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Inequalities for rational functions in the complex plane

Idrees Qasim?

*Department of Mathematics, National Institute of Technology, Srinagar, India-190006

Abstract. This paper investigates inequalities for rational functions with prescribed poles and zeros located

inside or outside a disk of radius k. We extend classical polynomial inequalities due to Govil (1973, 1980) to
the setting of rational functions. In particular, we establish a relationship between the maximum modulus
of a rational function on the circle of radius k (where k > 1) and on the unit circle. Our findings refine

inequalities for rational functions previously obtained by Li, Mohapatra, and Rodriguez (1993), providing
sharper bounds under certain conditions.
1. Introduction

Let P, denote the space of complex polynomials p(z) := ¥, a;z/ of degreen > 1. Foraj € Cwithj=1,2,...,n,
j=
let w(z) = [1j_1(z — a;) and define

_wE _1r(l-2 _ _[r@
B(Z) = ’(,U(Z) = ]]j (z——a])’ Rn = Rn(al,az,. . .,ﬂn) = {M, p e Pn},

where w*(z) = z'w (: is the conjugate transpose (reciprocal) of w(z). Then R, is the set of rational functions
z

with poles a1,a5,...,a, at most and a finite limit at infinity. The function B(z) € R, is known as finite
Blaschke Product.

In our discussion, we shall assume that the poles ay, ay, . . ., a, lie in the region |z| > 1, unless otherwise stated.

For r(z) = % € R,,, the conjugate transpose * of r is defined by

r'(z) = B(z)r(%).
Note that if r(z) = % € R, then r(z) = Z:g; and hence r*(z) € R,,.
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If p € Py, then concerning the estimate of [p’(z)| on the unit circle |z| = 1, we have the following well-known
result due to Bernstein [6]:

max P’ <n max Ip()l- ey

The inequality (1) is sharp and equality holds for polynomials having all zeros at the origin.

Since equality in (1) holds if and only if p(z) has all zeros at the origin, it is natural to expect a relation-
ship between the bound # and the distance of the zeros of a polynomial from the origin. This fact was first
observed by Erd6s, who conjectured it; the conjecture was later proven by Lax [11].

If p e P, and p(z) # 0in |z| < 1, then

max I (@) < 5 max |p(2)! )

On the other hand, Turan [17] considered a polynomial p(z) of degree n having all zeros inside |z| < 1 and
proved that

’ n
max |p/(2)] 2 5 max |p(z)l (3)

As an extension of inequalities (2) and (3), Malik [13] proved that if p € P, and p(z) # 0 in |z| < k, where
k > 1, then

max P (2) <

s o T+ BxIpGl @)

Whereas, if p(z) has all its zeros in |z| < k, k < 1, then

I‘n‘ax P (2)| = %{ mlax lp(2)I. )

As an analogue of inequality (4) for k < 1, Govil [9] demonstrated that if p(z) # 0 for |z| < k, with k < 1, then

max|p'(@) < & max |p(z). (6)

+k"1 lzI=1

Whereas, as an analogue of (5) for k > 1, Govil [10] proved that if p(z) has all its zeros in |z| < k, with k > 1,
then

max P ()| =

=1 1+ k" oA |p @) 7)

Li, Mohapatra and Rodriguez [12] extended inequalities (2) and (3) to rational functions with prescribed
poles and proved the following results.

If r € R,,, such that r(z) # 0 for |z| < 1, then for |z] = 1,

i< 2!

max |r(z)| 8)
Whereas, if r € R, such that r(z) # 0 for |z| > 1 and r(z) has exactly n poles at ay,as, ..., a,, then for |z| = 1,

@2 3 1B E) - 0= ml ), ©)
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where m is the number of zeros of 7(z).
Aziz and Zargar [5] extended inequality (4) to rational functions and proved the following result:

Theorem A. If r € R, such that 7(z) # 0 for |z| < k, with k > 1, then for |z| = 1,

k=1 )P
k+1 (maxp-1|r(z)])?

vas s {e bmaxra. 10

Aziz and Shah [4] extended inequality (5) to rational functions and proved:

Theorem B. If r € R, such that r(z) # O for |z| > k, with k < 1 and r(z) has exactly n poles at a,a5,...,4a,,
then for |z| =1,

v g e 272 D, )

where m is the number of zeros of r(z).

The inequalities concerning rational functions and their derivatives, which generalize the classical polyno-
mial inequalities, originally emerged in the literature as tools to establish inverse theorems in approximation
theory. These rational inequalities possess independent significance, as evidenced by numerous recent pub-
lications (see, for instance, [1, 14, 15]).

In this paper, we present new results for rational functions whose zeros lie entirely within z < k, where
either k > 1 or k < 1. Our findings extend the inequalities (6) and (7) to the setting of rational functions.

Notations:
kT " (1—-aikz
1. B(kz) = [wikz)] = —=); which is obtained when B(z) is evaluated at kz.
w(kz) i kz —a;
w*(kz) 1 (k—ajz D . .
2. Bi(z) = = ; which is the Blaschke Product associated with r(kz).
w(kz) L A\kz-a;

j=1

Note that |Bx(z)| = 1 for |z| = 1.

-1 (k —ajzk o . .
3. Bi(kz) = H e which is obtained by evaluating Bi(z) at z = kz.
- i

j=1

(1 -ajzk . . :
4. Bijl(z) = H k) which is Blaschke product associated with #(z/k).
j=1 /

i ——  pika) . .
6. 1r'(kz) = Bi(z)r (k/z) = ———; is the reciprocal of r(kz).

w(kz)’
[p(k2)]*

k) ; is the reciprocal of r(z) evaluated at kz.

7. [r(k2)]" = Blkz)r (1/kz) = Wk
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2. Main Results

In this section we state our main results. Theorem 1 establishes a relationship between the maximum
modulus of r(z) on a circle of radius k, where k > 1 and the corresponding modulus taken over the unit
circle.

Theorem 1. If r(z) = P(( )) € R, such that all the zeros of r(z) lie in |z| < k, with k > 1, then for all z with
lzl =1,
2|By(kz)|
max |r(kz)| = ————1r(z
max r(k2) = - 2l

Equality holds for k = 1.
Next, we present the following analogue result, which extends Theorem B for k > 1.

Theorem 2. If r(z) = p(z)/w(z), where p(z) = H';:l(z — zj), be a rational function having all zeros in |z| < k,
and all poles in |z| > k, where k > 1. Then, for |z| = 1,

I(k)l

maxlr (z)] > 2|B(k T [|Bk( 2)| + Z i

For k = 1, Theorem 2 reduces to the following corollary:

Corollary 1. If 7(z) = p(z)/w(z), where p(z) = H;‘zl(z — zj), be a rational function having all zeros in |z| < 1,
then, for |z| = 1,

1 = 1|z
’ > - ’ )
max|r'()] 2 5 [|B (2)] + ]Z; |
Since |zj| < 1for j=1,2,...,n, Corollary 1 provides a refinement of inequality (9).
Finally, we present the following result, which is analogous to Theorem A when k < 1.

Theorem 3. If r(z) = p(z)/w(z) € R,, where p(z) = H';:l(z - zj), and suppose 7(z) does not vanish in |z| < k,
with all poles lying in |z| > 1/k, where k < 1, then

r‘n‘ax [ (z)] < rlnax |B’ (z)Imlax |r(z)| — Alr(kz)l] (12)

provided that [r'(z)| and | (z)| becomes maximum at the same point on the circle |z| = 1, where

— klz;
Buyd Z)”Z 1+ Kz, |]

3. Lemmas

To prove these theorems, we require the following lemmas. The first lemma is due to Li, Mohapatra
and Rodriguez [12].
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Lemma 3.1. Ifr € R, and |z| = 1, then

@)1+ (2)] < |B'(2)] max|r(z)l

Lemma 3.2. Ifr € R, and G(z) = r(kz) for k > 1. Then, for R > 1and |z| =1,

IG(R2)| + |G"(Rz2)| < (IB(Rz)l + 1)I|§1|g;< IG(2)l,

where G*(z) = Bk(z)m.
Proof. The proof of this lemma is on the same lines as Theorem 1 of [3], so we omitit. O
Lemma 3.3. Ifr € R,. Then, fork > 1and |z| = 1,
|(r(kz))'| < B(kz)| max I’ (2)]-
Proof. Let M = rlgllgi( [¥"(z)|, then

() <M for |z|=1.

For any complex number o with |a| < 1, it follows that
lar’ (z)| < B(z)IM  for |z|=1.

Since it is assumed that all the poles a1, ay,...,a, lie in |z| > 1, all the zeros of B(z) lie in |z| < 1. Also, ’'(z)
and B(z) are analytic in |z| < 1. By Rouche’s Theorem, all zeros of

F(z) = ar'(z) + B@)M (13)

lie in |z| < 1.
We claim that for0 < 6 <2mand k > 1,

|(r(ke®))'| < B(ke'®)IM, (14)
for points ¢ that are not zeros of (r(kz))’. For if (14) is not true, then
|(r(ke'®))'| > B(ke'®) M, (15)

B(ke'®)M

for a point ¢’ which is not a zero of (r(kz))’. Let & = _W

. Then, by (15) |a| < 1, and from (13), we get

F(ke'?) =0 for k> 1.
This is a contradiction to the fact that all the zeros of F(z) lie in |z| < 1. This establishes (14) for points '’
that are not zeros of (r(kz))’. Since (14) is trivially true for points ¢/ which are zeros of (r(kz))’, we conclude

thatfork > 1and |z| =1,
|(r(kz))'| < |B(kz)| max I’ (2)I.

O

Lemma 3.4. For w = re’®, withr <k,

ke'® k
Rel| ———| =2 —.
e(k619—w)_ k+r
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Proof. An easy computation gives

ke® \ k> —rkcos(¢p—0)
ke® —w) k2 + 12— 2krcos(¢p — 0)

(16)

For r < k, we observe that:
kr(k —r)(cos(¢p — 0) + 1) = 0.
This inequality implies:
—kr? cos(¢p — 0) + K*r > kr* — K*r cos(¢p — O).

Adding k® and subtracting k?r cos(¢p — 6) on both sides yields:

K — K*rcos(¢p — 0) — kr* cos(¢p — 0) + kK*r > k& + kr* — 2k*r cos(¢p — 0)
= (k +r)(k* = rkcos(¢p — 0)) > k(k? + r* — 2kr cos(¢p — 0))
k2 = rk cos(¢p — 6) k
k2 + 712 —2krcos(p —0) ~ k+71’

Substituting this into equation (16) completes the proof. [
Lemma 3.5. If |aj| > k for all j, then for |z| = 1,

zB(2)
Bi(2)

= |By(2)I-

Proof. We have,

n

B =[] ka2

kz —a;

j=1

Taking the logarithmic derivative, we obtain:

zB; (2) _Z”: -a;z k2
Bi(z) P k—ajz kz—a;|

For |z| = 1, this simplifies to:
zB;(2) _ L Jaj* - K
Bi(z) = |zk — aj]>”

Since |aj| > k for j =1,2,...,n, the right-hand side is non-negative. Thus, for |z| = 1,

zB(2)

Bi(z)

zB(2)
Bi(2)

By(2)|.
O

Lemma 3.6. If |aj| > k for all j, then for |z| = 1,

z[w(kz)]'\ 1= B (2)l
Re( w(kz) ) B 2 )
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Proof. We have
w*(kz)
w(kz)

By(2) =
Taking the logarithmic derivative yields:

zB(z) z[w*(kz)]' z[w(kz)]
Bi(z2)  w(kz)  wika)

Using Lemma 3.5, we get

2w k) | [zl
Re[ e ]—Re[ ot ]

(17)

Also,

So that,

[w'(kz)]’ = nz”lw(lé) -Z"w (I:C)k2
z z

For |z| = 1, a straightforward calculation shows:
z{w'(k2))'] z {wkz))
Re[ o (k2) ] =n Re[ wka) | (18)

Combining equation (17) and (18) gives the required result. [

Lemma 3.7. Forl|z| =1,
z
B -l =
”k(k)

1

, 19
‘Bl/k(kz)| 4

and

1
|B(kz)|

(20)

z
‘B(%) =
Proof. We have
( ) —ajk(z/k)
5 /K - ak
k —ajzk
z—ajk?|’

H
H

j=

For |z| = 1, this simplifies to:
kz —ajk
1-ajk’z

_ 1
IB1/k(kz)|”

i) 1
1/kk ]]:!

Equation (20) follows by a similar argument, so we omit the proof. O
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4. Proofs of the Theorems

Proof of Theorem 1. Since 7(z) has all its zeros in |z| < k, where k > 1, it can be written as

H?:l(z - zj)

r(z) = e

, <k k=21

For zj = rje’% with rj <k, j=1,2,...,n and for points ¢* that are not zeros of r(z), we have

r(k2e®)| 17 |Ke? =1 | w(e) o
r(eis) - i eif — rjeiej : w(kzeis) : (21)
We claim that for |z| = 1,
w(z) 1
= —|Bi(kz)|, 22
w(kzz)' r P (k2)l (22)
with equality if and only if k = 1. Observe that
)1 —a_jz) = '1 —a_jz' = }1 —ajE).
For |z] = 1, this becomes
1|k —kajz |z
k KRz—aj| |Kz-aj|
By definition of Bx(kz) and w(z), this simplifies to:
1 | w(z) B
7 [Bk(kz)| = ’w(kzz) for |z] =1.
Equality holds if and only if k = 1, completing the proof of (22).
We also claim that fork > 1andr; <k, j=1,2,...n,
k20 — r;e'0i - 23

with equality if and only if k = 1.
To prove our claim, we need to minimize the function
() = [k — e =2 |e —r,d¥", k=1, 1<k (j=1,2,...,n).
A straightforward computation yields:
h@) = (2 - 1)~ 7).
Fork>1,andr; <k (j=1,2,...,n), we have
(K -1)(k* - rﬁ) >0,

with equality if and only if k = 1. This establishes (23).
Therefore, from equation (21), we obtain

r(k2e'%)] > |Bi(ke®)Ir(e™)), (24)
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for all points ¢ with 0 < 6 < 27 that are not zeros of 7(z). Since inequality (24) is trivially true for points e
that are zeros of r(z), we conclude that for |z| = 1,

[r2)| = Bi(k2)lIr2). (25)
Let G(z) = r(kz) and H(z) = Bk(z)@. By Lemma 3.2, for R > 1and |z| = 1,
IG(Rz)| + [H(Rz)| < (|Br(Rz)| + 1)r|§1|gi< IG(2)!.
In particular, taking R = k > 1, we obtain for |z| = 1,

IG(kz)| + |H(kz)| < (|B(kz)| + 1) max IG(2)].

This implies for |z| = 1,
r(k2)| + Bk (k2)lIr(2)| < (IBi(kz)] + 1) max Ir(kz)I.

Using inequality (25), we obtain for |z] = 1,
2ABi(2)llr(z)| < (Be(kz)l + 1) maxr(kz).
This completes the proof of Theorem 1. [

Proof of Theorem 2. Let G(z) = r(kz). Then, G(z) has all its zeros in |z| < 1 and can we expressed as:

[T (kz — z))
w(kz)

By logarithmic differentiation, we obtain
G'(z) Z _ (w(kz))
G(z) kz—z;  w(kz)
For points z = ¢ (0 < 6 < 2r), that are not zeros of G(z), we have
; n : i0 i)’
) Gl(ezﬁ) elo e (w(ke ))
Rele?=—2]= ) Relk— —Re| —————~|.
e(e G(e0) ) ; e( ke® —z;) 0| (ke

Applying Lemma 3.4 and 3.6, we derive the lower bound

os85€) Z k  n=IBe)
G(e?) ) =~ Hk+ Iz 2

Now,

Gz) = , Il <k for j=1,2,3...,n

0 G (eiQ)
G(e'9)

G'(e'%) n— B ()
i0
= Re ( G(ei9) ) Z k+ |z] 2 ’

This inequality immediately implies,

, ok n — |B.(e'?)] .
G (%) > - k G(e')|,
(@) ;‘kﬂzjl S 11GE)




I. Qasim / Filomat 39:20 (2025), 6887-6897 6896

for points ¢ (0 < 0 < 2m) that are not zeros of G(z). But above inequality is trivially true for points ¢ that
are zeros of G(z). Consequently, for for all z with |z| = 1, we have the uniform lower bound:

=k —|B(2)|
ol Z; e n 2k z IG(2)].
]:

Using the value of G(z), we obtain for all z with |z] = 1,

n — |B.(2)]
(o612 4Y O e,
=1

Applying Lemma 3.3, we obtain for |z| = 1,

B(k il 514 P
Bk maxr'(2)] > Zk+|z] 5 k).

Rearranging terms, we arrive at the final lower bound for |z| = 1:

I(k)l O

max | () > 5o 2|B(k ; [| ()l + Zk

Proof of Theorem 3. Since all the zeros of 7(z) lie in |z| > k, all the zeros of ¥*(z) lie in |z| < 1/k, where 1/k > 1.
Applying Theorem 2 to r*(z), we obtain for |z| = 1,

1 — kizj]
*! > ’ k .
max ()| 2 grs (z>|+ TR Ir*(z/K)|
Using Lemma 3.7, this simplifies to for |z| = 1,
. IBkz)| |,,., — klzj] 1, 51— Kklzjl
> == 2
max|r'(2)] 2 == ¢ B (2 z)| + LT IB(z/R)lrkz)l = 5 Bl/k(z)| TR rkz)l.  (26)
By hypothesis |'(z)| and [r"'(z)| becomes maximum at the same point on |z] = 1. Let IIHI?;(W(Z)l =

r (ei‘:)| and hence by Lemma 3.1,

, forsome 0 < C < 2m. Then, rlnlaf [ (z)| =
z|=
@)+ 1 (@) < IB' @) maxr(z).
z|=
Combining this with (26), we deduce

r‘n‘ax |B'(2)| max Ir(z)l > rlnax |7 ()| + r‘n‘ax [ (2)|

> max |7’ (2)] +

na k())+zl+k|f' (k).

This gives after simplification,

max I (2)l < max IB"(2)| max Ir(z)l = Alr(kZ)I] , (27)
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where

1= klzjl
A_ B Z)|+Zl+k|ZJ
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