)+P\left(\sum_{i\in\mathbb{I}}^{n}\sum_{t\in H_{\delta}\left(G_{i}\right)}f_{i}\left(t\right)\right)\in A.$$

for all $P \in L$, Where

$$\mathcal{T}_0 = \{(x_n)_{n \in \mathbb{N}} \in S^{\mathbb{N}} : x_n \text{ converges to zero in usual topology of } \mathbb{R} \}.$$

Let (S,\cdot) be any discrete semigroup and βS be the set of all ultrafilters on S, where the points of S are identified with the principal ultrafilters. Then $\{\overline{A}:A\subseteq S\}$, where $\overline{A}=\{p\in\beta S:A\in p\}$ forms a closed basis for the topology on βS . With this topology βS becomes a compact Hausdorff space in which S is dense, called the Stone-Čech compactification of S. The operation of S can be extended to βS making $(\beta S,\cdot)$ a compact, right topological semigroup with S contained in its topological center. That is, for all $p\in\beta S$ the function $\rho_p:\beta S\to\beta S$ is continuous, where $\rho_p(q)=q\cdot p$ and for all $x\in S$, the function $\lambda_x:\beta S\to\beta S$ is continuous, where $\lambda_x(q)=x\cdot q$. For $p,q\in\beta S$ and $A\subseteq S$, $A\in p\cdot q$ if and only if $\{x\in S:x^{-1}A\in q\}\in p$, where $x^{-1}A=\{y\in S:x\cdot y\in A\}$. One can see [14] for an elementary introduction to the semigroup $(\beta S,\cdot)$ and its combinatorial applications. An element $p\in\beta S$ is called idempotent if $p\cdot p=p$. A subset $A\subseteq S$ is called central if and only if A is an element of an idempotent ultrafilter p.

Here we will work with dense subsemigroups $((0,1),\cdot)$, in this case one can define

$$0^+ = \bigcap_{\epsilon > 0} cl_{\beta(0,1)_d} (0,\epsilon).$$

 0^+ is two sided ideal of $(\beta(0,1)_d,\cdot)$, so contains the smallest ideal. It is also a subsemigroup of $(\beta\mathbb{R}_d,+)$. As a compact right topological semigroup, 0^+ has a smallest two sided ideal. $K(0^+)$ denotes the smallest ideal contained in 0^+ . Central sets near zero are the elements from the idempotent in $K(0^+)$.

In the case of a commutative semigroup S, a set $A \subseteq S$ is called J-set if for every $H \in \mathcal{P}_f(S^{\mathbb{N}})$, there exist $a \in S$ and $\beta \in \mathcal{P}_f(\mathbb{N})$ such that for all $f \in H$,

$$a + \sum_{t \in \beta} f(t) \in A.$$

Here, we present the polynomial version of the J-set, named as I_v -set.

Definition 1.8. [9, definition 3] Let $A \subseteq \mathbb{N}$. Then A is called a J_p -set if and only if for every $F \in \mathcal{P}_f(\mathbb{P})$ and every $H \in \mathcal{P}_f(\mathbb{N}^{\mathbb{N}})$, there exist $a \in \mathbb{N}$ and $\beta \in \mathcal{P}_f(\mathbb{N})$ such that for all $P \in F$ and all $f \in H$,

$$a + P\left(\sum_{t \in \beta} f(t)\right) \in A.$$

Theorem 1.9. Let $l, m \in \mathbb{N}$, and $A \subseteq \mathbb{N}$ be a J_p -set. For each $i \in \{1, 2, ..., l\}$, let $\left(x_{\alpha}^i\right)_{\alpha \in \mathcal{P}_f(\mathbb{N})}$ be an IP-set in \mathbb{N} . Then for all finite $F \in \mathcal{P}_f(\mathbb{P})$, there exist $a \in \mathbb{N}$ and $\beta \in \mathcal{P}_f(\mathbb{N})$ such that $\min \beta > m$. We have

$$a + P\left(x_{\beta}^{i}\right) \in A$$

for all $i \in \{1, 2,, l\}$ and $P \in F$.

Proof. [9, Lemma 10]. □

2. Main results

Let (S, +) be a dense subsemigroup of $(\mathbb{R}, +)$ containing 0 such that $(S \cap (0, 1), \cdot)$ is a subsemigroup of $((0, 1), \cdot)$. In our work, we consider the set of polynomials $\mathbb{P}(S, S)$ from S to S, whose coefficients are in \mathbb{Z} and f(0) = 0 for all $f \in \mathbb{P}$. In the following definition \mathcal{T}_0 denotes the set of all sequences in S that converge to zero.

Definition 2.1. Let (S, +) be a dense subsemigroup of $(\mathbb{R}, +)$ containing 0 such that $(S \cap (0, 1), \cdot)$ is a subsemigroup of $((0, 1), \cdot)$ and let $A \subseteq S$. Then A is a J-set near zero if and only if whenever $F \in P_f(\mathcal{T}_0)$ and $\delta > 0$, there exist $a \in S \cap (0, \delta)$ and $H \in P_f(\mathbb{N})$ such that for each $f \in F$,

$$a + \sum_{t \in H} f(t) \in A.$$

The following is the polynomial version of J-sets near zero. We call it J_v -set near zero.

Definition 2.2. Let (S, +) be a dense subsemigroup of $(\mathbb{R}, +)$ containing 0 such that $(S \cap (0, 1), \cdot)$ is a subsemigroup of $((0, 1), \cdot)$. A set $A \subseteq S$ is called a J_p -set near zero whenever $F \in \mathcal{P}_f(\mathbb{P}(S, S))$, $H \in P_f(\mathcal{T}_0)$ and $\delta > 0$, there exist $a \in S \cap (0, \delta)$ and $\beta \in P_f(\mathbb{N})$ such that for each $f \in H$ and all $P \in F$,

$$a + P\left(\sum_{t \in \beta} f(t)\right) \in A.$$

We can choose $\beta \in P_f(\mathbb{N})$ in the above definition to be greater than any presumed positive integers.

Lemma 2.3. Let (S, +) be a dense subsemigroup of $(\mathbb{R}, +)$ containing 0 such that $(S \cap (0, 1), \cdot)$ is a subsemigroup of $((0, 1), \cdot)$. Let $m \in \mathbb{N}$, and $A \subseteq S$ be a J_p -set near zero. Then for each $F \in \mathcal{P}_f(\mathbb{P}(S, S))$, $H \in P_f(\mathcal{T}_0)$ and $\delta > 0$, there exist $a \in S \cap (0, \delta)$ and $\beta \in P_f(\mathbb{N})$ with $\min \beta > m$, we have

$$a + P\left(\sum_{t \in \beta} f(t)\right) \in A$$

for each $f \in H$ and for all $P \in F$.

Proof. Let $m \in \mathbb{N}$, $F \in \mathcal{P}_f(\mathbb{P}(S,S))$, $H \in P_f(\mathcal{T}_0)$ and $\delta > 0$, for each $f \in H$ define $g_f \in P_f(\mathcal{T}_0)$ by $g_f(t) = f(t+m)$, $t \in \mathbb{N}$. For this $K = \{g_f : f \in H\} \in P_f(\mathcal{T}_0)$, pick $a \in S \cap (0,\delta)$ and $\gamma \in P_f(\mathbb{N})$ such that

$$a + P\left(\sum_{t \in \gamma} g_f(t)\right) \in A$$

for each $f \in H$ and all $P \in F$. And let $\beta = m + \gamma$, we get our desire result. \square

In the following discussion we shall continue to consider (S, +) as a dense subsemigroup of $(\mathbb{R}, +)$ containing 0 such that $(S \cap (0, 1), \cdot)$ is a subsemigroup of $((0, 1), \cdot)$. Let $(S_i)_{i=1}^{\infty}$ be a sequence in S converging to zero and $(S_{\alpha})_{\alpha \in \mathcal{P}_f(\mathbb{N})}$ be the IP-set generated by $(S_i)_{i=1}^{\infty}$, where $S_{\alpha} = \sum_{i \in \alpha} S_i$, $\alpha \in \mathcal{P}_f(\mathbb{N})$. The following is an alternative version of the J_v -set near zero.

Definition 2.4. Let $l \in \mathbb{N}$, $A \subseteq S$ be a J_p -set near zero if for each $i \in \{1, 2, ..., l\}$ and $\left(x_{\alpha}^i\right)_{\alpha \in \mathcal{P}_f(\mathbb{N})}$ an IP-set in $S \cap (0, 1)$, we have for any finite $F \in \mathcal{P}_f(\mathbb{P}(S, S))$, there exist $a \in S$ and $\beta \in \mathcal{P}_f(\mathbb{N})$ such that

$$a + P(x_{\beta}^i) \in A$$

for all $i \in \{1, 2, ..., l\}$ and $P \in F$.

Let us denote by \mathcal{J}_p^0 the set of all ultrafilters, whose members are J_p - set near zero, i.e,

$$\mathcal{J}_p^0 = \left\{ p \in \beta S_d : \text{for all } A \in p, A \text{ is a } J_p\text{-set near zero} \right\}.$$

We shall denote by $E(\mathcal{J}_p^0)$ the set of all idempotents in \mathcal{J}_p^0 . The following theorem shows that \mathcal{J}_p^0 is in fact non empty. The authors gratefully acknowledge Dr. Sayan Goswami for providing the proof of the following theorem.

Before we proceed to prove $\mathcal{J}_{p}^{0} \neq \emptyset$, we need to recall the Polynomial Hales-Jewett Theorem.

2.1. Revisiting Polynomial Hales-Jewett Theorem

Now we pause to recall the Hales-Jewett theorem and it's polynomial extension. Let $\omega = \mathbb{N} \cup \{0\}$, where \mathbb{N} is the set of positive integers. Given a nonempty set \mathbb{A} called alphabet, a finite word is an expression of the form $w = a_1 a_2 \dots a_n$ with $n \geq 1$ and $a_i \in \mathbb{A}$. The quantity n is called the length of w and denoted |w|. Let v (a variable) be a letter not belonging to \mathbb{A} . By a variable word over \mathbb{A} we mean a word w over $\mathbb{A} \cup \{v\}$ that has at least one occurrence of v. For any variable word w, w (a) is the result of replacing each occurrence of v by a.

The following theorem is known as Hales-Jewett theorem, is due to A. W. Hales and R. I. Jewett.

Theorem 2.5. [11, Hales-Jewett Theorem (1963)] For all values $t, r \in \mathbb{N}$, there exists a number HJ(r, t) such that, if $N \ge HJ(r, t)$ and $[t]^N$ is r colored then there exists a variable word w such that $\{w(a) : a \in [t]\}$ is monochromatic.

The word space $[t]^N$ is called Hales-Jewett space or H-J space. The number HJ (r, t) is called Hales-Jewett number.

For $q, N \in \mathbb{N}$, $Q = [q]^N$, where $[q] = \{-q, \dots, -1, 0, 1, \dots, q\}$, $\emptyset \neq \gamma \subseteq [N]$ and $-q \leq x \leq q$, $a \oplus x\gamma$ is defined to be the vector b in Q obtained by setting $b_i = x$ if $i \in \gamma$ and $b_i = a_i$ otherwise.

In the statement of theorem [15, Polynomial Hales-Jewett Theorem], we have $a \in Q$ so that $a = \langle \vec{a}_1, \vec{a}_2, \ldots, \vec{a}_d \rangle$ where for $j \in \{1, 2, \ldots, d\}$, $\vec{a}_j \in [q]^{N^j}$ and we have $\gamma \subseteq [N] = \{1, 2, \ldots, N\}$. Given $j \in \{1, 2, \ldots, d\}$, let $\vec{a}_j = \langle a_{j,\vec{i}} \rangle_{\vec{i} \in N^j}$. Then $a \oplus x_1 \gamma \oplus x_2 (\gamma \times \gamma) \oplus \ldots \oplus x_d \gamma^d = b$ where $b = \langle \vec{b}_1, \vec{b}_2, \ldots, \vec{b}_d \rangle$ and for $j \in \{1, 2, \ldots, d\}$, $\vec{b}_j = \langle b_{j,\vec{i}} \rangle_{\vec{i} \in N^j}$ where

$$b_{j,\vec{i}} = \begin{cases} x_j & \text{if } \vec{i} \in \gamma^i \\ a_{j,\vec{i}} & \text{otherwise.} \end{cases}$$

Theorem 2.6. [3, 15, Polynomial Hales-Jewett Theorem] For any q, k, d there exists $N(q, k, d) \in \mathbb{N}$ such that whenever $Q = Q(N) = [q]^N \times [q]^{N \times N} \times \cdots \times [q]^{N^d}$ is k-colored there exist $a \in Q$ and $\gamma \subseteq [N]$ such that the set of points

$$\{a \oplus x_1 \gamma \oplus x_2 (\gamma \times \gamma) \oplus \cdots \oplus x_d \gamma^d : x_i \in [q]\}$$

is monochromatic.

This N is said to be the P.H.J. number.

To prove $\mathcal{J}_p^0 \neq \emptyset$, we will use piecewise syndetic set near zero. So here we recall the defination and an important result.

Definition 2.7. Let (S, +) be a dense subsemigroup of $(\mathbb{R}, +)$ containing 0 such that $(S \cap (0, 1), \cdot)$ is a subsemigroup of $((0, 1), \cdot)$. A subset A of S is piecewise syndetic near zero if there exist sequences $(F_n)_{n=1}^{\infty}$ and $(\delta_n)_{n=1}^{\infty}$ such that

- 1. For each $n \in \mathbb{N}$, $F_n \in \mathcal{P}_f\left(S \cap \left(0, \frac{1}{n}\right)\right)$ and $\delta_n \in \left(0, \frac{1}{n}\right)$.
- 2. for all $G \in \mathcal{P}_f(S)$ and all $\mu > 0$ there is some $x \in (0, \mu) \cap S$ such that for all $n \in \mathbb{N}$.

$$(G\cap (0,\delta_n))+x\subseteq \bigcup_{t\in F_n}(-t+A)\,.$$

Theorem 2.8. [12, Theorem 3.5] Let (S, +) be a dense subsemigroup of $(\mathbb{R}, +)$ containing 0 such that $(S \cap (0, 1), \cdot)$ is a subsemigroup of $((0, 1), \cdot)$. Let $A \subseteq S$, then $K \cap \overline{A} \neq \emptyset$ if and only if A is piecewise syndetic near zero.

Now we are in the position to prove $\mathcal{J}_p^0 \neq \emptyset$. The proof is similar to the proof of [5, Theorem 9].

Theorem 2.9. Let (S, +) be a dense subsemigroup of $(\mathbb{R}, +)$ containing 0 such that $(S \cap (0, 1), \cdot)$ is a subsemigroup of $((0, 1), \cdot)$.

Then
$$K(0^+) \subseteq \mathcal{J}_v^0$$
, i.e. $\mathcal{J}_v^0 \neq \emptyset$.

Proof. We shall show that in fact every piecewise syndetic set near zero is a J_p set near zero. Let A be a piecewise syndetic set near zero. We assume that $\langle F_n \rangle_{n=1}^{\infty}$ and $\langle \delta_n \rangle_{n=1}^{\infty}$ be the sequences for the set A as per definition 2.7. Fixed a n, and let $|F_n| = r$. Let $F \in \mathcal{P}_f(S,S)$ be the given set of polynomials, and let [q] be the set of coefficients of F. Let $\{\langle S_i^j \rangle_{i=1}^{\infty}: j=1,2,\ldots,l\}$ be a collection of sequences converging to 0. Now we apply a shadow alphabet argument.

For each j = 1, 2, ..., l, define $[q_j]$ to be a copy of [q] {i.e., $[q_j] = \{c_j : c \in [q]\}\}$ }. Now redefine $[q] = \bigcup_{j=1}^{l} [q_j]$.

Let *F* be any given system of finitely many polynomials each of which vanishes at 0 and let $\{\langle S_i^j \rangle_i^{\infty} : j = 1, 2, ..., l\}$ be a collection of sequences converging to 0.

As above [q] be the set of coefficients of the polynomials in F and $\{[q_j]: j=1,2,\ldots,l\}$ be a sequence of finite sets such that $[q]=\cup_{j=1}^l [q_j]$. Let N=N([q],r,d) be the P.H.J number guaranteed by Theorem [PHJ] and let

$$Q = [q]^N \times [q]^{N \times N} \times \ldots \times [q]^{N^d}.$$

Now define a map $C: Q \rightarrow S$ by

$$C\left(\langle a_{i}\rangle_{i=1}^{N}, \langle a_{i}, a_{j}\rangle_{i,j=1,1}^{N,N}, \dots, \langle a_{i_{1}}, \dots, a_{i_{d}}\rangle_{i_{1},\dots,i_{d}=1,\dots,1}^{N,\dots,N}\right)$$

$$= \sum_{i=1}^{N} a_{i}S_{i}' + \sum_{i_{1},i_{2}=1}^{N} a_{i_{1}}a_{i_{2}}S_{i_{1}}'S_{i_{2}}' + \dots + \sum_{i_{1},\dots,i_{d}=1}^{N} a_{i_{1}}\dots a_{i_{d}}S_{i_{1}}'\dots S_{i_{d}}'$$

where $S'_k = S^i_k$ whenever $a_k \in [q_i]$.

Then C(Q) is a finite set and hence for any $\epsilon > 0$, there exists an element $x \in S \cap (0, \epsilon)$ such that $(C(Q) \cap (0, \delta_n)) + x \subseteq \bigcup_{t \in F_n} -t + A$.

Then for any $c \in Q$, $C(c) + x \in \bigcup_{t \in F_n} -t + A$, provided $C(c) \le \delta_n$.

Let $\chi: Q \to \{1, 2, ..., r\}$ be a coloring of Q such that

 $\chi(c) = \min\{i : C(c) + x \in -t_i + A, t_i \in F_n, C(c) < \delta_n\}$

i,e, $\chi(c) = min\{i : C(c) + x + t_i \in A, t_i \in F_n, C(c) < \delta_n\}$

Where $F_n = \{t_1, \ldots, t_r\} \in \mathcal{P}_f\left(S \cap \left(0, \frac{1}{n}\right)\right)$.

Hence there exists $t \in F_n$ such that by Theorem [PHJ], there exist $a \in Q$ and $\gamma \in \mathcal{P}_f(\mathbb{N})$ such that

$$x+t+\left(C\left(\left\{a\oplus x_1\gamma\oplus x_2\left(\gamma\times\gamma\right)\oplus\ldots\oplus x_d\gamma^d:x_i\in[q]\right\}\right)\cap(0,\delta_n)\right)\subseteq A.$$

Now for suitably choice of x_i 's leads to the conclusion {Note that for each choice of $x_1, x_2, ..., x_d \in [q_i]$ gives us different IP sets $(S_\alpha^i)_{\alpha \in \mathcal{P}_f(\mathbb{N})}$.}

$$\left\{b+P\left(\sum_{t\in\gamma}S_t^j\right)\cap(0,\delta_n):j\in\{1,2,\ldots,l\},P\in F\right\}\subseteq A$$

for some suitable constant $b \in S$.

Since the polynomials from F vanishes at 0. And $\{\langle S_i^j \rangle_{i=1}^{\infty} : j=1,2,\ldots,l\}$ converging to 0. Then we can assume for the $\delta_n > 0$, $P(\sum_{t \in \gamma} S_t^j) \subseteq (0,\delta_n)$.

For all $j \in \{1, 2, ..., l\}, P \in F$.

Therefore

$$\left\{b + P\left(\sum_{t \in \mathcal{V}} S_t^j\right) : j \in \{1, 2, \dots, l\}, P \in F\right\} \subseteq A$$

for some suitable constant $b \in S$.

We have if A be an piecewise syndetic set near zero then, there exists $b \in S$ such that $b + P\left(\sum_{t \in \gamma} S_t^j\right) = b + P\left(S_{\gamma}^j\right) \in A$, for all $j \in \{1, 2, ..., l\}$, $P \in F$.

By theorem 2.8, $\overline{A} \cap K(0^+(S)) \neq \emptyset$, then there exists $p \in \overline{A} \cap K(0^+(S))$ so $p \in \mathcal{J}_p^0$. \square

We know that

$$J(S) = \{ p \in \beta S : \forall A \in p, A \text{ is a J-set} \}$$

is a two sided ideal of βS .

In [4, Theorem 3.9] Bayatmanesh, Tootkaboni proved that

$$J_0(S) = \{ p \in \beta S : \forall A \in p, A \text{ is a J-set near zero} \}$$

is also a two sided ideal of 0^+ .

After defining J_p -set, Goswami, Baglini and Patra demonstated that

$$\mathcal{J}_p = \{ p \in \beta \mathbb{N} : \text{for all } A \in p, A \text{ is a } J_p\text{-set} \}$$

is also a two sided ideal of $(\beta \mathbb{N}, +)[9, \text{ Theorem } 8]$.

So we expect that \mathcal{J}_p^0 also a two sided ideal of 0^+ . The proof is in the following.

Theorem 2.10. Let (S, +) be a dense subsemigroup of $(\mathbb{R}, +)$ containing 0 such that $(S \cap (0, 1), \cdot)$ is a subsemigroup of $((0, 1), \cdot)$. Then \mathcal{J}_p^0 is a two sided ideal of 0^+ .

Proof. Let $p \in \mathcal{J}_p^0$ and $q \in 0^+$ (S). We want to show $p+q,q+p \in \mathcal{J}_p^0$. To show, $p+q \in \mathcal{J}_p^0$, let $A \in p+q$, so that $B = \{x \in S : -x + A \in q\} \in p$. Hence B is a J_p -set near zero. Then for any $F \in \mathcal{P}_f(\mathbb{P}(S,S))$, $H \in \mathcal{P}_f(\mathcal{T}_0)$ and $\delta > 0$, there exist $a \in S \cap (0, \frac{\delta}{2})$ and $\beta \in \mathcal{P}_f(\mathbb{N})$ such that for each $f \in H$ and all $P \in F$,

$$a + P\left(\sum_{t \in \beta} f(t)\right) \in B.$$

. Then

$$\bigcap_{f \in F} \left\{ -\left(a + P\left(\sum_{t \in \beta} f(t)\right)\right) + A \right\} \in q.$$

Let us choose

$$y \in \left[\bigcap_{f \in F} \left\{ -\left(a + P\left(\sum_{t \in \beta} f(t)\right)\right) + A\right\} \right] \cap \left(0, \frac{\delta}{2}\right).$$

So, for all $f \in F$, and all $P \in F$,

$$y + a + P\left(\sum_{t \in \beta} f(t)\right) \in A,$$

Hence for any $F \in \mathcal{P}_f(\mathbb{P}(S,S))$, $H \in \mathcal{P}_f(\mathcal{T}_0)$ and $\delta > 0$, there exist $x = y + a \in S \cap (0,\delta)$ and $\beta \in \mathcal{P}_f(\mathbb{N})$ such that for each $f \in H$ and all $P \in F$,

$$x + P\left(\sum_{t \in \beta} f(t)\right) \in A.$$

Therefore *A* is a J_p -set near zero. Since *A* is arbitrary element from p+q. So, $p+q \in \mathcal{J}_p^0$. Now, If $A \in q+p$, then $B = \{x \in S : -x + A \in p\} \in q$. Choose $x \in B \cap \left(0, \frac{\delta}{2}\right), -x + A \in p$. So, -x + A is a J_p -set near zero.

Therefore for any $F \in \mathcal{P}_f(\mathbb{P}(S,S))$, $H \in P_f(\mathcal{T}_0)$ and $\delta > 0$, there exist $a \in S \cap (0, \frac{\delta}{2})$ and $\beta \in P_f(\mathbb{N})$ such that for each $f \in H$ and all $P \in F$,

$$a + P\left(\sum_{t \in \beta} f(t)\right) \in -x + A.$$

Hence for all $f \in F$, and all $P \in F$,

$$x + a + P\left(\sum_{t \in \beta} f(t)\right) \in A.$$

Let us define, $z = x + a \in S \cap (0, \delta)$

So for any $F \in \mathcal{P}_f(\mathbb{P}(S,S))$, $H \in \mathcal{P}_f(\mathcal{T}_0)$ and $\delta > 0$, there exist $z \in S \cap (0,\delta)$ and $\beta \in \mathcal{P}_f(\mathbb{N})$ such that for each $f \in H$ and all $P \in F$,

$$z + P\left(\sum_{t \in \beta} f(t)\right) \in A.$$

Therefore *A* is a J_p -set near zero. Since *A* is arbitrary element from q + p. So $q + p \in \mathcal{J}_p^0$. \square

Lemma 2.11. Let (S, +) be a dense subsemigroup of $(\mathbb{R}, +)$ containing 0 such that $(S \cap (0, 1), \cdot)$ is a subsemigroup of $((0, 1), \cdot)$. Then \mathcal{J}_p^0 is closed subset of 0^+ .

Proof. Let $p \in 0^+ \setminus \mathcal{J}_p^0$, then there exists $A \in p$ such that A is not a J_p -set. Then $\overline{A} \cap \mathcal{J}_p^0 = \emptyset$ and $p \in \overline{A}$. So p is not a limit point of \mathcal{J}_p^0 . So the proof is done.

Where
$$\overline{A} = \{ p \in \beta S : A \in p \}$$
. \square

By Ellis' theorem [14, Corollary 2.39], a straightforward consequence of Theorem 2.10 and lemma 2.11 is that there are idempotent ultrafilters, and even minimal idempotent ultrafilters, in \mathcal{J}_p^0 . We denote the set of all idempotents in \mathcal{J}_p^0 by $E(\mathcal{J}_p^0)$.

Definition 2.12. $A \subseteq S$ is said to be a C_p^0 set in S if $A \in p$ for some ultrafilter $p \in E(\mathcal{J}_p^0)$.

The central sets theorem near zero originally proved by Hindman and Leader in [12]. Recently the Central Set Theorem was extended by Goswami, Baglini and Patra for polynomials in [9].

In [9] the authors introduce C_p -set by defining that, C_p -set is the member of the ultrafilters in $E(\mathcal{J}_p) = \{p \in \mathcal{J}_p : p \text{ is an idempotent ultrafilter}\}$.

Theorem 2.13. Let A be a C_p -set and let $F \in \mathcal{P}_f(\mathbb{P})$. There exist functions $\alpha : \mathcal{P}_f(\mathbb{N}^\mathbb{N}) \to S$ and $H : \mathcal{P}_f(\mathbb{N}^\mathbb{N}) \to \mathcal{P}_f(\mathbb{N})$ such that

- 1. If $G, K \in \mathcal{P}_f(\mathbb{N}^{\mathbb{N}})$ and $G \subseteq K$ then $\max H(G) < \min H(K)$ and
- 2. If $n \in \mathbb{N}$, $G_1, G_2, ..., G_n \in \mathcal{P}_f(\mathbb{N}^{\mathbb{N}})$; $G_1 \subsetneq G_2 \subsetneq ... \subsetneq G_n$; and for each $i \in \{1, 2, ..., n\}$, $f_i \in G_i$, then for all $P \in F$,

$$\sum_{i=1}^{n} \alpha(G_i) + P\left(\sum_{i=1}^{n} \sum_{t \in H(G_i)} f_i(t)\right) \in A.$$

Proof. [9, Theorem 11]. \square

Following them we proved the Stronger Polynomial Central sets theorem near zero. Before that let's recall some notions.

Definition 2.14. *Let* (S, +) *be a dense subsemigroup of* $(\mathbb{R}, +)$ *containing* 0 *such that* $(S \cap (0, 1), \cdot)$ *is a subsemigroup of* $((0, 1), \cdot)$.

- 1. $\mathcal{J}_p^0 = \{ p \in \beta S_d : \text{for all } A \in p, A \text{ is a } J_p \text{-set near zero } \}.$
- 2. $E\left(\mathcal{J}_{p}^{0}\right) = \left\{p \in \mathcal{J}_{p}^{0} : p \text{ is an idempotent ultrafilter}\right\}$.
- 3. A set $A \subseteq S$ is called C_p^0 set if $A \in p \in E(\mathcal{J}_p^0)$.

We are now ready to prove our main result, Theorem 1.7. Since $K(0^+) \subseteq \mathcal{J}_p^0$, every central set near zero is also a C_p^0 set.

Theorem 2.15. Let (S, +) be a dense subsemigroup of $(\mathbb{R}, +)$ containing 0 such that $(S \cap (0, 1), \cdot)$ is a subsemigroup of $((0, 1), \cdot)$. Let A be a C_p^0 set in S is particularly central set near zero, and $L \in \mathcal{P}_f(\mathbb{P}(S, S))$. Then for each $\delta \in (0, 1)$, there exist functions $\alpha_\delta : \mathcal{P}_f(\mathcal{T}_0) \to S$ and $H_\delta : \mathcal{P}_f(\mathcal{T}_0) \to \mathcal{P}_f(\mathbb{N})$ such that

- 1. $\alpha_{\delta}(F) < \delta$ for each $F \in \mathcal{P}_f(\mathcal{T}_0)$,
- 2. *if* $F, G \in \mathcal{P}_f(\mathcal{T}_0)$ *and* $F \subseteq G$, then $\max H_{\delta}(F) < \min H_{\delta}(G)$ *and*

3. If $n \in \mathbb{N}$ and $G_1, G_2, ..., G_n \in \mathcal{P}_f(\mathcal{T}_0)$, $G_1 \subsetneq G_2 \subsetneq \subsetneq G_n$ and $f_i \in G_i, i = 1, 2, ..., n$. then

$$\sum_{i=1}^{n} \alpha_{\delta}(G_i) + P\left(\sum_{i=1}^{n} \sum_{t \in H_{\delta}(G_i)} f_i(t)\right) \in A$$

for all $P \in L$.

Proof. Choose an idempotent $p \in \mathcal{J}_p^0$ with $A \in p$. For $\delta > 0$ and $F \in \mathcal{P}_f(\mathcal{T}_0)$, we shall use induction on |F| and define $\alpha_\delta(F) \in S$ and $H_\delta(F) \in \mathcal{P}_f(\mathbb{N})$ for witnessing (1),(2),(3).

At first, let $F = \{f\}$. As p is idempotent, the set $A^* = \{x \in A : -x + A \in p\}$ belongs to p [14, corollary 4.14], hence it is a J_p - set near zero. So for $\delta > 0$ there exist $H \in \mathcal{P}_f(\mathbb{N})$ and $a \in S \cap (0, \delta)$ such that

$$\forall P \in L, \ a + P\left(\sum_{t \in H} f(t)\right) \in A^*.$$

By setting $\alpha_{\delta}(\{f\}) = a$ and $H_{\delta}(\{f\}) = H$, conditions (1),(2),(3) are satisfied.

Now assume that |F| > 1 and $\alpha_{\delta}(G)$ and $H_{\delta}(G)$ have been defined for all proper subsets G of F. Let $K_{\delta} = \bigcup \{H_{\delta}(G) : \emptyset \neq G \subseteq F\} \in \mathcal{P}_{f}(\mathbb{N}), m = \max K_{\delta} \text{ and } K_{\delta} \in \mathcal{F}_{\delta}(G) : \emptyset \neq G \subseteq F\}$

$$R = \left\{ \begin{array}{l} \sum_{i=1}^{n} \sum_{t \in H_{\delta}(G_i)} f_i(t) \mid n \in \mathbb{N}, \\ \emptyset \neq G_1 \subsetneq G_2 \subsetneq \cdots \subsetneq G_n \subsetneq F, \\ f_i \in G_i, \forall i = 1, 2, ..., n. \end{array} \right\}$$

$$M_{\delta} = \left\{ \begin{array}{l} \sum_{i=1}^{n} \alpha_{\delta}\left(G_{i}\right) + P\left(\sum_{i=1}^{n} \sum_{t \in H_{\delta}\left(G_{i}\right)} f_{i}\left(t\right)\right) \mid n \in \mathbb{N}, \\ \emptyset \neq G_{1} \subsetneq G_{2} \subsetneq \cdots \subsetneq G_{n} \subsetneq F, \\ f_{i} \in G_{i}, \forall i = 1, 2, ..., n, P \in L. \end{array} \right\}$$

Then R and M_{δ} are finite subsets of S and by inductive hypothesis, $M_{\delta} \subseteq A^*$. Let

$$B = A^* \cap \left(\bigcap_{x \in M_{\Delta}} (-x + A^*)\right) \in p.$$

For $P \in L$ and $d \in R$, let us define the polynomial $Q_{P,d} \in \mathbb{P}(S,S)$ by

$$Q_{Pd}(y) = P(y+d) - P(d)$$

the coefficients of P come from \mathbb{Z} .

Let $M = L \cup \{Q_{P,d} \mid P \in L \text{ and } d \in R\}.$

From Lemma 2.3, there exist $\gamma \in \mathcal{P}_f(\mathbb{N})$ with min $(\gamma) > m$ and $a \in S \cap (0, \delta)$ such that

$$\forall Q \in M, f \in F, \ a + Q\left(\sum_{t \in \gamma} f(t)\right) \in B.$$

We set $\alpha_{\delta}(F) = a < \delta$ and $H_{\delta}(F) = \gamma$. So (1) is satisfies immediately. Now we are left to verify conditions (2) and (3).

Since min $(\gamma) > m$, (2) is satisfies.

to verify (3), let $n \in \mathbb{N}$ and $G_1, G_2, ..., G_n \in \mathcal{P}_f(\mathcal{T}_0)$, $G_1 \subsetneq G_2 \subsetneq \subsetneq G_n = F$ and $f_i \in G_i, i = 1, 2, ..., n$ and let $P \in L$.

For n = 1, then $\alpha_{\delta}(G_n) + P\left(\sum_{t \in H_{\delta}(G_n)} f_n(t)\right) = a + P\left(\sum_{t \in \gamma} f(t)\right) \in B \subseteq A^*$. If n > 1, then

$$\sum_{i=1}^{n} \alpha_{\delta}(G_i) + P\left(\sum_{i=1}^{n} \sum_{t \in H_{\delta}(G_i)} f_i(t)\right)$$

$$=\alpha_{\delta}\left(G_{n}\right)+\sum_{i=1}^{n-1}\alpha_{\delta}\left(G_{i}\right)+P\left(\sum_{t\in H_{\delta}\left(G_{n}\right)}f_{i}\left(t\right)+\sum_{i=1}^{n-1}\sum_{t\in H_{\delta}\left(G_{i}\right)}f_{i}\left(t\right)\right)$$

$$= a + \sum_{i=1}^{n-1} \alpha_{\delta}(G_i) + P\left(\sum_{t \in \gamma} f_n(t) + \sum_{i=1}^{n-1} \sum_{t \in H_{\delta}(G_i)} f_i(t)\right)$$

(Since $G_n = F$ and $\alpha_{\delta}(F) = a$, $H_{\delta}(F) = \gamma$.)

$$= a + \sum_{i=1}^{n-1} \alpha_{\delta}(G_{i}) + P\left(\sum_{i=1}^{n-1} \sum_{t \in H_{\delta}(G_{i})} f_{i}(t)\right) +$$

$$P\left(\sum_{t \in \gamma} f_{n}(t) + \sum_{i=1}^{n-1} \sum_{t \in H_{\delta}(G_{i})} f_{i}(t)\right) - P\left(\sum_{i=1}^{n-1} \sum_{t \in H_{\delta}(G_{i})} f_{i}(t)\right)$$

$$= a + y + Q_{P,d}\left(\sum_{t \in \gamma} f_{n}(t)\right)$$

where $y = \sum_{i=1}^{n-1} \alpha_{\delta}(G_i) + P\left(\sum_{i=1}^{n-1} \sum_{t \in H_{\delta}(G_i)} f_i(t)\right) \in M_{\delta}$, $d = \sum_{i=1}^{n-1} \sum_{t \in H_{\delta}(G_i)} f_i(t) \in R$, and $P \in L$ so $Q_{P,d} \in M$. So we have

$$a + Q_{p,d}\left(\sum_{t \in \gamma} f_n(t)\right) \in B \in -y + A^*$$

Therefore

$$\sum_{i=1}^{n} \alpha_{\delta}\left(G_{i}\right) + P\left(\sum_{i=1}^{n} \sum_{t \in H_{\delta}\left(G_{i}\right)} f_{i}\left(t\right)\right) \in A^{*}.$$

This completes the induction argument, hence the proof. \Box

We can also generalize this theorem along Phulara's way easily.

Theorem 2.16. Let (S, +) be a dense subsemigroup of $(\mathbb{R}, +)$ containing 0 such that $(S \cap (0, 1), \cdot)$ is a subsemigroup of $((0, 1), \cdot)$. Let $(C_n)_{n \in \mathbb{N}}$ be decreasing family of C_p^0 sets in S such that all $C_i \in p \in E(\mathcal{F}_p^0)$ and $L \in \mathcal{P}_f(\mathbb{P}(S, S))$. Then for each $\delta \in (0, 1)$, there exist functions $\alpha_{\delta} : \mathcal{P}_f(\mathcal{T}_0) \to S$ and $H_{\delta} : \mathcal{P}_f(\mathcal{T}_0) \to \mathcal{P}_f(\mathbb{N})$ such that

1.
$$\alpha_{\delta}(F) < \delta$$
 for each $F \in \mathcal{P}_f(\mathcal{T}_0)$,

- 2. *if* $F, G \in \mathcal{P}_f(\mathcal{T}_0)$ *and* $F \subseteq G$, *then* $\max H_{\delta}(F) < \min H_{\delta}(G)$ *and*
- 3. If $n \in \mathbb{N}$ and $G_1, G_2, ..., G_n \in \mathcal{P}_f(\mathcal{T}_0)$, $G_1 \subseteq G_2 \subseteq \subseteq G_n$ and $f_i \in G_i, i = 1, 2, ..., n$. with $|G_1| = k$ then

$$\sum_{i\in\mathbb{I}}^{n}\alpha_{\delta}\left(G_{i}\right)+P\left(\sum_{i\in\mathbb{I}}^{n}\sum_{t\in H_{\delta}\left(G_{i}\right)}f_{i}\left(t\right)\right)\in C_{k}.$$

Acknowledgement. The second author acknowledge the Grant CSIR-UGC NET fellowship with file No. 09/106(0202)/2020-EMR-I. The authors also acknowledge the valuable suggestions and guidance of their supervisor, Prof. Dibyendu De.

References

- [1] V. Bergelson and N. Hindman, Ramsey theory in noncommutative semigroups, Trans. Am. Math. Soc. 330 (1992), 433–446.
- [2] V. Bergelson, J. H. Johnson Jr. and J. Moreira, New polynomial and multidimensional extensions of classical partition results, J. Comb. Theory Ser. A, 147: 119–154, 2017.
- [3] V. Bergelson and A. Leibman, Set-polynomials and polynomial extension of the Hales-Jewett Theorem, Annals of Mathematics, 150 (1999), 33–75.
- [4] E. Bayatmanesh and M. Akbari Tootkaboni, *Central Sets Theorem near zero*, Topology and its Applications, Volume 210, 1 September 2016, Pages 70-80.
- [5] A. Chakraborti and S. Goswami, Polynomial Cental Set Theorem Near Zero, February 2021, Semigroup Forum 102(2):1-7.
- [6] D. De and N. Hindman, Image partition regularity near zero, Discrete Mathematics 309 (2009), 3219-3232.
- [7] D. De, N. Hindman and D. Strauss, A new and stronger central sets theorem, Fundamenta Mathematicae 199 (2008), 155-175.
- [8] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, N.J., 1981.
- [9] S. Goswami , Lorenzo Luperi Baglini and Sourav Kanti Patra, *Polynomial Extension of the Stronger Central Sets Theorem*, The Electronic Journal of Combinatorics , December 2023.
- [10] S. Goswami , Lorenzo Luperi Baglini and Sourav Kanti Patra, Exponential ultrafilters and patterns in Ramsey theory, arXiv:2308.02807v2.
- [11] A.W. Hales and R. I. Jewett: Regularity and positional games, Trans. Amer. Math. Soc. 106 (1963), 222-229.
- [12] N.Hindman and I. Leader, The Semigroup of Ultrafilters Near 0, Semigroup Forum 59 (1999), 33-55.
- [13] N. Hindman, A. Maleki, and D. Strauss, Central sets and their combinatorial characterization, J. Comb. Theory (Series A) 74 (1996), 188-208
- [14] N. Hindman and D. Strauss, Algebra in the Stone-Čech Compactification: Theory and Applications, 2nd edition, de Gruyter, Berlin, 2012.
- [15] M. Walters: Combinatorial proofs of polynomial van der Waerden and polynomial Hales-jewett theorem, J. London Math. Soc., 61(2000), 1-12.