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Abstract. In 2000, Y. Aihara proved a uniqueness theorem for linearly non-degenerate meromorphic
mappings from Cm into Pn(C), which was given again in 2010 by Cao and Yi. In this paper, we will
consider the same problem for holomorphic curves on an annulus to complex projective space in the case
of hypersurfaces in subgeneral position, namely we give a uniqueness theorem related multiple values for
algebraically non-degenerate holomorphic curves on an annulus sharing sufficiently many hypersurfaces.

1. Introduction

In 1975, H. Fujimoto (see [7]) proved that the linearly nondegenerate meromorphic maps from Cm

to Pn(C) are uniquely determined by 3n + 2 hyperplanes in general position with counting multiplicity.
In 1983, Smiley ([16]) obtained an improvement with ignoring multiplicity. After that, this problem has
been studied intensively by many authors. For example: Fujimoto ([8]), Ru ([15]), Yan-Chen ([5],[18]),
Dethloff-Tan ([6]), An-Quang-Thai ([2]), Phuong-Minh ([12]), Phuong-Vilaisavanh ([14]) and others. When
considering multiple values, in 2000, Y. Aihara (see [1]) proved a uniqueness theorem for linearly non-
degenerate meromorphic mappings from Cm into Pn(C), which was given again in 2011 by Cao and Yi
([4]). In this paper, we give a uniqueness theorem related multiple values for algebraically non-degenerate
holomorphic curves on an annulus sharing sufficiently many hypersurfaces. First of all, we introduce some
notations.

Let f = ( f0 : · · · : fn) : Cm
→ Pn(C) be a holomorphic curve, where f0, . . . , fn are holomorphic functions

and without common zeros on Cm. Let D be a hypersurface in Pn(C) of degree d and Q is the homogeneous
polynomial in C[z0, . . . , zn] of degree d defining D. Assume

Q(z0, . . . , zn) =
nd∑

k=0

akzik0
0 . . . z

ikn
n ,
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where nd =
(n+d

n
)
− 1 and ik0 + · · · + ikn = d for k = 0, . . . ,nd. And we write

( f ,D) = Q( f ) =
nd∑

k=0

ak f ik0
0 . . . f ikn

n .

We say that ( f ,D) is free if ( f ,D) . 0.
Under the assumption that ( f ,D) is free, we denote by ν( f ,D) the map from Cm toZwhose value ν( f ,D)(z)

(z ∈ Cm) is the intersection multiplicity of the images of f and D at f (z). And for positive integers d, k, we
set

νd
( f ,D),⩽k =

min{d, ν( f ,D)} if 0 < ν( f ,D) ⩽ k,
0 otherwise.

Now let D = {D1, . . . ,Dq} be a collection of arbitrary hypersurfaces and Q j be the homogeneous poly-
nomial in C[z0, . . . , zn] of degree d j defining D j for j = 1, . . . , q. Let dD is the least common multiple of the
d j, j = 1, . . . , q and denote

nD =
(
n + dD

n

)
− 1.

Let N ⩾ n be an integer, we recall that the collection of hypersurfaces D is said to be in N-subgeneral

position if q > N and for any distinct i1, . . . , iN+1 ∈ {1, . . . , q},
N+1⋂
k=1

supp(Dik ) = ∅. If N = n, the collection of

hypersurfacesD is said to be in general position.
Let f and 1 be two linearly non-degenerate meromorphic maps of Cm into Pn(C), and let H1, . . . ,Hq be q

hyperplanes in general position such that

dim f−1(Hi ∩H j) ⩽ m − 2 for i , j.

Let m1, . . . ,mq be positive integers or∞ such that m1 ⩾ m2 ⩾ · · · ⩾ mq ⩾ n,

ν1
( f ,H j),⩽m j

= ν1
(1,H j),⩽m j

, j = 1, 2 . . . , q,

and f (z) = 1(z) for all z ∈ ∪q
j=1{z ∈ C

m : 0 < ν( f ,H j) ⩽ m j}. In 2000, Y. Aihara (see [1]) proved f = 1 if

q∑
j=3

m j

m j + 1
>

qn − q + n + 1
n

+
m1

m1 + 1
−

m2

m2 + 1
. (1)

Note that condition (1) implies q ⩾ 3n + 2. In 2011, T. B. Cao and H. X. Yi ([4]) gave an improvement of
Aihara’s result and they proved f = 1 if

q∑
j=3

m j

m j + 1
>

qn − q + n + 1
n

− (n − 1)
( 1

m1 + 1
+

1
m2 + 1

)
. (2)

Our idea here is to consider this problem for holomorphic mappings from an annulus into Pn(C) in the
case of hypersurfaces in general position.

Let R0 > 1 be a fixed positive real number or +∞, set

∆ =
{
z ∈ C :

1
R0
< |z| < R0

}
,

be an annulus in C. Let f = ( f0 : · · · : fn) : ∆ → Pn(C) be a holomorphic curve, where f0, . . . , fn are
holomorphic functions and without common zeros on ∆. For 1 < r < R0, characteristic function T f (r) of f
is defined by

T f (r) =
1

2π

∫ 2π

0
log ∥ f (reiθ)∥dθ +

1
2π

∫ 2π

0
log ∥ f (r−1eiθ)∥dθ,
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where ∥ f (z)∥ = max{| f0(z)|, . . . , | fn(z)|}. The above definition is independent, up to an additive constant, of
the choice of the reduced representation of f . We set

O f (r) =


O(log r + log T f (r)) if R0 = +∞

O(log
1

R0 − r
+ log T f (r)) if R0 < +∞.

Let D be a hypersurface such that ( f ,D) is free, we set ν( f ,D) the map from ∆ toZwhose value ν( f ,D)(z) is
the multiplicity of the zero of ( f ,D) at z. And

νd
( f ,D),⩽k =

min{d, ν( f ,D)} if 0 < ν( f ,D) ⩽ k,
0 otherwise,

for positive integers d, k. Out result are stated as follows:
Theorem 1. Let f and 1 be algebraically non-degenerate holomorphic curves from ∆ into Pn(C) such that

O f (r) = o(T f (r)) and O1(r) = o(T1(r)). Let D = {D1, . . . ,Dq} be a collection of hypersurfaces in N−subgeneral
position in Pn(C) such that E f (Di) ∩ E f (D j) = ∅ for all i , j ∈ {1, . . . , q}. Take k j ( j = 1, . . . , q) be positive integers
or∞ such that k1 ⩾ k2 ⩾ · · · ⩾ kq ⩾ nD,

ν1
( f ,D j),⩽k j

= ν1
(1,D j),⩽k j

, j = 1, 2 . . . , q,

and f (z) = 1(z) for all z ∈ ∪q
j=1{z ∈ ∆ : 0 < ν( f ,D j) ⩽ k j}. If

q∑
j=3

k j

k j + 1
>

qnD − q
nD

+
(nD + 1)(2N − n + 1)

(n + 1)nD
− (nD − 1)

( 1
k2 + 1

+
1

k1 + 1

)
, (3)

then f ≡ 1.
Theorem 1 gives a uniqueness condition for algebraically non-degenerate holomorphic maps on an

annulus. Note that, when D1, . . . ,Dq are hyperplanes in general position then N = n, and nD = n, so the
inequality (3) in Theorem 1 becomes the inequality (2), hence our theorem is an improvement of Cao-Yi’s

result ([4]). Furthermore the condition (3) implies q > 2nD +
(nD + 1)(2N − n + 1)

n + 1
, and when D1, . . . ,Dq are

hyperplanes in general position then q ⩾ 3n + 2, as in the Smiley’s result ([16]).

2. Some Preparations

In this section, we introduce some notations and recall some results in Nevanlinna theory for mero-
morphic functions and holomorphic curves on annuli, which are necessary for proof of the our main
result.

For any real number r such that 1 < r < R0, we denote

∆1,r =
{
z ∈ C :

1
r
< |z| ⩽ 1

}
, ∆2,r =

{
z ∈ C : 1 < |z| < r

}
,

∆r =
{
z ∈ C :

1
r
< |z| < r

}
.

Let f be a meromorphic function on ∆, c ∈ C, we denote

m(r, f ) =
1

2π

∫ 2π

0
log+ | f (reiθ)|dθ; m(r,

1
f − c

) =
1

2π

∫ 2π

0
log+

1
| f (reiθ) − c|

dθ.

Let
m0(r, f ) = m(r, f ) +m(r−1, f ),
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and
m0(r,

1
f − c

) = m(r,
1

f − c
) +m(r−1,

1
f − c

).

Denote by n1

(
r,

1
f − c

)
the number of zeros of f − c in ∆1,r, n2

(
r,

1
f − c

)
the number of zeros of f − c in ∆2,r,

n1(r,∞) the number of poles in ∆1,r and n2(r,∞) the number of poles of f in ∆2,r. Put

N1

(
r,

1
f − c

)
=

∫ 1

1/r

n1(t, 1
f−c )

t
dt, N2

(
r,

1
f − c

)
=

∫ r

1

n2(t, 1
f−c )

t
dt,

and

N1(r, f ) = N1(r,∞) =
∫ 1

1/r

n1(t,∞)
t

dt, N2(r, f ) = N2(r,∞) =
∫ r

1

n2(t,∞)
t

dt.

Set
N0

(
r,

1
f − c

)
= N1

(
r,

1
f − c

)
+N2

(
r,

1
f − c

)
,

N0(r, f ) = N1(r, f ) +N2(r, f ).

The function
T0(r, f ) = m0(r, f ) +N0(r, f ) − 2m(1, f )

is called the Nevanlinna characteristic of f . It is easy to see that the functions m0(r, f ),N0(r, f ) are non-negative
and the function T0(r, f ) is non-negative, continuous, non-decreasing and convex with respect to log r.
Lemma 2.1. ([9]) Let f be a non-constant meromorphic function on ∆. Then for any r ∈ (1,R0), we have

N0

(
r,

1
f

)
−N0(r, f ) =

1
2π

∫ 2π

0
log | f (reiθ)|dθ +

1
2π

∫ 2π

0
log | f (r−1eiθ)|dθ

−
1
π

∫ 2π

0
log | f (eiθ)|dθ.

In this paper, a notation “∥” in the inequality is mean that for R0 = +∞, the inequality holds for r ∈ (1,+∞)
outside a set ∆′r satisfying

∫
∆′r

rλ−1dr < +∞, and for R0 < +∞, the inequality holds for r ∈ (1,R0) outside a set

∆′r satisfying
∫
∆′r

1
(R0 − r)λ+1

dr < +∞, where λ ⩾ 0.

Lemma 2.2. ([10]) Let f be a non-constant meromorphic function on ∆ and λ ⩾ 0. Then for any r ∈ (1,R0),
(i) If R0 = +∞,

∥ m0(r,
f ′

f
) = O(log r + log T0(r, f )).

(ii) If R0 < +∞,

∥ m0(r,
f ′

f
) = O(log

1
R0 − r

+ log T0(r, f )).

Let f = ( f0 : · · · : fn) : ∆→ Pn(C) be a holomorphic curve on∆, where f0, . . . , fn be holomorphic functions
and without common zeros on∆. Let D be a hypersurface inPn(C) of degree d and let Q is the homogeneous
polynomial of degree d defining D. For 1 < r < R0, under the assumption that Q( f ) . 0, the proximity
function of f with respect to D is defined by

m f (r,D) =
1

2π

∫ 2π

0
log
∥ f (reiθ)∥d

|Q( f )(reiθ)|
dθ +

1
2π

∫ 2π

0
log
∥ f (r−1eiθ)∥d

|Q( f )(r−1eiθ)|
dθ,

where the above definition is independent, up to an additive constant, of the choice of the reduced repre-
sentation of f .
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Let n1, f (r,D) be the number of zeros of Q( f ) in ∆1,r, n2, f (r,D) be the number of zeros of Q( f ) in ∆2,r,
counting multiplicity. The integrated counting functions are defined by

N1, f (r,D) =
∫ 1

r−1

n1, f (t,D)
t

dt, N2, f (r,D) =
∫ r

1

n2, f (t,D)
t

dt,

and
N f (r,D) = N1, f (r,D) +N2, f (r,D).

Let α be a positive integer, we denote by nα1, f (r,D) the number of zeros with multiplicity truncated by α of
Q( f ) in ∆1,r, nα2, f (r,D) be the number of zeros of Q( f ) in ∆2,r where any zero is counted with multiplicity if its
multiplicity is less than or equal to α, and α times otherwise. The integrated truncated counting functions
are defined by

Nα1, f (r,D) =
∫ 1

r−1

nα1, f (t,D)

t
dt, Nα2, f (r,D) =

∫ r

1

nα2, f (t,D)

t
dt,

and
Nαf (r,D) = Nα1, f (r,D) +Nα2, f (r,D).

Let k be a positive integer, we denote by nα1, f ,⩽k(r,D) (resp. nα1, f ,⩾k(r,D)) be the number of zeros having
multiplicity ⩽ k (resp. ⩾ k) of Q( f ) in ∆1,r, nα2, f ,⩽k(r,D) (resp. nα2, f ,⩾k(r,D)) be the number of zeros having
multiplicity ⩽ k (resp. ⩾ k) of Q( f ) in ∆2,r, where any zero is counted with multiplicity if its multiplicity is
less than or equal to α, and α times otherwise. The integrated counting functions are defined by

Nα1, f ,⩽k(r,D) =
∫ 1

r−1

nα1, f ,⩽k(t,D)

t
dt, Nα2, f ,⩽k(r,D) =

∫ r

1

nα2, f ,⩽k(t,D)

t
dt;

Nα1, f ,⩾k(r,D) =
∫ 1

r−1

nα1, f ,⩾k(t,D)

t
dt, Nα2, f ,⩾k(r,D) =

∫ r

1

nα2, f ,⩾k(t,D)

t
dt.

And
Nαf ,⩽k(r,D) = Nα1, f ,⩽k(r,D) +Nα2, f ,⩽k(r,D);

Nαf ,⩾k(r,D) = Nα1, f ,⩾k(r,D) +Nα2, f ,⩾k(r,D).

In 2021, H.T. Phuong and L. Vilaisavanh proved the following
Lemma 2.3. ([14]) Let D be a hypersurface inPn(C) of degree d and f = ( f0 : · · · : fn) : ∆→ Pn(C) be a holomorphic
curve whose image is not contained D. Then we have for any 1 < r < R0,

m f (r,D) +N f (r,D) = dT f (r) +O(1).

Let f0, . . . , fn be a holomorphic functions, we denote by W( f0, . . . , fn) is the wronskian of the f0, . . . , fn,
namely

W( f0, . . . , fn) =

∣∣∣∣∣∣∣∣∣∣∣∣
f0 f1 · fn
f ′0 f ′1 · f ′n
...

...
. . .

...

f (n)
0 f (n)

1 · f (n)
n

∣∣∣∣∣∣∣∣∣∣∣∣ .
In 2023, H.T. Phuong and I. Padaphet proved the following

Lemma 2.4. ([13]) Let f : ∆→ Pn(C) be a linearly non-degenerate holomorphic curve and ( f0 : · · · : fn) is a reduced
representative of f . Then we have for any 1 < r < R0

∥ m0

(
r,

W( f0, . . . , fn)
f0 . . . fn

)
= O f (r). (2.1)
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Now let D1, . . . ,Dq be hypersurfaces in Pn(C) of the common degree d. Let P j(z0, . . . , zn) ∈ C[z0, . . . , zn]
be a homogeneous polynomial of degree d defining D j, j = 1, . . . , q. We regard C[z0, . . . , zn] as a complex
vector space. Then for any subset R ⊂ {1, . . . , q} and define

rank{D j} j∈R = rank{P j} j∈R.

Lemma 2.5. ([2]) Let D1, . . . ,Dq be hypersurfaces in Pn(C) of the common degree d. Put M =
(n+d

n
)
− 1. Then there

exist (M − n) hypersurfaces T1, . . . ,TM−n of degree d in Pn(C) such that for any subset R ⊂ {1, . . . , q} with

#R = rank{D j} j∈R = n + 1,

then rank{{D j} j∈R ∪ {T j}
M−n
j=1 } =M + 1. Here #R is number of elements of R.

Let N be an integer number such that N ⩾ n, then we have:
Lemma 2.6. ([2]) Let D1, . . . ,Dq (q > 2N−n+1) be hypersurfaces inPn(C) of the common degree d in N−subgeneral
position. Then there are positive rational constants w j, j = 1, . . . , q, satisfying the following:

(i) 0 < wi ⩽ 1, for all i ∈ {1, . . . , q}.
(ii) Setting w̃ = max{w1, . . . ,wq}, one gets

q∑
j=1

w j = w̃(q − 2N + n − 1) + n + 1.

(iii) n+1
2N−n+1 ⩽ w̃ ⩽ n

N .
(iv) For any R ⊂ {1, . . . , q} with #R = N + 1 then

∑
j∈R w j ⩽ n + 1.

(v) Let Ei ⩾ 1, i = 1, . . . , q, be arbitrarily given numbers. For R ⊂ {1, . . . , q} with #R = N + 1, there is a subset
Ro
⊂ R such that #Ro = rank{D j} j∈Ro = n + 1 and∏

i∈R

Ewi
i ⩽

∏
i∈Ro

Ei.

3. Proofs of Theorem 1

To prove our theorem, we need the following lemma which is a version of second main theorem for
holomorphic curves on annulus.
Lemma 3.1. Let f : ∆ → Pn(C) be an algebraically non-degenerate holomorphic curve, and let D1, . . . ,Dq, be
hypersurfaces in Pn(C) of degree d j in N-subgeneral position (N ⩾ n). Let d is the least common multiple of the d j

and set M =
(n+d

n
)
− 1. Assume that q ⩾ (M+1)(2N−n+1)

n+1 , then for any 1 < r < R0, we have

∥ (q −
(M + 1)(2N − n + 1)

n + 1
)T f (r) ⩽

q∑
j=1

1
d

NM
f (r,D j) +O f (r). (3.1)

Proof. Let ( f0, . . . , fn) be the reduced representation of f and let Q j be the homogeneous polynomial of
degree d j in C[z0, . . . , zn] defining D j, j = 1, . . . , q.

First we consider the case of d1 = d2 = · · · = dq = d. Let w1, . . . ,wq are rational numbers which
satisfy Lemma 2.6 with the hypersurfaces D1, . . . ,Dq. Let S1, . . . ,SM−n are hypersurfaces in Pn(C) satisfying
Lemma 2.5 and let P j (1 ⩽ j ⩽ M − n) is the homogeneous polynomial of degree d in C[z0, . . . , zn] defining
hypersurface S j. Let Id is the set of all (n+1)−types of degree d, since #Id =M, so we write Id = {I0, . . . , IM}.
For any j = 0, . . . ,M, we set

F j = f I j = f i j0

0 . . . f i jn
n ,

where I j = (i j0, . . . , i jn) ∈ Id. Since f is algebraically non-degenerate holomorphic curve, F0, . . . ,FM are
linearly independent on C. So

WF =W(F0, . . . ,FM) . 0.
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Claim 1. There is a positive constant α ⩾ 1 such that for any distinct subset {l1, . . . , lN+1} ⊂ {1, . . . , q}, we have

∥ f (z)∥d ⩽ α max
j=1,...,N+1

|Ql j ( f )(z)| (3.2)

for any z ∈ ∆.

Proof. Indeed, let R = {l1, . . . , lN+1} ⊂ {1, . . . , q} be a distinct subset, from Lemma 2.6, there exists a subset
R

o = {t1, . . . , tn+1} ⊂ R such that #Ro = n + 1 = rank{D j} j∈Ro . So for any integer k ∈ {0, . . . ,n}, by Hilbert’s
Nullstellensatz [17], there is an integer dk ⩾ d and the homogeneous forms L ji, j = 1, . . . ,n + 1, i = 0, . . . ,n,
with coefficients in C such that

zdk
k =

n+1∑
j=1

L jk(z0, . . . , zn)Qt j (z0, . . . , zn). (3.3)

Easy to see that the degree of L ji is dk − d for any j = 1, . . . ,n + 1, i = 0, . . . ,n, so there exists a constant αR
which depends only on the coefficients of L jk, namely depends only on the coefficients of Q1, . . . ,Qq such
that

|L jk( f0(z), . . . , fn(z))| ⩽ αR∥ f (z)∥dk−d (3.4)

for any z ∈ ∆. So from (3.3), we have

| fk(z)|dk ⩽ αR∥ f (z)∥dk−d max{|Qt j ( f )(z)|, j = 1, . . . ,n + 1}

⩽ αR∥ f (z)∥dk−d max{|Ql j ( f )(z)|, j = 1, . . . ,N + 1}. (3.5)

Note that, (3.5) holds for all k = 0, . . . ,n, so we have

∥ f (z)∥d ⩽ αRmax{|Ql j ( f )(z)|, j = 1, . . . ,N + 1}. (3.6)

Put α = max{1, max
R={i1,...,iN+1}⊂{1,...,q}

αR}, so α depends only on the coefficients of Q1, . . . ,Qq. From (3.6) we have

(3.2) and the claim is proved.

We next prove the lemma. Given r : 1 < r < R0, let x ∈ ∆, |x| = r be fixed point, there exists renumbering
{l1, . . . , lq} of {1, . . . , q} such that

|Ql1 ( f )(x)| ⩽ |Ql2 ( f )(x)| ⩽ · · · ⩽ |Qlq ( f )(x)|. (3.7)

We setR = {l1, . . . , lN+1} andQ = {1, . . . , q}\R. Then from Lemma 2.6, there exists a subsetRo = {t1, . . . , tn+1} ⊂

R such that #Ro = n + 1 = rank{D j} j∈Ro . Put

WR =W(Qt1 ( f ), . . . ,Qtn+1 ( f ),P1( f ), . . . ,PM−n( f )).

From Lemma 2.5 we have
rank{Qt1 , . . . ,Qtn+1 ,P1, . . . ,PM−n} =M + 1,

this implies that there exists a non-constant C1 , 0 such that

WR = C1WF. (3.8)

Since the degree of P j(z) is d for any j = 1, . . . ,M − n, this implies that there exists a constant β which
depends only on the coefficients of P j such that

|P j( f0(z), . . . , fn(z))| = |P j( f )(z)| ⩽ β∥ f (z)∥d (3.9)

for any j = 1, . . . ,M − n and for every z ∈ ∆.
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From Lemma 2.6, (3.2) in Claim 1, (3.8) and (3.9) we get

∥ f (x)∥d(
∑q

j=1 w j)
|WF(x)|

|Q1( f )(x)|w1 . . . |Qq( f )(x)|wq
= |WF(x)|

∏
j∈R

(
∥ f (x)∥d

|Q j( f )(x)|

)w j ∏
j∈Q

(
∥ f (x)∥d

|Q j( f )(x)|

)w j

⩽ αq−N−1.|WF(x)|
∏
j∈R

(
∥ f (x)∥d

|Q j( f )(z)|

)w j

⩽ αq−N−1.|WF(x)|
∏
j∈Ro

∥ f (x)∥d

|Q j( f )(x)|

⩽
αq−N−1βM−n

|C1|

|WR(x)|∥ f (x)∥d(M+1)∏
j∈Ro
|Q j( f )(x)|

M−n∏
j=1
|P j( f )(x)|

.

This implies that

log
∥ f (x)∥d(

∑q
j=1 w j)
|WF(x)|

|Q1( f )(z)|w1 . . . |Qq( f )(x)|wq
⩽ d(M + 1) log ∥ f (x)∥ + S(x) + log C, (3.10)

where C = αq−N−1βM−n/|C1| and

S(x) =
∑

R⊂{1,...,q}

log+
|WR(x)|∏

j∈Ro
|Q j( f )(x)|

∏M−n
j=1 |P j( f )(x)|

.

By the same arguments as above for y ∈ ∆ : |y| = 1/r,we have

log
∥ f (y)∥d(

∑q
j=1 w j)
|WF(y)|

|Q1( f )(y)|w1 . . . |Qq( f )(y)|wq
⩽ d(M + 1) log ∥ f (y)∥ + S(y) + log C. (3.11)

Integrating both sides of the inequalities (3.10), (3.11) and adding sides by sides, from Lemma 2.1 and
Lemma 2.6, we have

d(q−2N + n − 1 −
M − n

w̃
)T f (r)

⩽

q∑
j=1

w j

w̃
N f (r,D j) −

1
w̃

N0(r,
1

WF
) +

1
w̃

∫ 2π

0

(
S(reiθ) + S(r−1eiθ)

)dθ
2π
+O(1). (3.12)

From Lemma 2.4, we have

||
1

2π

∫ 2π

0

(
S(reiθ) + S(r−1eiθ)

)
dθ =

∑
R⊂{1,...,q}

m0

(
r,

WR∏
j∈R
|Q j( f )|

∏M−n
j=1 |P j( f )|

)
= O f (r). (3.13)

We will now estimate
∑q

j=1 w jN f (r,D j)−N0(r,
1

WF
). For each z0 ∈ ∆1,r, there are integers β j ⩾ 0, 1 ⩽ j ⩽ q,

and nowhere vanishing holomorphic functions 1 j in a neighborhood U of z0 such that

Q j( f )(z) = (z − z0)β j1 j,
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for j = 1, . . . , q, where β j = 0 if Q j( f ) is not vanishing at z0. Since the hypersurfaces D1, . . . ,Dq are in
N−subgeneral position, there are at most N index j ∈ {1, . . . , q} such that β j > 0. Without loss of generality,
we assume that β j > 0 for 1 ⩽ j ⩽ k ⩽ N and β j = 0 for j > k.

Let R = {1, . . . ,N + 1}, then from Lemma 2.6, there exists a subset Ro = {t1, . . . , tn+1} ⊂ R such that
rank{D j, j ∈ Ro

} = n + 1. Setting

WR =W(Qt1 , . . . ,Qtn+1 ,P1, . . . ,PM−n).

Then there is a non-zero constant C2 such that WF = C2.WR. So we have that WF vanishes at z0 with order
at least∑

j∈Ro

max{0, β j −M} ⩽
q∑

j=1

max{0, β j −M}.

This implies that
q∑

j=1

w j

(
N1, f (r,D j) −NM

1, f (r,D j)
)
⩽

q∑
j=1

w̃
(
N1, f (r,D j) −NM

1, f (r,D j)
)

⩽ w̃N1(r,
1

WF
) ⩽ N1(r,

1
WF

).

Therefore,
q∑

j=1

w jN1, f (r,D j) −N1(r,
1

WF
) ⩽

q∑
j=1

w jNM
1, f (r,D j).

By the same arguments as above, we have
q∑

j=1

w jN2, f (r,D j) −N2(r,
1

WF
) ⩽

q∑
j=1

w jNM
2, f (r,D j).

So
q∑

j=1

w jN f (r,D j) −N0(r,
1

WF
) ⩽

q∑
j=1

w jNM
f (r,D j). (3.14)

Combining (3.12), (3.13) and (3.14) we have

|| d(q − 2N + n − 1 −
M − n

w̃
)T f (r) ⩽

q∑
j=1

w j

w̃
NM

f (r,D j) +O f (r)

⩽

q∑
j=1

NM
f (r,D j) +O f (r). (3.15)

Note that w̃ ⩾
n + 1

2N − n + 1
, so from (3.15) we obtain (3.1).

Next we consider the case that d1, . . . , dq are not the same. For any j ∈ {1, . . . , q}, we set Q∗j = Qd/d j

j ,
where d is the least common multiple of the d1, . . . , dq. Then Q∗1, . . . ,Q

∗
q have the same degree d. Let D∗j is

hypersurface defining by Q∗j for j = 1, . . . , q. Since (3.15) and w̃ ⩾
n + 1

2N − n + 1
we have

∥∥∥ d(q −
(M + 1)(2N − n + 1)

n + 1
)T f (r) ⩽

q∑
j=1

NM
f (r,D∗j) +O f (r). (3.16)
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Note that if z ∈ ∆ is the zero of Q j( f ) with multiplicity k then z is zero of Qd/d j

j ( f ) with multiplicity kd/d j.
This implies that

NM
f (r,D∗j) = NM

1, f (r,D
∗

j) +NM
2, f (r,D

∗

j)

⩽
d
d j

NM
1, f (r,D j) +

d
d j

NM
2, f (r,D j) =

d
d j

NM
f (r,D j).

This implies (3.1) from (3.16). So the lemma is proved.

Now we proof of Theorem 1. Assume for the sake contradiction that f . 1. Let ( f0, . . . , fn) and
(10, . . . , 1n) are reduced representations of f and 1, respectively. Then since f , 1, there exist two numbers
α, β ∈ {0, . . . ,n}, α , β such that fα1β . fβ1α. We set

Φ = fα1β − fβ1α.

Now for any z ∈ ∆,we have

log |Φ(z)| = log |( fα1β − fβ1α)(z)|
⩽ log(2.max{| fα(z)1β(z)|, | fβ(z)1α(z)|})
= max{log | fα(z)| + log |1β(z)|, log | fβ(z)| + log |1α(z)|} + log 2
⩽ max{log | fα(z)|, log | fβ(z)|} +max{log |1α(z)|, log |1β(z)|} + log 2
= log max{| fα(z)|, | fβ(z)|} + log max{|1α(z)|, |1β(z)|} + log 2
⩽ log ∥ f (z)∥ + log ∥1(z)∥ + log 2.

So from Lemma 2.1 we have for any r : 1 < r < R0,

N0

(
r,

1
Φ

)
=

1
2π

∫ 2π

0
log |Φ(reiθ)|dθ +

1
2π

∫ 2π

0
log |Φ(r−1eiθ)|dθ

⩽
1

2π

∫ 2π

0
log ∥ f (reiθ)∥dθ +

1
2π

∫ 2π

0
log ∥ f (r−1eiθ)∥dθ

+
1

2π

∫ 2π

0
log ∥1(reiθ)∥dθ +

1
2π

∫ 2π

0
log ∥1(r−1eiθ)∥dθ +O(1).

= T f (r) + T1(r) +O(1) = T(r) +O(1), (3.17)

where T(r) = T f (r) + T1(r).
Let Q j, 1 ⩽ j ⩽ q, be the homogeneous polynomials in C[z0, . . . , zn] of degree d j defining D j. Of course

we may assume that q ⩾ nD + 1. For any j = 1, 2, . . . , q, we set Q∗j = QdD/d j

j so that Q∗1, . . . ,Q
∗
q have a same

degree of dD. Let D∗j is hypersurface defining by Q∗j for j = 1, . . . , q. Applying Lemma 3.1 to holomorphic
maps f : ∆→ Pn(C) and the hypersurfaces D∗j, j = 1, . . . , q, we have

∥ (q −
(nD + 1)(2N − n + 1)

n + 1
)T f (r) ⩽

1
dD

q∑
j=1

NnD
f (r,D∗j) +O f (r).

Similarly for 1, we have

∥ (q −
(nD + 1)(2N − n + 1)

n + 1
)T1(r) ⩽

1
dD

q∑
j=1

NnD
1 (r,D∗j) +O1(r).
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So we get

∥ (q−
(nD + 1)(2N − n + 1)

n + 1
)T(r)

⩽
1

dD

q∑
j=1

(NnD
f (r,D∗j) +NnD

1 (r,D∗j)) + o(T(r)). (3.18)

Now for any j = 1, . . . , q, we have

NnD
f (r,D∗j) = NnD

f ,⩽k j
(r,D∗j) +NnD

f ,⩾k j+1(r,D∗j)

⩽ NnD
f ,⩽k j

(r,D∗j) +
nD

k j + 1
N f ,⩾k j+1(r,D∗j)

⩽ NnD
f ,⩽k j

(r,D∗j) +
nD

k j + 1
(N f (r,D∗j) −NnD

f ,⩽k j
(r,D∗j))

=
(
1 −

nD
k j + 1

)
NnD

f ,⩽k j
(r,D∗j) +

nD
k j + 1

N f (r,D∗j)

⩽ nD
(
1 −

nD
k j + 1

)
N1

f ,⩽k j
(r,D∗j) +

nDdD
k j + 1

T f (r) + o(T f (r)). (3.19)

Similarly for 1we have

NnD
1 (r,D∗j) ⩽ nD

(
1 −

nD
k j + 1

)
N1
1,⩽k j

(r,D∗j) +
nDdD
k j + 1

T1(r) + o(T1(r)). (3.20)

Combining (3.19) and (3.20), we have

NnD
f (r,D∗j) +NnD

1 (r,D∗j) ⩽ nD
(
1 −

nD
k j + 1

)(
N1

f ,⩽k j
(r,D∗j) +N1

1,⩽k j
(r,D∗j)

)
+

nDdD
k j + 1

T(r) + o(T(r)).

This implies from (3.18),

∥ (q−
(nD + 1)(2N − n + 1)

n + 1
)T(r)

⩽
nD
dD

q∑
j=1

(
1 −

nD
k j + 1

)(
N1

f ,⩽k j
(r,D∗j) +N1

1,⩽k j
(r,D∗j)

)
+ nD

q∑
j=1

1
k j + 1

T(r) + o(T(r)). (3.21)
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By hypothesis that k1 ⩾ k2 ⩾ · · · ⩾ kq ⩾ nD,we have

q∑
j=1

(
1 −

nD
k j + 1

)
N1

f ,⩽k j
(r,D∗j)

=
(
1 −

nD
k1 + 1

)
N1

f ,⩽k1
(r,D∗1) +

q∑
j=2

(
1 −

nD
k j + 1

)
N1

f ,⩽k j
(r,D∗j)

⩽
(
1 −

nD
k1 + 1

)
N1

f ,⩽k1
(r,D∗1) +

q∑
j=2

(
1 −

nD
k2 + 1

)
N1

f ,⩽k j
(r,D∗j)

=
( nD

k2 + 1
−

nD
k1 + 1

)
N1

f ,⩽k1
(r,D∗1) +

q∑
j=1

(
1 −

nD
k2 + 1

)
N1

f ,⩽k j
(r,D∗j)

=
( nD

k2 + 1
−

nD
k1 + 1

)
dDT f (r) +

q∑
j=1

(
1 −

nD
k2 + 1

)
N1

f ,⩽k j
(r,D∗j) +O(1). (3.22)

Similarly for 1, we get

q∑
j=1

(
1 −

nD
k j + 1

)
N1
1,⩽k j

(r,D∗j)

=
( nD

k2 + 1
−

nD
k1 + 1

)
dDT1(r) +

q∑
j=1

(
1 −

nD
k2 + 1

)
N1
1,⩽k j

(r,D∗j) +O(1). (3.23)

Hence, we deduce from the inequalities (3.21), (3.22), (3.23),

∥ (q −
(nD + 1)(2N − n + 1)

n + 1
)T(r)

⩽ n2
D

( 1
k2 + 1

−
1

k1 + 1

)
T(r) + nD

q∑
j=1

1
k j + 1

T(r)

+
nD
dD

(
1 −

nD
k2 + 1

) q∑
j=1

(
N1

f ,⩽k j
(r,D∗j) +N1

1,⩽k j
(r,D∗j)

)
+ o(T(r)). (3.24)

We see that, if z0 ∈ ∆ is a zero of Q∗j( f ) with multiplicity α ⩽ k j, then z0 is a zero of Q j( f ) with

multiplicity αd j/dD ⩽ k j. Since f (z) = 1(z) on ∪q
j=1{z ∈ ∆ : 0 < ν( f ,D j)(z) ⩽ k j}, we have 1(z0) = f (z0), so

fα(z0)1β(z0) = fβ(z0)1α(z0). Namely z0 is a zero of the function Φ. And if z0 ∈ ∆ is a zero of Q∗j(1) with
multiplicity β ⩽ k j, then z0 is a zero of Q j(1) with multiplicity βd j/dD ⩽ k j, since ν1

( f ,D j),⩽k j
= ν1

(1,D j),⩽k j
, we have

z0 is a zero of Q j( f ) with multiplicity ⩽ k j. So according to the above argument, we have z0 is a zero of the
function Φ. By the hypothesis E f (Di)∩E f (D j) = ∅, we have E1(Di)∩E1(D j) = ∅ for any pair i , j ∈ {1, . . . , q},
so z0 will be not a zero of Qi( f ) and Qi(1) for all i ∈ {1, . . . , q} and i , j. This implies that

q∑
j=1

N1
f ,⩽k j

(r,D∗j) +
q∑

j=1

N1
1,⩽k j

(r,D∗j) ⩽ 2N0

(
r,

1
Φ

)
. (3.25)

So from (3.17) we obtain
q∑

j=1

(N1
f ,⩽k j

(r,D∗j) +N1
1,⩽k j

(r,D∗j)
)
⩽ 2dDT(r) +O(1).
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Hence we get from (3.24),

∥ (q−
(nD + 1)(2N − n + 1)

n + 1
)T(r)

⩽ 2nDT(r) − n2
D

( 1
k2 + 1

+
1

k1 + 1

)
T(r)

+ nD
q∑

j=1

1
k j + 1

T(r) + o(T(r)).

This implies that

( q∑
j=3

k j

k j + 1
−

qnD − q
nD

−
(nD + 1)(2N − n + 1)

(n + 1)nD

+ (nD − 1)
( 1
k2 + 1

+
1

k1 + 1

))
T(ρ) ⩽ o(T f (ρ)).

This is a contradiction. The theorem is proved.
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