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Abstract. Furstenberg introduced the Central Sets Theorem in 1981. Later, in 1990, Bergelson and
Hindman provided an algebraic proof of the Central Sets Theorem. In 2008, De, Hindman and Strauss
proved a stronger version of Central Sets Theorem. On the other hand Hindman and Leader introduced in
1998, the Central Sets Theorem near zero for dense subsemigroup of R. A stronger version of the Central
Sets Theorem near zero was established by De and Hindman in [6]. Recently Goswami, Baglini and Patra
developed a polynomial extension of the stronger Central Sets Theorem in 2023. In this article, we provide
a polynomial version of the stronger Central Sets Theorem near zero.

1. Introduction and preliminaries

In [8] Furstenberg introduced the notion of central sets in (N,+) in terms of topological dynamics.
(Specifically, a subset A of N is central if and only if there exists a dynamical system (X,T), points x
and y in X, and a neighborhood U of y such that y is uniformly recurrent, x and y are proximal, and
A = {n ∈N : Tn (x) ∈ U}. (See [8] for the definitions of “dynamical system”, “proximal”and “uniformly
recurrent”) He showed that if N is divided into finitely many classes, then one of them must be central,
and he proved the following theorem.

Theorem 1.1. Let l ∈ N and for each i ∈ {1, 2, ..., l} , let
(
yi,n
)∞

n=1be l-many sequences in Z. Let C ⊆ N be a central
set. Then there exist sequences (an)∞n=1inN and (Hn)∞n=1 in P f (N) such that

(1) for all n, max Hn < min Hn+1 and
(2) for all F ∈ P f (N) and all i ∈ {1, 2, ..., l} ,

∑
n∈F

an +
∑
t∈Hn

yi,t

 ∈ C.

There are many extensions of this theorem in the literature in different directions. In one direction Bergelson,
Moreira and Johnson [2] established a polynomial version of the above theorem.
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Theorem 1.2. Let G be a countable abelian group, let j ∈ N and let (yα)α∈F be an IP-set in Z j. Let F ⊂ P(Z j,Z)
and A ⊂ Z be a central set in Z. Then there exist an IP-set (xα)α∈F in Z and a sub-IP-set (zα)α∈F of (yα)α∈F such
that

∀ f ∈ F ∀β ∈ F xβ + f (zβ) ∈ A.

Both theorems have natural generalizations over arbitrary countable commutative groups. In fact, Hind-
man, Maleki and Strauss [13] extended the theorem 1.1 for arbitrary semigroup considering countably many
sequences at a time. Further De, Hindman and Strauss [7] extended theorem 1.1 considering arbitrary many
sequences at a time. In this article, we present only the commutative version.

Theorem 1.3. [7, Theorem 2.2] Let (S,+) be a commutative semigroup and let C be a central subset of S. Then there
exist functions α : P f

(
SN
)
→ S and H : P f

(
SN
)
→ P f (N) such that

(1) If F,G ∈ P f

(
SN
)

and F ⊊ G then max H (F) < min H (G) and

(2) If m ∈N,G1,G2, ....,Gm ∈ P f

(
SN
)
;G1 ⊊ G2 ⊊ .... ⊊ Gm; and for each i ∈ {1, 2, ....,m} ,

(
yi,n
)
∈ Gi, then

m∑
i=1

α (Gi) +
∑

t∈H(Gi)

yi,t

 ∈ C.

A very natural question arises here: does there exist a polynomial generalization of Theorem 1.3 in the
direction of Theorem 1.2. In [9] Goswami, Baglini and Patra answered this question affirmatively.

Theorem 1.4. [9, Theorem 11] Let A be a central set and T ∈ P f (P). Then there exist functions α : P f

(
NN
)
→N

and H : P f

(
NN
)
→ P f (N), such that

(1) If F ⊊ G are in P f

(
NN
)
, then H (F) < H (G) and

(2) For any n ∈N, G1 ⊊ G2 ⊊ . . . ⊊ Gn in P f

(
NN
)
, we have for each i ∈ {1, 2, ....,n} , fi ∈ Gi, and for all P ∈ T,

n∑
i=1

α (Gi) + P

 n∑
i=1

∑
t∈H(Gi)

fi (t)

 ∈ A.

Another direction of the Central Sets Theorem was due to Hindman and Leader [12]. The authors
introduced the notion of central set near zero for dense subsemigroups of (R,+). In fact, where as central
sets live at infinity, central sets near zero live near zero and satisfy conclusions similar to those of central
sets.

Theorem 1.5. Let S be a dense subsemigroup of (R,+). For each i ∈ N, let
(
yi,n
)∞

n=1 be a sequence in S converging
to zero in the usual topology of R. Let C be a central set near zero in S. Then there exist sequences (an)∞n=1 in S
converging to zero in the usual topology of R, and a sequence (Hn)∞n=1 in P f (N) such that

(1) for all n, max Hn < min Hn+1 and
(2) for all F ∈ P f (N) and all i ∈ {1, 2, ..., l} ,

∑
n∈F

an +
∑
t∈Hn

yi,t

 ∈ C.

Proof. [12, Theorem 4.11].

The polynomial generalization of the above theorem was established in [5].
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Theorem 1.6. Let (S,+) be a dense subsemigroup of (R,+) containing 0 such that (S ∩ (0, 1) , ·) is a subsemigroup
of ((0, 1) , ·). For each i ∈ N, let

(
yi,n
)∞

n=1 be a sequence in S converging to zero in the usual topology of R. Let A
be a central set near zero in S and L ∈ P f (P (S,S)). Then for any δ > 0 , there exist sequence (an)∞n=1 in S ∩ (0, δ)
converging to zero in the usual topology of R and a sequence (Hn)∞n=1 in P f (N) such that

(1) for all n, max Hn < min Hn+1 and
(2) for all F ∈ P f (N) and all i ∈ {1, 2, ..., l} ,∑

n∈F

an + P

∑
n∈F

∑
t∈Hn

yi,t


 ∈ A.

for all P ∈ L.

In the present article, our aim is to provide a stronger form of the above theorem. The notation C0
p used

in the following theorem will be defined in the second section.

Theorem 1.7. Let (S,+) be a dense subsemigroup of (R,+) containing 0 such that (S ∩ (0, 1) , ·) is a subsemigroup of
((0, 1) , ·). Let A be a C0

p set in S and L ∈ P f (P (S,S)). Then for each δ ∈ (0, 1), there exist functions αδ : P f (T0)→ S
and Hδ : P f (T0)→ P f (N) such that

1. αδ (F) < δ for each F ∈ P f (T0),
2. If F,G ∈ P f (T0), F ⊊ G, then max Hδ (F) < min Hδ (G) and
3. If n ∈N and G1,G2, ...,Gn ∈ P f (T0) , G1 ⊊ G2 ⊊ ..... ⊊ Gn. For each fi ∈ Gi, i = 1, 2, ...,n, we have

n∑
i∈1

αδ (Gi) + P

 n∑
i∈1

∑
t∈Hδ(Gi)

fi (t)

 ∈ A.

for all P ∈ L, Where

T0 =
{
(xn)n∈N ∈ SN : xn converges to zero in usual topology of R

}
.

Let (S, ·) be any discrete semigroup and βS be the set of all ultrafilters on S, where the points of S are
identified with the principal ultrafilters. Then

{
A : A ⊆ S

}
, where A =

{
p ∈ βS : A ∈ p

}
forms a closed basis

for the topology on βS. With this topology βS becomes a compact Hausdorff space in which S is dense,
called the Stone-Čech compactification of S. The operation of S can be extended to βS making

(
βS, ·
)

a
compact, right topological semigroup with S contained in its topological center. That is, for all p ∈ βS the
function ρp : βS → βS is continuous, where ρp(q) = q · p and for all x ∈ S, the function λx : βS → βS is
continuous, where λx(q) = x · q. For p, q ∈ βS and A ⊆ S, A ∈ p · q if and only if

{
x ∈ S : x−1A ∈ q

}
∈ p, where

x−1A =
{
y ∈ S : x · y ∈ A

}
. One can see [14] for an elementary introduction to the semigroup

(
βS, ·
)

and its
combinatorial applications. An element p ∈ βS is called idempotent if p · p = p. A subset A ⊆ S is called
central if and only if A is an element of an idempotent ultrafilter p.

Here we will work with dense subsemigroups ((0, 1) , ·), in this case one can define

0+ =
⋂
ϵ>0

clβ(0,1)d
(0, ϵ) .

0+ is two sided ideal of
(
β (0, 1)d , ·

)
, so contains the smallest ideal. It is also a subsemigroup of

(
βRd,+

)
.

As a compact right topological semigroup, 0+ has a smallest two sided ideal. K (0+) denotes the smallest
ideal contained in 0+ . Central sets near zero are the elements from the idempotent in K (0+).

In the case of a commutative semigroup S, a set A ⊆ S is called J-set if for every H ∈ P f

(
SN
)
, there exist

a ∈ S and β ∈ P f (N) such that for all f ∈ H,

a +
∑
t∈β

f (t) ∈ A.

.
Here, we present the polynomial version of the J-set, named as Jp-set.
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Definition 1.8. [9, definition 3] Let A ⊆ N. Then A is called a Jp-set if and only if for every F ∈ P f (P) and every
H ∈ P f

(
NN
)
, there exist a ∈N and β ∈ P f (N) such that for all P ∈ F and all f ∈ H,

a + P

∑
t∈β

f (t)

 ∈ A.

Theorem 1.9. Let l,m ∈N, and A ⊆N be a Jp-set. For each i ∈ {1, 2, ...., l}, let
(
xi
α

)
α∈P f (N)

be an IP-set inN. Then

for all finite F ∈ P f (P), there exist a ∈N and β ∈ P f (N) such that min β > m. We have

a + P
(
xi
β

)
∈ A

for all i ∈ {1, 2, ...., l} and P ∈ F.

Proof. [9, Lemma 10].

2. Main results

Let (S,+) be a dense subsemigroup of (R,+) containing 0 such that (S ∩ (0, 1) , ·) is a subsemigroup of
((0, 1) , ·). In our work, we consider the set of polynomials P (S,S) from S to S, whose coefficients are in Z
and f (0) = 0 for all f ∈ P. In the following definition T0 denotes the set of all sequences in S that converge
to zero.

Definition 2.1. Let (S,+) be a dense subsemigroup of (R,+) containing 0 such that (S ∩ (0, 1) , ·) is a subsemigroup
of ((0, 1) , ·) and let A ⊆ S. Then A is a J-set near zero if and only if whenever F ∈ P f (T0) and δ > 0, there exist
a ∈ S ∩ (0, δ) and H ∈ P f (N) such that for each f ∈ F,

a +
∑
t∈H

f (t) ∈ A.

The following is the polynomial version of J-sets near zero. We call it Jp-set near zero.

Definition 2.2. Let (S,+) be a dense subsemigroup of (R,+) containing 0 such that (S ∩ (0, 1) , ·) is a subsemigroup
of ((0, 1) , ·). A set A ⊆ S is called a Jp-set near zero whenever F ∈ P f (P (S,S)) ,H ∈ P f (T0) and δ > 0, there exist
a ∈ S ∩ (0, δ) and β ∈ P f (N) such that for each f ∈ H and all P ∈ F,

a + P

∑
t∈β

f (t)

 ∈ A.

We can choose β ∈ P f (N) in the above definition to be greater than any presumed positive integers.

Lemma 2.3. Let (S,+) be a dense subsemigroup of (R,+) containing 0 such that (S ∩ (0, 1) , ·) is a subsemigroup of
((0, 1) , ·). Let m ∈N, and A ⊆ S be a Jp-set near zero. Then for each F ∈ P f (P (S,S)) ,H ∈ P f (T0) and δ > 0, there
exist a ∈ S ∩ (0, δ) and β ∈ P f (N) with min β > m, we have

a + P

∑
t∈β

f (t)

 ∈ A

for each f ∈ H and for all P ∈ F.
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Proof. Let m ∈ N, F ∈ P f (P (S,S)) ,H ∈ P f (T0) and δ > 0, for each f ∈ H define 1 f ∈ P f (T0) by 1 f (t) =
f (t +m) , t ∈N. For this K =

{
1 f : f ∈ H

}
∈ P f (T0), pick a ∈ S ∩ (0, δ) and γ ∈ P f (N) such that

a + P

∑
t∈γ

1 f (t)

 ∈ A

for each f ∈ H and all P ∈ F. And let β = m + γ, we get our desire result.

In the following discussion we shall continue to consider (S,+) as a dense subsemigroup of (R,+) containing
0 such that (S ∩ (0, 1) , ·) is a subsemigroup of ((0, 1) , ·). Let (Si)

∞

i=1 be a sequence in S converging to zero and
(Sα)α∈P f (N) be the IP-set generated by (Si)

∞

i=1, where Sα =
∑

i∈α Si, α ∈ P f (N). The following is an alternative
version of the Jp-set near zero.

Definition 2.4. Let l ∈N, A ⊆ S be a Jp-set near zero if for each i ∈ {1, 2, ...., l} and
(
xi
α

)
α∈P f (N)

an IP-set in S∩ (0, 1),

we have for any finite F ∈ P f (P (S,S)), there exist a ∈ S and β ∈ P f (N) such that

a + P
(
xi
β

)
∈ A

for all i ∈ {1, 2, ...., l} and P ∈ F.

Let us denote by J0
p the set of all ultrafilters, whose members are Jp- set near zero, i.e,

J
0
p =
{
p ∈ βSd : for all A ∈ p,A is a Jp-set near zero

}
.

We shall denote by E(J0
p ) the set of all idempotents in J0

p . The following theorem shows that J0
p is in

fact non empty. The authors gratefully acknowledge Dr. Sayan Goswami for providing the proof of the
following theorem.

Before we proceed to prove J0
p , ∅, we need to recall the Polynomial Hales-Jewett Theorem.

2.1. Revisiting Polynomial Hales-Jewett Theorem
Now we pause to recall the Hales-Jewett theorem and it’s polynomial extension. Let ω =N∪{0}, where

N is the set of positive integers. Given a nonempty setA called alphabet, a finite word is an expression of
the form w = a1a2 . . . an with n ≥ 1 and ai ∈ A. The quantity n is called the length of w and denoted |w|. Let
v (a variable) be a letter not belonging toA. By a variable word overAwe mean a word w overA∪ {v} that
has at least one occurrence of v. For any variable word w, w (a) is the result of replacing each occurrence of
v by a.

The following theorem is known as Hales-Jewett theorem, is due to A. W. Hales and R. I. Jewett.

Theorem 2.5. [11, Hales-Jewett Theorem (1963)] For all values t, r ∈N, there exists a number HJ (r, t) such that,
if N ≥ HJ (r, t) and [t]N is r colored then there exists a variable word w such that {w (a) : a ∈ [t]} is monochromatic.

The word space [t]N is called Hales-Jewett space or H-J space. The number HJ (r, t) is called Hales-Jewett
number.

For q,N ∈N, Q = [q]N, where [q] = {−q, . . . ,−1, 0, 1, . . . , q} , ∅ , γ ⊆ [N] and −q ≤ x ≤ q, a ⊕ xγ is defined
to be the vector b in Q obtained by setting bi = x if i ∈ γ and bi = ai otherwise.

In the statement of theorem [15, Polynomial Hales-Jewett Theorem], we have a ∈ Q so that a =
⟨a⃗1, a⃗2, . . . , a⃗d⟩ where for j ∈ {1, 2, . . . d}, a⃗ j ∈ [q]N j

and we have γ ⊆ [N] = {1, 2, . . . ,N}. Given j ∈ {1, 2, . . . , d},
let a⃗ j = ⟨a j,⃗i⟩⃗i∈N j . Then a ⊕ x1γ ⊕ x2(γ × γ) ⊕ . . . ⊕ xdγd = b where b = ⟨⃗b1, b⃗2, . . . , b⃗d⟩ and for j ∈ {1, 2, . . . , d},

b⃗ j = ⟨b j,⃗i⟩⃗i∈Ni where

b j,⃗i =

{
x j if i⃗ ∈ γi

a j,⃗i otherwise.
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Theorem 2.6. [3, 15, Polynomial Hales-Jewett Theorem] For any q, k, d there exists N
(
q, k, d

)
∈ N such that

whenever Q = Q (N) =
[
q
]N
×
[
q
]N×N

× · · · ×
[
q
]Nd

is k-colored there exist a ∈ Q and γ ⊆ [N] such that the set of
points{

a ⊕ x1γ ⊕ x2
(
γ × γ

)
⊕ · · · ⊕ xdγ

d : xi ∈ [q]
}

is monochromatic.
This N is said to be the P.H.J. number.

To prove J0
p , ∅, we will use piecewise syndetic set near zero. So here we recall the defination and an

important result.

Definition 2.7. Let (S,+) be a dense subsemigroup of (R,+) containing 0 such that (S ∩ (0, 1) , ·) is a subsemigroup
of ((0, 1) , ·). A subset A of S is piecewise syndetic near zero if there exist sequences ⟨Fn⟩

∞

n=1 and ⟨δn⟩
∞

n=1 such that

1. For each n ∈N, Fn ∈ P f

(
S ∩
(
0, 1

n

))
and δn ∈

(
0, 1

n

)
.

2. for all G ∈ P f (S) and all µ > 0 there is some x ∈
(
0, µ
)
∩ S such that for all n ∈N.

(G ∩ (0, δn)) + x ⊆
⋃
t∈Fn

(−t + A) .

Theorem 2.8. [12, Theorem 3.5] Let (S,+) be a dense subsemigroup of (R,+) containing 0 such that (S ∩ (0, 1) , ·) is
a subsemigroup of ((0, 1) , ·). Let A ⊆ S, then K ∩ A , ∅ if and only if A is piecewise syndetic near zero.

Now we are in the position to prove J0
p , ∅. The proof is similar to the proof of [5, Theorem 9].

Theorem 2.9. Let (S,+) be a dense subsemigroup of (R,+) containing 0 such that (S ∩ (0, 1) , ·) is a subsemigroup
of ((0, 1) , ·).

Then K(0+) ⊆ J0
p , i.e. J0

p , ∅.

Proof. We shall show that in fact every piecewise syndetic set near zero is a Jp set near zero. Let A be a
piecewise syndetic set near zero. We assume that ⟨Fn⟩

∞

n=1 and ⟨δn⟩
∞

n=1 be the sequences for the set A as per
definition 2.7. Fixed a n, and let | Fn |= r. Let F ∈ P f (S,S) be the given set of polynomials, and let [q] be

the set of coefficients of F. Let
{〈

S j
i

〉∞
i=1

: j = 1, 2, . . . , l
}

be a collection of sequences converging to 0. Now we
apply a shadow alphabet argument.

For each j = 1, 2, . . . , l, define [q j] to be a copy of [q] {i.e., [q j] = {c j : c ∈ [q]}}. Now redefine
[
q
]
=
⋃l

j=1

[
q j

]
.

Let F be any given system of finitely many polynomials each of which vanishes at 0 and let
{〈

S j
i

〉∞
i

: j = 1, 2, . . . , l
}

be a collection of sequences converging to 0.
As above

[
q
]

be the set of coefficients of the polynomials in F and{[
q j

]
: j = 1, 2, . . . , l

}
be a sequence of finite sets such that

[
q
]
= ∪l

j=1

[
q j

]
.

Let N = N
([

q
]
, r, d
)

be the P.H.J number guaranteed by Theorem [PHJ] and let

Q =
[
q
]N
×
[
q
]N×N

× . . . ×
[
q
]Nd
.

Now define a map C : Q→ S by

C
(
⟨ai⟩

N
i=1 ,
〈
ai, a j

〉N.N
i, j=1,1

, . . . ,
〈
ai1 , . . . , aid

〉N,...,N
i1,...,id=1,...,1

)
=
∑N

i=1 aiS
′

i +
∑N

i1,i2=1 ai1 ai2 S′i1 S′i2 + . . . +
∑N

i1,...,id=1 ai1 . . . aid S′i1 . . . S
′

id

where S′k = Si
k whenever ak ∈ [qi].
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Then C(Q) is a finite set and hence for any ϵ > 0, there exists an element x ∈ S ∩ (0, ϵ) such that
(C(Q) ∩ (0, δn)) + x ⊆ ∪t∈Fn − t + A.

Then for any c ∈ Q, C(c) + x ∈ ∪t∈Fn − t + A, provided C(c) ≤ δn.
Let χ : Q→ {1, 2, . . . , r} be a coloring of Q such that
χ(c) = min{i : C(c) + x ∈ −ti + A, ti ∈ Fn,C(c) < δn}

i,e, χ(c) = min{i : C(c) + x + ti ∈ A, ti ∈ Fn,C(c) < δn}

Where Fn = {t1, . . . , tr} ∈ P f

(
S ∩
(
0, 1

n

))
.

Hence there exists t ∈ Fn such that by Theorem [PHJ], there exist a ∈ Q and γ ∈ P f (N) such that

x + t +
(
C
({

a ⊕ x1γ ⊕ x2
(
γ × γ

)
⊕ . . . ⊕ xdγ

d : xi ∈ [q]
})
∩ (0, δn)

)
⊆ A.

Now for suitably choice of x′i s leads to the conclusion {Note that for each choice of x1, x2, . . . , xd ∈
[
qi
]

gives
us different IP sets (Si

α)α∈P f (N).}b + P

∑
t∈γ

S j
t

 ∩ (0, δn) : j ∈ {1, 2, . . . , l} ,P ∈ F

 ⊆ A

for some suitable constant b ∈ S.
Since the polynomials from F vanishes at 0. And

{〈
S j

i

〉∞
i=1

: j = 1, 2, . . . , l
}

converging to 0. Then we can

assume for the δn > 0, P
(∑

t∈γ S j
t

)
⊆ (0, δn) .

For all j ∈ {1, 2, . . . , l} ,P ∈ F.
Thereforeb + P

∑
t∈γ

S j
t

 : j ∈ {1, 2, . . . , l} ,P ∈ F

 ⊆ A

for some suitable constant b ∈ S.
We have if A be an piecewise syndetic set near zero then, there exists b ∈ S such that b + P

(∑
t∈γ S j

t

)
=

b + P
(
S j
γ

)
∈ A, for all j ∈ {1, 2, . . . , l} ,P ∈ F.

By theorem 2.8, A ∩ K (0+ (S)) , ∅, then there exists p ∈ A ∩ K (0+ (S)) so p ∈ J0
p .

We know that

J (S) =
{
p ∈ βS : ∀A ∈ p,A is a J-set

}
is a two sided ideal of βS.

In [4, Theorem 3.9] Bayatmanesh, Tootkaboni proved that

J0 (S) =
{
p ∈ βS : ∀A ∈ p,A is a J-set near zero

}
is also a two sided ideal of 0+.

After defining Jp-set, Goswami, Baglini and Patra demonstated that

Jp =
{
p ∈ βN : for all A ∈ p,A is a Jp-set

}
is also a two sided ideal of

(
βN,+

)
[9, Theorem 8].

So we expect that J0
p also a two sided ideal of 0+. The proof is in the following.

Theorem 2.10. Let (S,+) be a dense subsemigroup of (R,+) containing 0 such that (S ∩ (0, 1) , ·) is a subsemigroup
of ((0, 1) , ·). Then J0

p is a two sided ideal of 0+.
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Proof. Let p ∈ J0
p and q ∈ 0+ (S). We want to show p + q, q + p ∈ J0

p .
To show, p+ q ∈ J0

p , let A ∈ p+ q, so that B =
{
x ∈ S : −x + A ∈ q

}
∈ p. Hence B is a Jp-set near zero. Then

for any F ∈ P f (P (S,S)) ,H ∈ P f (T0) and δ > 0, there exist a ∈ S ∩
(
0, δ2
)

and β ∈ P f (N) such that for each
f ∈ H and all P ∈ F,

a + P

∑
t∈β

f (t)

 ∈ B.

. Then⋂
f∈F

−
a + P

∑
t∈β

f (t)


 + A

 ∈ q.

Let us choose

y ∈

⋂
f∈F

−
a + P

∑
t∈β

f (t)


 + A


 ∩ (0, δ2 ) .

So, for all f ∈ F, and all P ∈ F,

y + a + P

∑
t∈β

f (t)

 ∈ A,

Hence for any F ∈ P f (P (S,S)) ,H ∈ P f (T0) and δ > 0, there exist x = y + a ∈ S ∩ (0, δ) and β ∈ P f (N) such
that for each f ∈ H and all P ∈ F,

x + P

∑
t∈β

f (t)

 ∈ A.

Therefore A is a Jp-set near zero. Since A is arbitrary element from p+q. So, p+q ∈ J0
p . Now, If A ∈ q+p,

then B =
{
x ∈ S : −x + A ∈ p

}
∈ q. Choose x ∈ B ∩

(
0, δ2
)
, −x + A ∈ p. So, −x + A is a Jp-set near zero.

Therefore for any F ∈ P f (P (S,S)) ,H ∈ P f (T0) and δ > 0, there exist a ∈ S ∩
(
0, δ2
)

and β ∈ P f (N) such
that for each f ∈ H and all P ∈ F,

a + P

∑
t∈β

f (t)

 ∈ −x + A.

Hence for all f ∈ F, and all P ∈ F,

x + a + P

∑
t∈β

f (t)

 ∈ A.

Let us define, z = x + a ∈ S ∩ (0, δ)
So for any F ∈ P f (P (S,S)) ,H ∈ P f (T0) and δ > 0, there exist z ∈ S ∩ (0, δ) and β ∈ P f (N) such that for

each f ∈ H and all P ∈ F,

z + P

∑
t∈β

f (t)

 ∈ A.

Therefore A is a Jp-set near zero. Since A is arbitrary element from q + p. So q + p ∈ J0
p .
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Lemma 2.11. Let (S,+) be a dense subsemigroup of (R,+) containing 0 such that (S ∩ (0, 1) , ·) is a subsemigroup of
((0, 1) , ·). Then J0

p is closed subset of 0+.

Proof. Let p ∈ 0+ \ J0
p , then there exists A ∈ p such that A is not a Jp-set. Then Ā ∩J0

p = ∅ and p ∈ A. So p is
not a limit point of J0

p . So the proof is done.

Where A =
{
p ∈ βS : A ∈ p

}
.

By Ellis’ theorem [14, Corollary 2.39], a straightforward consequence of Theorem 2.10 and lemma 2.11 is
that there are idempotent ultrafilters, and even minimal idempotent ultrafilters, in J0

p . We denote the set

of all idempotents in J0
p by E

(
J

0
p

)
.

Definition 2.12. A ⊆ S is said to be a C0
p set in S if A ∈ p for some ultrafilter p ∈ E

(
J

0
p

)
.

The central sets theorem near zero originally proved by Hindman and Leader in [12]. Recently the
Central Set Theorem was extended by Goswami, Baglini and Patra for polynomials in [9].

In [9] the authors introduce Cp-set by defining that, Cp-set is the member of the ultrafilters in E
(
Jp

)
={

p ∈ Jp : p is an idempotent ultrafilter
}
.

Theorem 2.13. Let A be a Cp-set and let F ∈ P f (P). There exist functions α : P f

(
NN
)
→ S and H : P f

(
NN
)
→

P f (N) such that

1. If G,K ∈ P f

(
NN
)

and G ⊊ K then max H (G) < min H (K) and

2. If n ∈ N,G1,G2, ....,Gn ∈ P f

(
NN
)
;G1 ⊊ G2 ⊊ .... ⊊ Gn; and for each i ∈ {1, 2, ....,n} , fi ∈ Gi, then for all

P ∈ F,

n∑
i=1

α (Gi) + P

 n∑
i=1

∑
t∈H(Gi)

fi (t)

 ∈ A.

Proof. [9, Theorem 11].

Following them we proved the Stronger Polynomial Central sets theorem near zero. Before that let’s recall
some notions.

Definition 2.14. Let (S,+) be a dense subsemigroup of (R,+) containing 0 such that (S ∩ (0, 1) , ·) is a subsemigroup
of ((0, 1) , ·).

1. J0
p =
{
p ∈ βSd : for all A ∈ p,A is a Jp -set near zero

}
.

2. E
(
J

0
p

)
=
{
p ∈ J0

p : p is an idempotent ultrafilter
}
.

3. A set A ⊆ S is called C0
p set if A ∈ p ∈ E

(
J

0
p

)
.

We are now ready to prove our main result, Theorem 1.7. Since K (0+) ⊆ J0
p , every central set near zero

is also a C0
p set.

Theorem 2.15. Let (S,+) be a dense subsemigroup of (R,+) containing 0 such that (S ∩ (0, 1) , ·) is a subsemigroup
of ((0, 1) , ·). Let A be a C0

p set in S is particularly central set near zero, and L ∈ P f (P (S,S)). Then for each δ ∈ (0, 1),
there exist functions αδ : P f (T0)→ S and Hδ : P f (T0)→ P f (N) such that

1. αδ (F) < δ for each F ∈ P f (T0),
2. if F,G ∈ P f (T0) and F ⊊ G, then max Hδ (F) < min Hδ (G) and
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3. If n ∈N and G1,G2, ...,Gn ∈ P f (T0) , G1 ⊊ G2 ⊊ ..... ⊊ Gn and fi ∈ Gi, i = 1, 2, ...,n. then

n∑
i=1

αδ (Gi) + P

 n∑
i=1

∑
t∈Hδ(Gi)

fi (t)

 ∈ A

for all P ∈ L.

Proof. Choose an idempotent p ∈ J0
p with A ∈ p. For δ > 0 and F ∈ P f (T0), we shall use induction on | F |

and define αδ (F) ∈ S and Hδ (F) ∈ P f (N) for witnessing (1),(2),(3).
At first, let F =

{
f
}
. As p is idempotent, the set A∗ =

{
x ∈ A : −x + A ∈ p

}
belongs to p [14, corollary 4.14],

hence it is a Jp- set near zero. So for δ > 0 there exist H ∈ P f (N) and a ∈ S ∩ (0, δ) such that

∀P ∈ L, a + P

∑
t∈H

f (t)

 ∈ A∗.

By setting αδ
({

f
})
= a and Hδ

({
f
})
= H, conditions (1),(2),(3) are satisfied.

Now assume that | F |> 1 and αδ (G) and Hδ (G) have been defined for all proper subsets G of F. Let
Kδ =

⋃
{Hδ (G) : ∅ , G ⊊ F} ∈ P f (N), m = max Kδ and

Let

R =


∑n

i=1
∑

t∈Hδ(Gi) fi (t) | n ∈N,
∅ , G1 ⊊ G2 ⊊ · · · ⊊ Gn ⊊ F,

fi ∈ Gi,∀i = 1, 2, ..,n.



Mδ =


∑n

i=1 αδ (Gi) + P
(∑n

i=1
∑

t∈Hδ(Gi) fi (t)
)
| n ∈N,

∅ , G1 ⊊ G2 ⊊ · · · ⊊ Gn ⊊ F,
fi ∈ Gi,∀i = 1, 2, ..,n, P ∈ L.


Then R and Mδ are finite subsets of S and by inductive hypothesis, Mδ ⊆ A∗.
Let

B = A∗ ∩

⋂
x∈Mδ

(−x + A∗)

 ∈ p.

For P ∈ L and d ∈ R, let us define the polynomial QP,d ∈ P (S,S) by

QP,d
(
y
)
= P
(
y + d

)
− P (d)

the coefficients of P come from Z.
Let M = L ∪

{
QP,d | P ∈ L and d ∈ R

}
.

From Lemma 2.3, there exist γ ∈ P f (N) with min
(
γ
)
> m and a ∈ S ∩ (0, δ) such that

∀Q ∈M, f ∈ F, a +Q

∑
t∈γ

f (t)

 ∈ B.

We set αδ (F) = a < δ and Hδ (F) = γ. So (1) is satisfies immediately. Now we are left to verify conditions (2)
and (3).

Since min
(
γ
)
> m, (2) is satisfies.
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to verify (3), let n ∈ N and G1,G2, ...,Gn ∈ P f (T0) , G1 ⊊ G2 ⊊ ..... ⊊ Gn = F and fi ∈ Gi, i = 1, 2, ...,n and
let P ∈ L.

For n = 1, then αδ (Gn) + P
(∑

t∈Hδ(Gn) fn (t)
)
= a + P

(∑
t∈γ f (t)

)
∈ B ⊆ A∗ .

If n > 1, then

n∑
i=1

αδ (Gi) + P

 n∑
i=1

∑
t∈Hδ(Gi)

fi (t)


= αδ (Gn) +

n−1∑
i=1

αδ (Gi) + P

 ∑
t∈Hδ(Gn)

fi (t) +
n−1∑
i=1

∑
t∈Hδ(Gi)

fi (t)


= a +

n−1∑
i=1

αδ (Gi) + P

∑
t∈γ

fn (t) +
n−1∑
i=1

∑
t∈Hδ(Gi)

fi (t)


(Since Gn = F and αδ (F) = a,Hδ (F) = γ.)

= a +
n−1∑
i=1

αδ (Gi) + P

n−1∑
i=1

∑
t∈Hδ(Gi)

fi (t)

+
P

∑
t∈γ

fn (t) +
n−1∑
i=1

∑
t∈Hδ(Gi)

fi (t)

 − P

n−1∑
i=1

∑
t∈Hδ(Gi)

fi (t)


= a + y +QP,d

∑
t∈γ

fn (t)


where y =

∑n−1
i=1 αδ (Gi) + P

(∑n−1
i=1
∑

t∈Hδ(Gi) fi (t)
)
∈Mδ,

d =
∑n−1

i=1
∑

t∈Hδ(Gi) fi (t) ∈ R, and P ∈ L so QP,d ∈M.
So we have

a +Qp,d

∑
t∈γ

fn (t)

 ∈ B ∈ −y + A∗

Therefore

n∑
i=1

αδ (Gi) + P

 n∑
i=1

∑
t∈Hδ(Gi)

fi (t)

 ∈ A∗.

This completes the induction argument, hence the proof.

We can also generalize this theorem along Phulara’s way easily.

Theorem 2.16. Let (S,+) be a dense subsemigroup of (R,+) containing 0 such that (S ∩ (0, 1) , ·) is a subsemigroup
of ((0, 1) , ·). Let ⟨Cn⟩n∈N be decreasing family of C0

p sets in S such that all Ci ∈ p ∈ E
(
J

0
P

)
and L ∈ P f (P (S,S)).

Then for each δ ∈ (0, 1), there exist functions αδ : P f (T0)→ S and Hδ : P f (T0)→ P f (N) such that

1. αδ (F) < δ for each F ∈ P f (T0),
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2. if F,G ∈ P f (T0) and F ⊊ G, then max Hδ (F) < min Hδ (G) and
3. If n ∈N and G1,G2, ...,Gn ∈ P f (T0) , G1 ⊊ G2 ⊊ ..... ⊊ Gn and fi ∈ Gi, i = 1, 2, ...,n. with | G1 |= k then

n∑
i∈1

αδ (Gi) + P

 n∑
i∈1

∑
t∈Hδ(Gi)

fi (t)

 ∈ Ck.
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