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A uniqueness theorem related multiple values for holomorphic curves
on annuli sharing hypersurfaces in subgeneral position
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Abstract. In 2000, Y. Aihara proved a uniqueness theorem for linearly non-degenerate meromorphic
mappings from C” into P"(C), which was given again in 2010 by Cao and Yi. In this paper, we will
consider the same problem for holomorphic curves on an annulus to complex projective space in the case
of hypersurfaces in subgeneral position, namely we give a uniqueness theorem related multiple values for
algebraically non-degenerate holomorphic curves on an annulus sharing sufficiently many hypersurfaces.

1. Introduction

In 1975, H. Fujimoto (see [7]) proved that the linearly nondegenerate meromorphic maps from C™"
to IP"(C) are uniquely determined by 3n + 2 hyperplanes in general position with counting multiplicity.
In 1983, Smiley ([16]) obtained an improvement with ignoring multiplicity. After that, this problem has
been studied intensively by many authors. For example: Fujimoto ([8]), Ru ([15]), Yan-Chen ([5],[18]),
Dethloff-Tan ([6]]), An-Quang-Thai ([2]), Phuong-Minh ([12]), Phuong-Vilaisavanh ([14]) and others. When
considering multiple values, in 2000, Y. Aihara (see [1]) proved a uniqueness theorem for linearly non-
degenerate meromorphic mappings from C” into IP"(C), which was given again in 2011 by Cao and Yi
([4]). In this paper, we give a uniqueness theorem related multiple values for algebraically non-degenerate
holomorphic curves on an annulus sharing sufficiently many hypersurfaces. First of all, we introduce some
notations.

Let f =(fo:---: fu) : C" — P"(C) be a holomorphic curve, where fy, ..., f, are holomorphic functions
and without common zeros on C™. Let D be a hypersurface in IP"(C) of degree d and Q is the homogeneous
polynomial in C[zy, ..., z,] of degree d defining D. Assume

4

Qzo,...,zn) = Z akzgk" . .zif”,

k=0
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where 1, = (”;d) —land i+ -+, =dfork=0,...,1n;. And we write

14

(f,D) = Q(f) = Zukf(;‘ko__.fékn.

k=0

We say that (f, D) is free if (f, D) # 0.

Under the assumption that (f, D) is free, we denote by v(;p) the map from C" to Z whose value v(;p)(z)
(z € C™) is the intersection multiplicity of the images of f and D at f(z). And for positive integers d, k, we
set

d min{d, V(f,D)} if 0 < V(£,D) S k,
V =
FDy<k =10 otherwise.

Now let D = {Ds,...,D,} be a collection of arbitrary hypersurfaces and Q; be the homogeneous poly-
nomial in C[zy, ..., z,] of degree d; defining D; for j = 1,...,q. Let dp is the least common multiple of the

dj,j=1,...,9 and denote
(Tl+d1))
np = -1.

n

Let N > n be an integer, we recall that the collection of hypersurfaces D is said to be in N-subgeneral
N+1

position if g > N and for any distinct 71,...,in+1 € {1,...,4q}, () supp(D;,) = 0. If N = n, the collection of
k=1

hypersurfaces D is said to be in general position.
Let f and g be two linearly non-degenerate meromorphic maps of C" into IP*(C), and let Hy, .. ., H, beg
hyperplanes in general position such that

dim f'(HiNH;) <m -2 fori#j.
Let my, ..., m, be positive integers or co such that my > my > --- > m,; > n,
! = =12
(FH)<m; = VigH)<my 1= L&,

and f(z) = g(z) forallz € U?Zl{z € C": 0 <v(rm,) <mjh In2000, Y. Aihara (see [1]) proved f = g if

m;j >qn—q+n+1 m_ M
mj+1 n m+1 my+1

1)

q
=

Note that condition (1) implies ¢ > 3n + 2. In 2011, T. B. Cao and H. X. Yi ([4]) gave an improvement of
Aihara’s result and they proved f = g if

m;j n—-g+n+1
j >q q

—(n—1)( LI ) @

mj+1 n m+1 my+1

q
j=3
Our idea here is to consider this problem for holomorphic mappings from an annulus into IP*(C) in the
case of hypersurfaces in general position.
Let Ry > 1 be a fixed positive real number or +oo, set

Az{zeC:Rl0<|z|<Ro},

be an annulus in C. Let f = (fo : ==+ : fu) : A — P"(C) be a holomorphic curve, where fy,..., f, are
holomorphic functions and without common zeros on A. For 1 < r < Ry, characteristic function T(r) of f

is defined by
27

1 271 ) 1 ]
Tf(r):§ fo 1og||f(re'9)||aze+Z fo log || f(r~ )10,
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where ||f(z)|| = max{|fo(z)l,...,|fa(2)]}. The above definition is independent, up to an additive constant, of
the choice of the reduced representation of f. We set
O(logr +log T¢(r)) if Ry = +o0

0N =1, (log

Ro—7 +1logTs(r)) if Ry < +oo.

Let D be a hypersurface such that (f, D) is free, we set v(yp) the map from A to Z whose value v(;p)(z) is
the multiplicity of the zero of (f, D) at z. And

A _ Jmin{d, v} i 0 <vip) <k,
UP<E00 otherwise,

for positive integers d, k. Out result are stated as follows:

Theorem 1. Let f and g be algebraically non-degenerate holomorphic curves from A into IP"(C) such that
Of(r) = o(T¢(r)) and Og(r)_= o(Tg(Q). Let D = {Dy,..., Dy} be a collection of hypersurfaces in N—subgeneral
position in P"(C) such that Ef(D;) N E¢(D;) = 0 foralli # j € {1,...,q}. Take k; (j = 1,...,q) be positive integers
or oo such thatky > ky > --- 2 k; > np,

1 -1 .
V(f’Df)’gki - V(grD/‘),<k]’ ]= 1/ 2. /4q

and f(z) = g(z) forall z € U?Zl{z €A:0<vyp,) <k} If

L ki gip-q (mp+1)2N-n+1) 1 1
]Z; K+1~  np | (n+Dp (12 1)(k2 1k +1)’ ®)
then f = g.

Theorem 1 gives a uniqueness condition for algebraically non-degenerate holomorphic maps on an
annulus. Note that, when Dy, ..., D, are hyperplanes in general position then N = n, and np = n, so the
inequality (B) in Theorem 1 becomes the inequality (2), hence our theorem is an improvement of Cao-Yi’s
(np+1)2N-n+1)

n+1
hyperplanes in general position then g > 3n + 2, as in the Smiley’s result ([16]).

result ([4]). Furthermore the condition (3) implies g > 2np + ,and when Dy, ..., D, are

2. Some Preparations

In this section, we introduce some notations and recall some results in Nevanlinna theory for mero-
morphic functions and holomorphic curves on annuli, which are necessary for proof of the our main
result.

For any real number r such that 1 < ¥ < Ry, we denote

Al,r:{zeC:%<|z|<1}, Ayy={zeC:l<lzl<r},

Ar:{zeC:%<|z|<r}.

Let f be a meromorphic function on A, ¢ € C, we denote
1 270 ) 1 1 270 1
=— log* 9do; — )= — log" ————doé.
m(r, f) 271](; og” |f(re")|do; m(r,f_c) 2nf0 og () —clde

Let
mo(r, f) = m(r, f) + m(r_l,f),
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and . . .
my(r, ]Tc) =m(r, ]Tc) +m(r, JTC)-
Denote by nl(r, %c) the number of zeros of f —cin Ay, 712(1’, %c) the number of zeros of f —cin Ay,

1n1(r, 00) the number of poles in A; , and n,(r, o) the number of poles of f in A,,. Put
1 1 (8, %C) r na(t, L_C)
)= [ () [,
f-c 1r t f-c 1 t

1
Ni(r, f) = Nu(r, o0) = f )

1/r

and

"t ) o,

dt, Na(r, f) = Na(r, ) = f
1

Set

No(r, j%c) = Nl(r, j%c) + Nz(r, 7 1_ c)’

No(r, f) = Na(r, f) + Na(7, f).
The function
To(r, f) = mo(r, f) + No(r, f) = 2m(1, f)
is called the Nevanlinna characteristic of f. Itis easy to see that the functions m(r, f), No(r, f) are non-negative

and the function Ty(r, f) is non-negative, continuous, non-decreasing and convex with respect to logr.
Lemma 2.1. ([9]) Let f be a non-constant meromorphic function on A. Then for any r € (1, Ro), we have

27

1 1 271 ) 1 ‘
No(r,?)—No(r, N=5 fo log ()6 + - fo log |f(r1¢)\d6

1 27T )
- = f log |f(e"9)|d0.
T Jo

In this paper, a notation “||” in the inequality is mean that for Ry = +oco, the inequality holds for r € (1, +c0)
outside a set A, satisfying fA, r~1dr < +o00, and for Ry < +oo, the inequality holds for r € (1, Ry) outside a set

1
A; satisfying fA; Wﬂlr < +00, where A > 0.

Lemma 2.2. ([10]) Let f be a non-constant meromorphic function on A and A > 0. Then for any r € (1, Ry),
(i) If Ry = +o0,

’

1, 7) = O(logr + log To(r, f)).

I mo(

(i) If Ry < 400,

fy_
” mo(r, f) - O(log RO —7r
Letf=(fo: - : fu) : A = P"(C) be a holomorphic curve on A, where fy, ..., f, be holomorphic functions
and without common zeros on A. Let D be a hypersurface in IP"(C) of degree d and let Q is the homogeneous
polynomial of degree d defining D. For 1 < r < Ry, under the assumption that Q(f) # 0, the proximity
function of f with respect to D is defined by

O T 1 L W e o
my(r D) = ano 8 5peeC * 2m Jy B lape e

where the above definition is independent, up to an additive constant, of the choice of the reduced repre-
sentation of f.

+ log To(r, f)).
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Let ny,¢(r, D) be the number of zeros of Q(f) in Ay, 1 (r, D) be the number of zeros of Q(f) in Ay,
counting multiplicity. The integrated counting functions are defined by

1 ny, (t/ D) 4 na, (t/ D)
Nl,f(r/ D) = fl le}it, Nz/f(?’, D) = f ffl}it,
r- 1

and
Nf(l”, D) = Nl,f(rr D) + Nz/f(?’, D)
Let avbe a positive integer, we denote by n{ f(r, D) the number of zeros with multiplicity truncated by «a of
Q(f)in Aq,, n‘2"/ f(r, D) be the number of zeros of Q(f) in A, , where any zero is counted with multiplicity if its
multiplicity is less than or equal to , and « times otherwise. The integrated truncated counting functions

are defined by
1 ng f(t, D) r g f(t, D)
NY (1, D) = fl fdt, N; (1, D) = f fdt,
o 1

and
N“(r D)= (r D)+ N"‘f(r D).

Let k be a positive integer, we denote by n¢{ , _ (r,D) (resp. n¢ ,_,(r, D)) be the number of zeros having

(
Lfk 1,f,>k
multiplicity < k (resp. > k) of Q(f) in Ay, 2 <k(r D) (resp. ng f>k(r D)) be the number of zeros having

multiplicity < k (resp. > k) of Q(f) in Az, where any zero is counted with multiplicity if its multiplicity is
less than or equal to @, and a times otherwise. The integrated counting functions are defined by

1 n%, _(t,D) r 1y . (t,D)
1,f<k 2,f,<k
N{ 4 (r,D) = f — dt, Ng, (D)= f — dt;
r1 1

(t, D) rnd . _ (¢, D)
1 ok 2,12k
N?,fzk(”r D) = frl fdtr Ng,f,zk(”r D) =fl fdt

N}",gk(r, D) = N“f<k(r D) + N f<k(r D);

N?)k(r/ D)= 1,f,>k(r D) + 2f>k(r D).

In 2021, H.T. Phuong and L. Vilaisavanh proved the following
Lemma 2.3. ([14]) Let D be a hypersurface in P*(C) of degreed and f = (fo: -+ : fu) : A — P"(C) be a holomorphic
curve whose image is not contained D. Then we have for any 1 < r < Ry,

And

m(r, D) + N(r, D) = dT4(r) + O(1).

Let fo, ..., f» be a holomorphic functions, we denote by W(fo, ..., f,) is the wronskian of the fy, ..., fu,

namely
foo A S
o Ao
W, f)=| = o
(1) (1) i (1)
0 1 n
In 2023, H.T. Phuong and 1. Padaphet proved the following
Lemma 2.4. ([13]) Let f : A — P"(C) be a linearly non-degenerate holomorphic curve and (fo : -+ - : f,) is a reduced
representative of f. Then we have for any 1 <r < Ry
W(fo, .-, fn)
I mofr, =) = O56), @
oS !
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Now let Dy, ..., D, be hypersurfaces in IP"(C) of the common degree d. Let Pj(z, ..., z) € Clzo, ..., 2]
be a homogeneous polynomial of degree d defining D;, j = 1,...,q. We regard C[z, ...,z,] as a complex
vector space. Then for any subset R C {1,..., g} and define

rank{D}jer = rank{P} jer.

Lemma 2.5. ([2]]) Let Dy, ..., D, be hypersurfaces in IP"(C) of the common degree d. Put M = (”+d) 1. Then there
exist (M — n) hypersurfaces Ty, ..., Tap—y of degree d in IP"(C) such that for any subset R C {1, ..., q} with

#R = rank{Dj}jer =n +1,

then rank{{D} jer U {T]-}?g”} = M + 1. Here #R is number of elements of R.

Let N be an integer number such that N > n, then we have:
Lemma 2.6. ([2]) Let Dy, ..., Dy (g > 2N —n+1) be hypersurfaces in IP"(C) of the common degree d in N—subgeneral
position. Then there are positive rational constants w;, j = 1,...,q, satisfying the following:

(H)0<w; <1, foralliefl,..., q}.

(ii) Setting @ = max{w, ..., w,}, one gets

MQ

=w@-2N+n-1)+n+1.

(iii) g SW < K

(iv) Forany R c {1,...,q} with#R = N + 1 then }jcgw; <n+1.

(v) Let E; > 1,i = 1,...,q, be arbitrarily given numbers. For R C {1,...,q} with #R = N + 1, there is a subset
q y& q

R° C R such that #R° = rank{D}jere = n + 1 and

[Ter <]]E-

i€eR ieR®

3. Proofs of Theorem 1

To prove our theorem, we need the following lemma which is a version of second main theorem for
holomorphic curves on annulus.
Lemma 3.1. Let f : A — IP"(C) be an algebraically non-degenerate holomorphic curve, and let Dy, ...,D,, be
hypersurfaces in IP"(C) of degree d; in N-subgeneral position (N > n). Let d is the least common multiple of the d;

and set M = ("+d) 1. Assume that q > w , then for any 1 < r < Ry, we have

I (-

q
M+1)2N -n+ 1))Tf(r) < Z

—— N}A(r, D;) + Of(r). (3.1)

U=

=1

Proof. Let (fo, ..., fu) be the reduced representation of f and let Q; be the homogeneous polynomial of
degree d; in C[zy, ...,z,] defining D;, j = 1,...,q.

First we consider the case of d; = d, = -+ = d; = d. Let wy,...,w,; are rational numbers which
satisfy Lemma 2.6 with the hypersurfaces Dy, ..., D,. Let Sy, ..., Sy, are hypersurfaces in IP"(C) satisfying
Lemma 2.5 and let P; (1 < j < M — n) is the homogeneous polynomial of degree d in C[z, ..., z,] defining
hypersurface S;. Let Id is the set of all (1 + 1)—types of degree d, since #7; = M, sowe write 74 = {I, ..., Im}.
Forany j = 0,...,M, we set

‘ i i
Fi=fi=f  f
where I; = (ijo,...,1ju) € I4. Since f is algebraically non-degenerate holomorphic curve, Fy,...,Fy are

linearly independent on C. So
Wr = W(Fy,...,Fu) £0.
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Claim 1. There is a positive constant o > 1 such that for any distinct subset {l1,...,In+1} C {1, ..., q}, we have

If@I < a max 1Q,(H()l (3.2)

,,,,,

forany z € A.

Proof. Indeed, let R = {l1,...,Ins1} C {1,...,q} be a distinct subset, from Lemma 2.6, there exists a subset
R ={t,...,this1} € R such that #R® = n + 1 = rank{Dj}cro. So for any integer k € { .,n}, by Hilbert’s
Nullstellensatz [17], there is an integer di > d and the homogeneous forms Lj,j=1,...,n+1,i=0,...,n,
with coefficients in C such that

n+1

sz = Z ij(ZO/ Ce /Zn)Qt/-(ZO/ NN ,Zn). (33)
j=1

Easy to see that the degree of Ljjisdy —d forany j=1,...,n+1,i = 0,...,n, so there exists a constant ag
which depends only on the coefficients of L, namely depends only on the coefficients of Qy, ..., Q, such
that

ILix(fo(2), ..., fu(@)] < agll f@)|I" (34)
for any z € A. So from , we have

@I < agll f@IF max{lQ (H@)], = 1,...,n +1)

< agllf (@)% max 1Q,(N@Nj=1,...,N+1} (3.5)
Note that, holds for allk =0,...,n, so we have
If @I < ag max {IQ,(N@Nj=1,...,N+1} (3.6)

Puta = max{l,R ’ ma>}< " }aqg}, so a depends only on the coefficients of Q, ..., Q,. From l) we have
=11,--IN+11C U0
(3.2) and the claim is proved. O

We next prove the lemma. Givenr:1 <r < Ry, letx € A, |x| = r be fixed point, there exists renumbering
{li,..., 1} of {1,..., g} such that

QL (N < 1QL(H) < -+ < 1Qy, (H (X)L (8.7)

WesetR={l,...,Inv}and Q = {1,...,g\R. Then from Lemma 2.6, there exists asubset R’ = {t1, ..., t,41} C
R such that #R° = n + 1 = rank{D} er.. Put

W‘R = W(Qtl(f)r“-er,1+1(f)/P1(f)l--~rPM—n(f))~

From Lemma 2.5 we have
rank{Qtlr v er,,H/Pl/ .. 'IPM—n} =M+ 1/

this implies that there exists a non-constant C; # 0 such that
Wg = C;Wr. (3.8)

Since the degree of Pj(z) is d for any j = 1,..., M — n, this implies that there exists a constant § which
depends only on the coefficients of P; such that

IPi(fo(2), -, (@) = IP{(HE@)] < BlIF I (3.9)

forany j=1,...,M —nand for every z € A.
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From Lemma 2.6, (3.2) in Claim 1, (3.8) and (3.9) we get

I We )] IF @I\ IFGOIE \©
@mmwm@mmm”mmly@mwﬂ£y@mmﬁ

N~ IF QI \*
<af 1.IWF(x)|]1;!(W)

N ILFCoI
4-N-1 10N
<a .|Wp(x)|]1;€[l7 1Q;(/)(x)l

al NI M T WR )L ()IIMD

[ Mo '
TT1Q;(N)I TT 1P/l
jER® j=1

This implies that

0 LGP 0 W ()]
B (NI - 1Q, (AN

where C = a1 N=1gM=/|C;| and

+ [Wg(x)|
S(x) = z 1 )
' RT..q) o ,l;la Qi (NI IP;(H@)
jeRe

1 <dM + 1) log|lf(x)Il + S(x) + log C,

By the same arguments as above for y € A : |y| = 1/r, we have

LF I ER )W ()
RGO

lo <dM + ) log|If (W)l + S(y) + log C.

6880

(3.10)

(3.11)

Integrating both sides of the inequalities (3.10), (3.11) and adding sides by sides, from Lemma 2.1 and

Lemma 2.6, we have

dg-2N+n—1-M_1

—)Ty0)

L w; 1 1.1 (™, o d0
< Z{ 5’Nf(r, D)) = ZNolr ) + 5 fo (S(re) + S(r‘lele))ﬁ +0(1).
]:

From Lemma 2.4, we have

1 270 ) ) W.
” - S i0 S -1 0 d0 = 3 R
o jo‘ ( (7’@ ) + (7’ e )) ‘RC;.,M mO(r l_gz |Q](f)| H?ﬁ;n |P](f)|)
JE
= 04(r).

(3.12)

(3.13)

1
We will now estimate Z?:l w;iN¢(r, Dj) — No(r, W). For each zg € Ay, there are integers §; > 0,1 <j<g,
F

and nowhere vanishing holomorphic functions g; in a neighborhood U of zy such that

Qi(N@ =z -2y,



P. T. Ha, P. Chanthaphone / Filomat 39:20 (2025), 6873-6885 6881

for j = 1,...,q, where B; = 0 if Qj(f) is not vanishing at zy. Since the hypersurfaces D;, ..., D, are in
N-subgeneral position, there are at most N index j € {1,...,q} such that §; > 0. Without loss of generality,
we assume that §; > 0for1 < j<k<Nand ;=0 for;j>k.

Let R = {1,...,N + 1}, then from Lemma 2.6, there exists a subset R° = {f1,...,t,+1} € R such that
rank{Dj, j € R°} = n + 1. Setting

Wg=W(Q4,.--,Qt.., P1,- -, Pm—n)-

Then there is a non-zero constant C, such that Wr = C,.Wg. So we have that Wr vanishes at z; with order
at least

q
Y max{0, ;- M} < ) max{0, §; - M).
=1

jeRe

This implies that

q q
Zw] N f(r, Dj) = NY(r, D)) < Z (N 4(r, Dj) = NY,(r, D))
j=1

j=1
1
< WN4(r, WF) < Ni(r, Wp)'
Therefore,
Zw]le(rD) Ni(r, Zw] 1f(rD)

j=1

By the same arguments as above, we have

=

Zw]sz(rD) No(r, )\Zw]N (1, D).

j=1
So

q
Zw]NfrD) No(r, 75 Zw]-Nj}A(r,D]-). (3.14)
j=1 j=1

Combining (3.12), (3.13) and (3.14) we have
q
M-n w;j
| dg=2N+n-1-=——2)T;(r) < Z{ —N}(r, D)) + O5(1)
]:
q

< Z{ N¥(r, D)) + O(r). (3.15)
pn

+1
Note that @ > h’ so from (3.15) we obtain 1i

Next we consider the case that dy,...,d,; are not the same. For any j € {1,...,q}, we set Q; = Q].

where d is the least common multiple of the dy,...,d;. Then Qj, ..., Q,’; have the same degree d. Let D; is

1
hypersurface defining by Q’ for j=1,...,¢. Since (3.15) and @ > ﬁ we have

(M+1)(2N—n+1)
n+1

q
I - JTr(r) < Y N¥(r, %) + Of(r). (3.16)
j=1
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Note that if z € A is the zero of Q;(f) with multiplicity k then z is zero of Q7" (f) with multiplicity kd/d;
This implies that

NY(r, D}) = Ny (r, D}) + Ny (1, D})

d d d
< d—ijl‘ff(r, Dy + d—jNﬁ?f(r, D)) = d_ijfW(r, D)).

This implies from (3.16). So the lemma is proved. [

Now we proof of Theorem 1. Assume for the sake contradiction that f # g. Let (fy,..., f:) and
(9o, - .., gu) are reduced representations of f and g, respectively. Then since f # g, there exist two numbers
a,B€({0,...,n}, a # B such that f,gs # fsg.. We set

® = fogs — fpGa-

Now for any z € A, we have

log |P(z)| = log I(fagp — f59)(2)]
< log(2. max{|fa(2)g5(2)l, | f5(2)92(2)I})
= max{log|f.(z)| + log|gs(2)|, log | fs(2)| + log|g.(2)I} + log 2
< max{log | fa(2)], log | fs(2)I} + max{log|g.(2)l, log |gs(2)} + log 2
= log max{|fa(2)|, | fs(2)I} + log max{lga(2)l, |gs(2)I} + log 2
< logllf(@)Il + log llg(2)ll + log 2.

So from Lemma 2.1 we have forany r: 1 < r < Ry,

N(r l)‘i 7 (e )dO + —— znl (" e)ld6
o) 21 J, 8 2m Jo o8
271

1 ) 1 21 )

< i0 -1,i6

= | log || f(re )||d9+—2nj(; log|lf(r—e”)Ildo
270

1 i0 1 (7 -1,i0
+2n | log |lg(re )||d9+2n£ log llg(r~—"e"™)IldO0 + O(1).

= Ty(r) + T,(r) + O(1) = T(r) + O(1), (3.17)

where T(r) = T¢(r) + Ty(r).

Let Q;, 1 < j < g, be the homogeneous polynomials in C[z, ..., z,] of degree d; defining D;. Of course
jD/dj so that 7, ..., Q; have a same
degree of dp. Let D; is hypersurface defining by Q; for j=1,...,q. Applying Lemma 3.1 to holomorphic

maps f : A = P"(C) and the hypersurfaces D;, j=1,...,q,wehave

we may assume that g > np +1. Forany j = 1,2,...,4, we set Q; =0

(np+1)(2N -n+1)
n+1

LN o 1y
I @ )Tf(r><@;wf (1, D}) + O5(1).

Similarly for g, we have

(np + 12N —n+1) 1 X o e
(o s n )Tg(r)<%ZNg (r, DY) + Oy ().

=

I (g
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So we get

(np+1)2N -n+1)
n+1

I (-

)T(r)

< % ;(N;D (r,D}) + Np2(r, D)) + o(T(r))-

Now forany j=1,...,q, we have

N2(r, D)) = N2, (,D) + N2, (1, D))

fr2ki+1

N;ﬂk(rD)+ ] Nf>k+1(rD)
<N, (D) + ¢ (Nf(rD)—N;gk (r, D)
=(1_k, 1)N”Dk( D)+ Nf(rD)

<n@(1—k;lf N, D*)+

Tf(”) +0(T¢(r)).

Similarly for g we have

" n w  npd
N;2(r, D) < np(1 - —= N} _, (1, D)) + k}”fi Ty(r) + o(T,(r)).

k]' +1
Combining (.19) and (3.20), we have

n * n " no " .
N2(r, D}) + Ny? (1, D) < np(1- = 1)( D)+ N] <k]_(r,Dj))

I’Zg_)dz)
+ k]- | T(r) + o(T(r)).

This implies from (3.18),

(np+1)2N —n+1)
n+1
noy 1 ny
1 % 1 %
<2y (1- T 1)(Nf,<kj(r, D) +N, . (, D))

d911

I (-

)T(r)

+ g ; kj%T(r) +o(T(7)).

6883

(3.18)

(3.19)

(3.20)

(3.21)
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By hypothesis that ky > k, > --- > k; > np, we have

q
2 (- 5N D)

=1

1-

* np *
) N, (D) + ) (1- ey N} o, (D)

~.
= |l 5
[N)

(
(1 k +1) f<k1(rD*)+]Z;( 5 +1)Nf D)
-

kznf1 ) f<k1(r D) + 2(1 - —)N}<k (r, D)

By

- (kznf 1+ 1)dDTf(7) +Z( )N}<k (r, D) + O(1). (3.22)

Similarly for g, we get

q
2 (1= 5N, D)

q
_(_ "D
_(k2+1 ky +1)dDT +Z(

j=1
Hence, we deduce from the inequalities (3.21)), (3.22), (3.23),
(np+1)2N —n+1)

n+1

1 1 1
< n? -
nﬂ(kz +1 kg + 1)T(r) * nD; ki + 1T(r)

)N;,gkj(r/ D7) +O(). (3.23)

I (q-

)T()

M&

# P2 (1= 20 ) ) () D) + NL o (.D)) + o(T () (324)

=1

We see that, if zp € A is a zero of Q;( f) with multiplicity @ < kj, then zo is a zero of Qj(f) with
multiplicity ad;/dp < k;. Since f(z) = g(z) on U’j. {z € A:0 <vypyz) < kjl, we have g(zo) = f(z0), so
fa(20)95(20) = fp(z0)9a(z0). Namely zg is a zero of the function @. And 1f zo € A is a zero of Q].(g) with
multiplicity § < kj, then zo is a zero of Q;(g) with multiplicity pd;/dp < kj, since v (D<K = (1g Dyky”
zg is a zero of Q;(f) with multiplicity < k;. So according to the above argument, we have zp is a zero of the

function @. By the hypothesis Ef(Dl) N Ef(D i) = 0, we have Eg(D n Eg(D]) =Qforanypairi#je({l,...,q},
so zp will be not a zero of Q;(f) and Q;(g) foralli € {1,...,q} and i # j. This implies that

we have

q
* * 1
; L (D) + Z L (D) < 2No(r, 5). (3.25)
So from ( we obtain

Z( b (D) +NL (1, DY) < 2dpT(r) + O(1).
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Hence we get from (3.24),
(np+1)2N —-n+1)
I @ - T0)
< 2npT(r) — n? (L + L)T(r)
S D DNy +1 kg +1

q
+ g Z;‘ o 1 1) +o(T().
p

This implies that

(i ki gio—q (np+1)@N-n+1)
= k]+1 nyp (1’1+1)1’11)

1 1
+(np — 1)(k2—+1 + k1—+1))T(P) < o(T¢(p))-

This is a contradiction. The theorem is proved.
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