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Abstract. Sharp bounds are given for some functional including the second and third Hankel determinants,
and the Zalcman functional a,a; — a4 for convex functions related to a cardioid domain. We show that the
sharp bounds for the third Hankel determinant for convex functions related to the cardioid domain and its
inverse function are the same, but the corresponding sharp bounds for the second Hankel determinant and
the Zalcman functional differ. The results presented therefore provide a new significant example of convex
invariance, together with examples of non-invariance.

1. Introduction
Let A denote the class of functions f which are analytic in the open unit disc D := {z : |z| < 1, z € C} and
normalized by the conditions f (0) = f’ (0) — 1 = 0 with Taylor expansion
f) =z + Zanz”, zeD )
n=2

furthermore, let S represent the subclass of A which contains univalent functions in ID.

Let f and g be two functions which are analytic. Then, if there is a function w, also called the Schwarz
function, with the condition that it is an analytic self map in ID with w(0) = 0 such that f(z) = g(w(z)), then f

is subordinated by g and symbolically expressed as f < g. In addition, the equivalent connection indicated
below applies if g is one-to-one in D:

f(2) <g9(z) & f(0) = g(0) and f(ID) < g(ID).

We denote by 8 the class of analytic functions w, known as Schwarz function, such that it maps ID onto
itself with w(0) = 0. Assuming that the function ¢ is symmetric about the real axis, analytic, univalent, and
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starlike with respect to ¢ (0) = 1 with ¢’ (0) > 0 in ID. Ma and Minda [16] used the concept of subordination
and the function ¢ to generalize the well-known classes of convex and starlike functions as follows:

Swm=&eﬂfﬂ?<¢w}

and

7 fu (Z)
f(@)
The classes S* = S*(%—ﬁ;) and C = C(%—J_';) are familiar classes of starlike and convex functions.

Sharma et al. [23] introduced the class of starlike functions associated with a cardioid domain, which is
defined as

C(qo):z{feﬂ:1+ <go(z)}.

<1l+=-z+ =z

f@) 3 3

Swief{fea: L8 <14 %422},

We provide here the sharp bounds for several functionals, such as the second and third Hankel deter-
minants for the class C,,, defined by

zf"(z) 4 2 2}

<l+4+=-z+ =z

@) 373

together with corresponding sharp bounds for the inverse coefficients of f.

Cm::{fEﬂ:1+

Any univalent function f has an inverse function f~! defined on some disc [w| < 1/4 < 7(f), with a
Taylor series expansion

f_l(w):w+A2w2+A3w3+~--. (2)

For analytic functions f € A, Pommerenke [17] introduced the gth Hankel determinant, which is given
by

[ Apsl - an+q—1

A+l Apy2 - an+q
Hm@=|. . R

Ap+g-1  On+g  ---  An+2g-2

where n > 1 and g > 1. The Hankel determinants H, (2) (f) = axas — a§ and H> (3) (f) = azas — ai of order 2
have been examined by numerous authors (seee.g., [5,7, 13,22, 24, 25]), on the other hand, H, (1) (f) = a% —a3
is classical. Nonetheless, establishing precise bounds for

|H3 (1) (f)( = (2a2a3a4 - ag - ai + asas — a§a5' 3)

of order 3is a more challenging problem, and several authors have obtained non-sharp bounds for |[H3 (1) (f)|,
e.g., [1, 3,19, 28]. We see that certain authors [2, 8-10, 12, 21] have found sharp bounds for [H3 (1) (f)| for
specific subclasses of univalent functions, based on a result in [11].

It was first time showed by Libera and Zlotkiewicz [14] that the inverse coefficients A, preserves classical
inequality |2,] < 1 when 2 < n < 7 for the class C of convex functions. In 2016, Thomas and Verma [27]
showed some invariance properties amongst the class of strongly convex functions. Invariance property
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among the coefficients functionals of the subclass of convex functions related with sigmoid functions is
studied in [20]. Recently, Thomas has given detailed discussion about this property for some coefficient
functional for the class of convex functions and its subclasses. In this paper a question is raised about this
property for the subclass of convex functions related with cardioid domain.

In this paper we find sharp bounds for |H (2) ()|, [H2 (2) (f Y|, IH3 (1) (f)I, [H3 (1) (f 1)l and the Zalcman
functionals |a,a3 — a4] and |A2 A3 — A4l for the class C.,, demonstrating some new and interesting invariance
and non-invariance properties between corresponding functionals recently discussed in [26]. In particu-
lar, we show that for the class Cg,, bounds on second Hankel determinants |H (2) ()|, 1H> (2) (f 1] and
Zalcman functionals |axas — a4| |A2As — Asl are variant but bound on third Hankel determinants [Hs (1) (f)|,
|H3 (1) (f 1) are invariant. We give comparison at the end of the paper.

The class of analytic functions p defined for z € ID, denoted by %, is given by

p(z) =1+ Z cnz" 4)
n=1
with positive real part in ID.

We will use a general lemma by Choi et al. as well as the following two lemmas on the coefficients of
functions in P.

Lemma 1.1. [11, 15] Let p € P, and be given by (4). Then

200 = G+EA-OD), )
4oz = ] +2(4 - c]oré - (4 — )& +2(4 - (1 - [EP)w, (6)
8cs = i+ (A—)EE(E? —3E+3) +48) — 44 — D)1 - [EP)(c1(E - D 7)

+Eu® = (1= [uPyy),
for some y, & and p such that |y| <1, |&| < land |u| < 1.

Lemma 1.2. [4]Let p € P, and be given by (4) with ¢, > 0. Then

c1 = 20, (8)
0 = 20+2(1-0)5, ©9)
G o= 20 +4(1-0DGG -2(1 -GG +2(1 - 8)(1 - 18P, (10)

for some C; € [0,1] and Gy, C3 € D.

Lemma 1.3. [6]. Let D := {z € C:|z| <1}, and for real numbers A, B, C, let
Y(A,B,C) := max{|A + Bz + Cz| +1- |z : z€ D}.
IfAC > 0, then

ALBIHICL B> 20-C),
Y(A,B,C) =

1+|Al+ —————, |B| <21 -|C).

10 =1
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Lemma 1.4. [18]Let w be a Schwarz function given by w(z) = ), w,z", and

n=0

¥ () = s + porws + v

2 e )2
Then i (u,v) < 5 (|y| + 1) (3(|u|+1+V)) if (u,v) € Dy, where

22|H1 (Iuf+1) } |

2
o= fwniblza F(rs ST

2. General coefficient functionals for the class of convex functions related with cardiod

Theorem 2.1. Let f € Cear and be given by (1). Then

|H2 @ (N = 783

The inequality is sharp for the function

y 174 — 3
he) = f expf 116 V174 — 3712t + 1682t at | ds
| 0 3(-29 + t V174)?
B 2 8 , 242 4
= z+ 7 V17422 87Z 22707 174z
Proof. Let f € C,,. Then for w € B, we can write
1+ /7@ _ 1+ éw(z)+ ng(z).

flz) = 3 3

Let p € P, thus, utilising the subordination notion, we can have

_p@2) -
w(z) = p(z)+1'
Let p be of the form (4) . From (12) and (13), comparing coefficients of like powers we obtain
a lc
2 3 1,
oy = Loy 4 2
379727 108"
ay = 1 +lc 0+
4T Teag 1T 361 18 3
Ll_7C—1CC c1C 1C2+1C
57 97201 " 180 T 54013 360 2 30 *

Using (14) — (16), we have

4 2 2
31c] _clcz ciczs G

11664 972 " 52 " 81

H>(2)(f) = -

6902

(11)

(12)

(13)

(14)

(15)

(16)

(17)

We can suppose that t := (3, so that 0 < t < 1, since the class C,,, and the functional H; (2) (f) are rotationally

invariant. Then using (8) — (10) and after simple computation we obtain

H ) () = s + 5520 = P = o (£ +2) (1= )G + (1 = D)1 = 6P =

729 243 81
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40

40
—<—andatt 1, 729 783'

When f = =81 °783
Thenfor0<t< 1

|2 (2) <f>1<—t (1-){A+BG+CE|+1 -1k}, GeD,

~19¢3 5¢ (2 +2)
h A= —— = — = —
where 510 - 1) B 9 and C 3

,50AC > 0 for t € (0,1). Note that in Lemma 1.3

112 - 18t + 12

Bl - 2(1 - [C)) = ——

>0, 0<t<l.

Then
2 ) —-29t* + 121> + 36
S5t = ) (Al + Bl +1C) = = = g(0).
6 40
We see that max{g (t) : t € [0,1]} = g 29 | = 783’ and so from Lemma 1.3, the result follows.
For sharpness, consider
(z) = 1_—Z2
PO o+ 22
where tg = Ll Let
T V2
Po (Z) (292 - V174) 1 23 )
wO(Z) V 4 __Z —_ ..
po(2) +1 ( —29 + \/1742) 29
and
qQo(z) =1+ gwo(z) + gwé(z).

We see that for z € D, wy (0) = 0 and |wy (z)] < 1. Then fy € Ce,r given by (11) and

| qo (t) - 2 g2 8 M2 .
fo(z)—f(expf dt ds —z+87 1747° 7% o7 V174z
0

2 242 4
Here a, = 37 174, —% and a4 = ~ 53707 174, and it is easy to see that H» (2) (fo) = 78?? It brings

the proof to a conclusmn. O

Theorem 2.2. Let f € Cc, and be given by (1). Then

0205 — 4] < 32 /2
203 — 04l = o
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The inequality is sharp for the function

]‘( f 2(76 V38) — 874t + 361t3)
exp t)ds
! 0 3(—19 + 2t V38)?

4o a2 5 520 o,
2+ 57 V3828 4+ ezt — ooy Vase' - (18)

Proof. From (14) — (16), we obtain

6904

f2)

3
11C1 c1Cp 3 C_3

T IET IS

Since the class C.,r and the functional a,a3 — a4 are rotationally invariant, we again suppose that t := (,
so that 0 < t < 1. Then using (8) — (10) and after simple computations we write

543 1 1
axl3 =4 = o = Et(l - ) + §(1 - ) - §(1 -1 -10PG =@,

where (; and (3 are such that |(| < 1, |C3] < 1.

5
Firstly, take t = 1, then |g0| = 8_1 g% \/7 and when t = <5 <3 \/% Next we take t € (0,1) and
applying Lemma 1.3 after using triangle inequality, we may write

1 —
s~ < 51 -P)(JA+BL+CG+1-1GF),  GLeD,

543
56, _ 5t

where A = Si_) 3 and C = —t, then clearly AC > 0. Note now that

11 6
—2(1-|Ch)= —t-2> 21
Bl-20-I0) = 5t-220, te|s1),

and so using Lemma 1.3, we have

1 124 — 1942
lazaz — ay| < §(1 - ) (JAl + |B| +|C]) = % =g(t).

Clearly ¢’ (t) = 0 has two real roots fy = —2,/% and ) = 2,/12—9. Hence max{g(t): t€[0,1]} = g(h) =
32

37\ / 9’ , which gives the required result.
6
Fort e (O, ﬁ) , we have B < 2(1 — |C|), and using Lemma 1.3, we have

2
9| < (1_tz (1+|A|+ i B |C|)) =g, (t),

where

0 - 4568 — 112 + 36
yit = 324 ‘
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, 13512 — 22t , 22 22
Now ¢/ (t) = —a and g'(t) = 0att, = 0and t; = T35 We see that g’ (t) < 0 for t € (O’E)
2 6 6 1480 32 [2
and positive for ¢ € (135 11) which implies that max{g; (t) : t € [0,1]} < 91( ) = 11979 < 31 V1928

required.
For sharpness, consider the function

1-22
1+ 2tz 422

/ 2
where t; =2 ICh Let

_ 19z -23
wl(Z)=p1(Z) 1:Z( z \/_)_ \/_ _EZZ_
pr@+1 (-19+238z) 19

p1(z) =

and

n(z)=1+ gwl(z) + zw%(z).

3
We see that for z € ID, w; (0) = 0 and |w; (2)| < 1. Then the function f; € Cg, given by (18) and

| ()~ 1 4 2 5 520 oy
fl(z)—f(expf dt)d —z+5 V3822 +513 29241\/_8
0

4 22 520 32 /
H = — VIt t that —
ere a, = V38, a3 = BE and a4 = ~ 5001 ——— V38. It is easy to see that a,a3 — a4 = TRIETL

and it brings the proof to a conclusion. [

Theorem 2.3. Let f € Cer and be of the form (1). Then

) < 7 (19)

The inequality is sharp for f, given by

fg(z):fo‘z(exp(g+§))ds:z+%z‘l+---. (20)

Proof. Since the class C,,, is invariant under the rotation, we again assume thatc := ¢; € [0,2] and substituting

from (14)-(17) into (3) obtain
Hy()(f) = 1 31104ccycs — 2468¢° — 13392c§ - 15444c2c§ + 6984c,c*
s(M(f) = 12597120 | +13176c3c3 — 27216¢%cy + 46656¢7¢4 — 38880c§ ‘

Using the equalities (5)-(7) and after some simplification, we obtain

Hs(1)(f) v1(e, &) +vale, ) + v3(c, O + W(e, &, p)y),

_ 1 (
T 12597120
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where y, u, & € D, and

v1(c, &) 1= — 245¢° + (4 — ) ((4 — c*)(486&4c? — 2079&%c? — 1242832
+4968E%) — 4863 + 738¢E — 864ctE? — 1944E%¢2),
va(c, &) := — 108c(4 — ) (1 — |E*)(=c*(25 + 18&) + 18(4 — 2)E?),
v3(c, &) :=1944(4 — )(1 - [EP)(—(4 = A)6 + [EP) + 29),
W(c, & u) :=1944(4 — )1 - |EP)A = |[uP)(6E@E - P2) = ).

Writing s := ||, t := |u| and using |y| < 1, we have

Hs(D)(f)] < 125,91% (lor(c, )1 + loalc, It + los(e, I + (e, &, )
< E(c,s, 1),

where

— 1 2 _p2
E(c,s,t) := 15597120 (gl(c, s) + ga(c, s)t + g3(c, s)t° + ga(c,s)(1 — ¢ )),

with

g1(c,8) :=245¢° + (4 — A)((4 — *)(486s*c* + 2079s*c* + 12425°C?
+49685°%) + 486¢*s® + 738¢*s + 864c*s? + 19445%¢?),
g2(c,8) :=108c(4 — *)(1 — s*)(c*(25 + 18s) + 18(4 — ¢*)s?),
g3(c, ) :=1944(4 — *)(1 — 8*)((4 — ) (5 + 8%) + %),
ga(c,8) :=1944(4 — *)(1 — s%)(6s(4 — 2) + ).
Therefore, across the closed cuboid A : [0,2] x [0,1] x [0,1], we must maximise E(c,s,t). In order to

accomplish this, we identify the maximum values on the twelve edges, inside A, and inside the six faces.
I. Firstly, we demonstrate that the interior of A does not include any critical points.

Let (¢,s,t) € (0,2) x (0,1) x (0,1). Differentiating E(c, s, t) with respect to t and after some computations
we write

dE _ 1
ot 116640
+c(185%(4 — %) + c*(18s + 25))].

(4 - A1 - s*)[36t(s — 1)((4 — c*)(s = 5) + c?)

So that 8_E = 0 when
ot

_ c(18s%(4 — ?) + c*(185 +25)) ;
T 36— 1)((@A-ADB -5 —c2)

If ¢ is inside A, then ¢y € (0, 1), which implies
c3(18s + 25) + 18cs?(4 — ¢?) + 36(1 — 5)(4 — ¢*)(5 — 5) < 36¢%(1 —5) (21)

and

4(s —b)

2
>
s—6

. (22)
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Therefore, in order for critical points to occur, we need solutions which satisfy both inequalities (21) and
(22).

Let I(s) := 4(s — 5)/(s — 6). Since I'(s) < 0 for (0,1), I is decreasing in (0,1). Hence ¢*> > 16/5. Now we show
that (21) does not hold in (4/ V5,2) x (0, 1). Consider the function

E(c,s) = c(18s + 25) + 18¢s*(4 — ) + 36(1 — s)(4 — c*)(5 — 5) — 36¢*(1 — 5). (23)

We show that F(c,s) > 0in (4/ V5,2) x (0,1). Now

oJF
Js

36(2 — ¢)(c + 2)*s + 18¢® + 252¢* — 864
k1 (C)S +k0 (C) >0

Indeed, since ¢ € (4/ V5,2), it can be seen that k; (c) = 36(2 — c)(c +2)? > 0 and ko () = 18¢® +252¢2 — 864 > 0.
Thus we have

F(c,s) > F(c,0) = 25¢° + 720 — 216¢* > 0, ¢ € (4/ V5,2).

This shows that (21) does not hold true for s € (0,1) and ¢ € (4/ V5,2), thus E has no point of maxima in
(0,2) x (0,1) x (0, 1).
II. Next, we examine the interior of the six faces of the cuboid A.

On the face ¢ = 0, E(c, s, t) reduces to

Ki(s,f) = EQ, 5, 1) = S )G - 13)6(25_ ) +65)+25 L 01).

k1 has no critical points in (0, 1) x (0, 1) since

dkr 2t —s*)(s — 1)(s — 5)
2 — £0,s, te(01).

On the face c = 2, E(c, s, t) reduces to

EQ,s,f) = %, 5, te(0,1).

On the face s = 0, E(c, 5, t) reduces to E(c, 0, t), given by

3888(3c* — 22¢2 + 40)12 + 2700c3(4 — )t + 245¢6 — 1944¢* + 7776¢2

kale,B) = 12597120 ’
ok, dky . - .
where ¢ € (0,2) and t € (0,1). We therefore solve FTi 0 and o - 0 to find the critical points. The
equation & =0 gives
25¢3
t= ————— =i 1. 24
72(10-3¢2) ! @4

For the given range of ¢, t; must be in (0, 1), and it is only possible if ¢ > ¢y, where ¢y ~ 1.82574. From

k
Q = 0 we have

dc
(7776¢* — 28512)t% + c(5400 — 2250c)t + 245¢* — 1296¢ + 2592 = 0. (25)
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Putting (24) in (25) and simplifying, we obtain
3195c® — 65456¢° + 427352c* — 1140480c® + 1036800 = 0. (26)

A numerical computation shows that only solution c of (26) in (0, 2) with ¢ ~ 1.39280. Thus, k, has no point
of maxima in (0, 2) X (0, 1).
On the face s = 1, E(c, s, t) can be written as

491c® — 4770c* + 7236¢% + 19872
, c€(0,2).

ks(c,t) := E(c,1,t) =

3149280
. ks . . 1
Solving o 0, the critical points are at c =: ¢ = 0and c =: ¢; = 91 780690 — 11784 V2333 ~ 0.93667.
74656 V2333 1234813
Thus, k3 achieves its maxima + ~ 0.00727 at c;.

878740245 390551220
On the face t = 0, E(c, s, t) reduces to

1 245¢0 + (4 — 2)((4 — c?)(486s*c? + 1242532
ki(c,s) := E(c,s,0) = 15597150 —66965° + 11664s + 2079s%c?) + 486¢*s>
+738c%s + 864c*s? + 1944c?)
. Ik dky . . :
The system of equations i 0 and o - 0 has the following numerical solutions

s1 =~ 0.95391, sy =~ 0.25230, s3 =~ 0.953910, s4 =~ 0.252300,

cs ~ —1.90307, ¢ ~ 1.903070,
s5 ~ —1.50705, s¢ ~ —1.50705.

{ c1 ~ 0.82165, { o ~ 2.00000, { o3 ~ —0.82165, { s ~ —2.00000,

The only solution (cy,s1) lies in (0,2) X (0, 1). Therefore ks(cy,s1) = 0.00724 < 1/81.

On the face t = 1, E(c, s, t) reduces to

245¢0 + (4 — 2)((4 — c?)(2079s%c* + 486s*c?
1 +1944¢s% + 1242253 + 4968s% — 777652
—1944s* — 1944cs* + 9720) + 738c*s + 864c*s? |,
12597120 | 194452c2 + 486¢%s3 + 2700¢% — 2700352
+1944¢%s — 1944383 + 1944¢2s — 1944¢25%)

ks(c,s) := E(c,s,1) =

The system of equations s =0and ks = 0 has the folowing numerical solutions

Js dc
c1 =0, cy ~ 2.21123, c3 ~ 2.00000, cy ~ 12.87555,
51 =0, s ~ 6.29092, 53 ~ 1.62729, sy ~ 0.24484,

cs = —0.72134, cs = —2.00000, c7 = —1.77628, cg = —1.67390,
s5 ~ 0.944020, s¢ ~ 0.744450, s7 = —0.05258, sg = —0.82077,

cg = —1.93498, c10 & —2.31811, c11 = —1.78100, c12 = 2.00000,
sg = =1.77777, s11 ~ —3.65886, s12 = —0.29096,

c13 = 2.000000,
S13 ~® —1.33633.

S10 * -1 65533,

This shows that the system has no solution in (0, 2) x (0, 1).
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III. On the vertices of A, we have

1 23 23
E(0,0,0) =0, E(0,0,1) = 31 E(0,1,0) = 3645 EQ1,1) = 3645’
49
E2,0,0) = E2,0,1) = E2,1,0 = E2,1,1) = 5.

IV. Finally we find the maxima of G(c, s, t) on the 12 edges of A.
1

E(c,0,0) = m(mw —1944c* + 7776¢%) < E(2,0,0)
4
= 393966 ~ 0.00124, c€(0,2).
E(c,0,1) = 5519104 (49¢® — 540¢° + 1944c* + 2160c® — 15552¢ + 31104) < E(0,0,1)
1
= g7 ~0.01235, ce (0,2).
E(,1,0) = 3141;—28()(491C6 — 4770c* + 7236¢% + 19872) < E(A41,1,0)
_ 74656 V2333 L 1234813 000727, ce(0,2),
878740245 ~ 390551220
where
ci=A = o1 \/780690 11784 V2333 ~ 0.93666.
3V62 462
—_— <
E(0,s,0) = 3645( —31s° + 54s) < E(0, T 0) = 1185
1
— 2 < ==
EQ,s,1) = 3645( —95* + 23s% — 3652 + 45) < E(0,0,1) T (0,1).
49
E(Z,S,O) = %, S € (O, 1)
E(Z,S, 1) = %, EXS (0, 1)
1 1
E(0,0,t) = 8—1t2_ ST’ te(0,1).
23
E,1,t) = ors < 000631, te (0,1).
49
E(Z,O, t) = %, € (O, 1)
49
E2,1,t) = 30365’ L€ 0,1).

Since all cases have been dealt with, (19) holds.

~ 0.0075259, s € (0,1)

6909

To see that (19) is sharp, consider f, given in (20), which is equivalent to choosing a, = a3 = a5 = 0 and

ag = %, which from (3) gives |H3(1)(f2)| = 8l1 This completes the proof.
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3. Functionals for inverse coefficients of convex functions related with cardiod

In this section we find sharp bounds for the functionals considered in Section 2 for inverse coefficients

when f € Ce.

We first note that since f ( f ’1(w)) = w, using (2) it is easy to see that

Ax = —a,
A3 = 2&% —as,
A4 = 5&12&3 - 5&3 — a4,

As = 14a; — 21a3a3 + 6aya4 + 3a3 — as.

(27)
(28)
(29)
(30)

Using (14)-(17) in the above relations and equating coefficients, we obtain

1
Ap = —561,
19 , 1
A a-=
3770817 9%
17 23 1
A i
4T 108927 2161 T 18
437 2, 53 37

5= €163 +

54801~ 162021 " 540

10802

(31)
(32)

(33)

1

_ 4
305 (34)

First we consider the second Hankel determinant and then Zalcman conjecture.

Theorem 3.1. Let f € Ce, and be given by (1). Then

|2 @) (f )] < 1431

The inequality is sharp for the function

4 s 2
f3(Z)_f[epr 2(2x/F+53t)(106+6x/Ft+53t)d

ds.

53( V159 + 6t)2

Proof. Using (31) — (33), we have

2 2
SSC 13c1cz cics 6

H,(2)(f™h

We can suppose that t := (;, so that 0 < t <

~ 1664 972 54 81

1, since the class C., and the functional H (2) (f7!) are

rotationally invariant. Then using (8) — (10) and after simple computation we obtain

7i 14,

2
-1 _ _ ‘"  -* _ 42 _ = _42\2 il _ 42 _ 2 —
o) () = ~g5 — 50 = D)o = o (P +2) (1= G+ 11 = A1~ PG = ¢
4 76 76
Whent =0, Sﬁ<1431 and att = qo) 729 <11
Thenfor0<t<1
2 —
@) (F )| < 11 - P){|A+BG + Cl+ (1~ 6P}, G eD,
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where A = 7 B = 7 and C = _(t2 i 2) so AC > 0fort € (0,1). Note that in Lemma 1.3
T 54(1-£2) 9 B 3t T :
2 _
B2 -jcy= 2T 2L g gcicn
Then
2 9 _ —-53t1 + 242 +36
(1= ) (Al + Bl + [C) = = = ()

We see that max{g(f) : t €[0,1]} = ¢ (2 %] = %, and so from Lemma 1.3, the result follows.

For sharpness, consider

142tz + 22
1-22 7

/3
h =2./=—.L
where {3 53 et
41 ,

p2) -1 z(53z+2V159) o —
= = = — zZ+ —=z"— -
ps@+1 (53+42V159z) 8 53

ps (z) =

w3 (z)

and
4 2
g3 (z) =1+ zws(z) + —wg(z).
3 3
We see that for z € ID, w3 (0) = 0 and |ws (2)| < 1. Then f3 € C,, given by (11) and

z
*g3(t)—1
f3(z)=f(expf %dt)dS:ZJr - ZZ+EZS+ 028 159z% + -+ .
0
0

V159 53 75843

4 . 4
Here a; = \/ﬁ’ a3 = & and a3 = 28 V159. Using (27) — (29), we have A, = _\/ﬁ’ Az = —7% and
-76
Ay = 222 V159, and it is easy to see that H; (2) (f;!) = ——. It brings the proof to a conclusion. []

1431

Theorem 3.2. Let f € Cer and be given by (1). Then

20 10
— < == —.
|A2A3 A4| =31 31

The inequality is sharp for the function

¥ s 2( V310 + 31¢) (62 + 3 V310t + 31#2
f4(Z)=f[expf ( i )( i i )dt ds.

3(31 + V310¢t)?
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Proof. Using (31) — (33), we have

1 1 1
3 - 3 ——C(C1Cp + —=C3. (35)

ArAs — A
2437 A= e T 108 18

We consider a function p € P of the form (4) and a Schwarz function w(z) = Y w,z", such that
n=0

A simple computation shows that
c1 = 2wy, ¢ =2wy + 2wf, c3 = 2ws + 4w w, + 2w§.

Using above in (35), we have

|A2As — A4l = =

. 2 1
where p = -7/3, v =1/9. Now using Lemma 1.4, we have |,u( > 2, —% (|y| + 1) 290, Jl;|(2||[:ll|i4) = Eg This

2lu](ul+1) 20 [10

2
shows that—% (M + 1) <v< w2l Therefore |A2Az — Ayl < TRIGE

For sharpness, consider

1+ 2tz + 22
1-z2 7

/1
where t4 = % Let

pa(z)—1 z(31z+ V310) 0 21,

ps (2) =

wWya\Z2) = = = — 7+ —z° =
+@) p@+1 (31 + V310z) 31 31
and
4 2
ga(z) =1+ 5@04(2) + gwi(z).

We see that for z € ID, w4 (0) = 0 and |wy (2)| < 1. Then f4 € Ce,r given by (11) and

_Z Tqa () -1 2 ), 236 5 548
f4(z)—jv(exp‘[0 " dt)d —z+9 V310z 837 77841 ——— V310z
0

Here 2, = & V310, a3 = 28 and a4 = =222 V/310. Using (27) — (29), we have A, = - & 5 V310, Az = and
837 77841 & 5

20

Ay = TR / 30 This completes the result. [J

8649 310, and it is easy to see that AyA3 — Ay =

Theorem 3.3. If f € Ccyy and is given by (1). Then

1
IHa()(f )l < 3 (36)

The inequality is sharp for the function f, given in (20).
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Proof. The third Hankel determinant for the inverse function can be written as
H3(1)(f ") = 2A2A3A4 — A3As — A} + AsAs — Aj. (37)

Since the class P is invariant under the rotation, the value of ¢; can be assumed to be the interval [0, 2]. Let
c := c1, then substituting the values of A;’s from (31)-(34) in (37), we obtain

1 31104ccyc3 — 10656¢¢* + 13176¢3¢5
Hs(1)(f™Y) = === | +14796¢%c2 — 27216¢%cy + 46656¢5c4
12597120 2
—38880c3 + 962c® — 30672c3

Using the equalities (5)-(7) after some simplification, we are able to obtain

Hs()(f™) = 3o (21(6,€) + ale, O+ 03(c, O + W(e, £, 0y,

wherey, u, £ € E,

v1(c, &) := — 235¢° + (4 — ) (4 — ?)(918E3¢? — 999&2¢? + 486&%c?
— 3672&%) — 4863 — 194482 + 558¢*E — 864c*E?),
va2(c, &) := — 108c(4 — ) (1 — |E*)(—c*(25 + 18&) + 18(4 — ¢2)&E?),
v3(c, &) :=1944(4 — )1 — 1EP)(—(4 = )5 + |EP) + &),
W(c, & 1) :=1944(4 - A1 - |ER)A - [uP)(6E(A - %) = A).

Taking s := ||, t := |u| and using |y| < 1, we have

IS amgrsg (0106 61+ loale, O + fos(e, O + 1%(c, &, )
< G(c, s, 1),

where

N 2 _p
G(e,5,1) = Tozgorag (91(65) + 02(c )t + g5(C,9F + gale,9)(1 = ),
with

g1(c,8) :=235¢° + (4 — A*)((4 — *)(9185%c* + 9995°¢* + 4865*c?
+36725%) + 486¢*s® + 19445%c? + 558¢*s + 864c*s?),
72(c,s) :=108c(4 — )1 = sH)(c*(25 + 18s) + 18(4 — c?)s?),
g3(c, s) :=1944(4 - A1 =) ((4 = )5 +5%) + ?s),
g4(c, s) :=1944(4 - )1 —s%)(6s(4 — ) + ¢3).
Let the closed cuboid be A : [0,2] X [0,1] X [0, 1], so in order to maximize G we find points of maxima on
the twelve edges, inside A and inside the six faces of A.

I. First, we demonstrate that there aren’t any critical points within A. Let (c,s,t) € (0,2) x (0,1) x (0,1).
Now

‘;—f = 1161%(4 — )1 = $2)[36t(s — 1)((4 — c?)(s = 5) + ?)

+c(185%(4 — %) + c*(18s + 25))].
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The equation %—f = 0 yields

_ c(18s%(4 — ) + c*(185 +25)) ;
R N T )

For critical points, ty must belong to (0, 1) which is possible only if

(185 + 25) + 18cs%(4 — c) + 36(1 — s)(4 — ¢*)(5 — 5) < 36¢%(1 — s) (38)
and
5> 4(s=5)
c™ > ﬁ (39)

Consequently, in order for the critical points to exist, we must find solutions that meet both inequalities
(38) and (39).

Let g(s) := 4(s — 5)/(s — 6). Since ¢’(s) < 0 for (0,1), g is decreasing in (0,1). Hence ¢* > 16/5. Since
(21) and (38) are same therefore (21) does not hold in (4/ V5,2) x (0, 1). Thus G has no critical point in
(0,2) x(0,1) x (0,1).

II. Next, we address each of the six faces of A separately to determine the points of maxima within of
them.

On the face ¢ = 0, G(c, s, t) can be written as

9(1 — s2)(t?(s — 1)(s — 5) + 6s) + 175>
3645

ki(s, t) := G(0,s,t) = ,s, te(0,1).

k1 has no point of maxima in (0, 1) x (0, 1) since
ki _ 2H(1 =s*)(s = 1)(s = 5)
ot 405

On the face c = 2, G(c, s, t) takes the form

£0,s, te(0,1).

47
G(Z,S, t) = m, s, te (0, 1)

On the face s = 0, G(c, s, ) can be written as G(c, 0, t), given by

3888(3c* — 22¢2 + 40)f2 + 2700c3(4 — )t + 235¢6 — 1944¢* + 7776¢2
12597120 '

ka(c,t) :=

where ¢ € (0,2) and t € (0,1). In order to find the points of maxima, wee solve ‘%2 = 0 and %ch =0

simultanously. From % = 0, we obtain

25¢3

ft=——m878M———— =
72(10 — 3c2)

Tt (40)

For the given range of ¢, t; to be in (0, 1), if and only if ¢ > ¢y, ¢y = 1.82574. A calculation shows that % =0

implies
(7776c* — 28512)t% + (5400 — 2250c%)t + 235¢* — 1296¢ + 2592 = 0. (41)
By putting (40) in (41) and simplifying, we get

2835¢8 — 63056¢° + 423352c* — 1140480c? + 1036800 = 0. (42)
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After some calculations (42) gives a solution in (0,2) as ¢ ~ 1.385493688. Thus we conclude that k; has
no point of maxima in (0,2) x (0, 1).
On the face s = 1, G(c, s, t) reduces to

365c® — 4932c* + 8424c* + 29376
6298560

ks(c,t) := G(c,1,t) = , c€(0,2).

Solving % = 0, we obtain critical points at ¢ =: ¢y = 0 and

1

= 365 \/600060 — 2190 V46606 ~ 0.9774086938.

c=:C

Thus k3 achieves its maxima (23303 V46606 + 94823) ~ 0.005277511404 at c; .

1
971210250
On the face t = 0, G(c, s, t) can be written as

2350 + (4 — c2)((4 — c*)(918s%c* + 486s*c?
ki(c,s) := G(c,5,0) = ————| —7992s% + 11664s + 999s2c?) + 486¢*s>
12597120 { *, 558c4s + 864cts? + 1944¢2)
ok ok
The system 8_54 =0and &—; = 0 has following numerical solutions

c1 = 2.00000, ¢ = 1.27289, c3 = —1.27289, ¢4 = —2.00000,
s1 = 0.26626, sy = 1.12021, s3 = 1.12021, 54 = 0.26626,

s =~ —1.92123, ce = 1.921230,
s5 =~ —1.48470, s¢ =~ —1.48470.

This shows that the system has no solution in (0, 2) x (0, 1).
On the face t = 1, G(c, s, t) reduces to

235¢° + (4 — ¢®)((4 — ¢®)(999sc? + 918s%c?
+19445%c + 4865*c? + 36725 — 77765>

ks(c,s) := G(c,s,1) = m —1944s* — 1944s*c + 9720) + 1944s%c? + 558¢*s
+864c*s? + 486¢*s® + 2700c® — 2700c%s*
+1944¢%s — 1944¢%s% + 1944sc® — 1944s3¢?)
Ik Ik
The system 8_55 =0and 8_05 = 0 has the following numerical solutions
c1=0, o ~ 2.359773, c3 ~ 19.24887, c4 ~ 2.00000,
s1=0, sy ~ 3.52180, s3 ~ 0.40454, s4 ~ 1.92420,

cs ~ —0.94546, ce ~ —2.00000, ¢y ~ —1.73100, cg ~ 1.642290,
s5 =~ 0.993190, s¢ = 0.713520, sy = —3.75467, sg =~ —0.96818,

c9 =~ 2.235200,
s9 =~ —(0.19876.

This shows that the system has no solution in (0, 2) x (0, 1).
III. On the vertices of A, we have

G0,1,1) = ——

1
G(0,0,1)=0, G(0,0,0)= 3645

1/
G(2,0,1) =G(2,0,0) = G(2,1,1) = G(2,1,0) =

G(O/ ]-/ O) = %/

47
39366
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IV. Finally we find the points of maxima of G(c, s, ) on the 12 edges of A.

235¢% — 1944c¢* + 77762

- <G@2
G(,0,0) 12597120 = G(2,0,0)
47
= S5ace ~ 0001193923690, ¢ € (0,2).
47¢5 — 540¢° + 1944¢* + 2160¢® — 15552¢% + 31104
= <
G(c,0,1) 2519424 <G(0,0,1)
1
= 8_1 ~ 0.01234567901, c € (0,2).
365c° — 4932¢* + 8424¢? + 29376
= <
G(c,1,0) 6298560 < G(A,1,0)
where
1
c:=A = % \/600060 — 2190 V46606 ~ 0.9774086938.
—37s% + 54s 3V74 474
= < = ~ U. 74 1
G(0,s,0) e < G0, 5, 0) = o= ~ 0006888748963, 5 € (0, 1)
—9s% + 175% — 362 + 45 1
1) = < 1)=— 1).
G(0,5,1) e <G(0,01) = &, 5€0,1)
G(2,s,0) = 39366 ~ 0.001193923690, s < (0,1).
47
G(2,5,1) = 552 ~ 0.001193923690, 5 € (0,1).
1, 1
= — < — 0. .
G(0,0,t) = g7 < o= ~ 001234567901, te (0, 1)
17
1,t) = —— =~ 0.004 23182 1).
G(0,1,1) = 5= ~ 0.004663923182, t € (0,1)
G(2,0,t) = ~ (0.001193923690, t e (0,1).
2,05 = 35366 @1
G(22,1,t) = ~ (0.001193923690, t e (0,1).
215 = 35366 €01

Thus all the above cases show that (36) holds.

6916

Finally we note that (36) is sharp for f, € C; given in (20). Here we have a, = a3 =as = 0and a4 = 1/9.
So from (27) — (30) it implies that Ay = A3 = As = 0 and A4 = —1/9 and by using equation (37), we have

) = g7

Hence the proof is complete. [
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We end by noting that the results in the paper give the following curious examples of invariance and

non-invariance, and that a recent survey of invariance and non-invariance among functionals of various
classes of convex functions was presented at Congressio VIII (see [26]). Thus Theorem 3.4 adds new
examples to those given in [26]. We also note the curious result that there is non-invariance between the

second Hankel determinants |H2 @) (f )| and |H2 @) (fh

, but invariance between |Hz(1)(f)| and [H3(1)(f ).

Theorem 3.4. Let f € Ce,r and be given by (1), then the following sharp inequalities hold.

_ 40 76
[ @ ()], [H2@) (F ] < 23 1737
a2a3 — ayl, |A2As — Ayg < % \/%, g \/g,
Hs()(Fl, IH> ()] < %
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