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Solving dual quaternion matrix equation AX — YB =C

Yizhe Zhang?, Ying Li**, Ruyu Tao?, Tao Wang?

Research Center of Semi-tensor Product of Matrices: Theory and Applications,
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Abstract. In robotics research, hand-eye calibration is a challenging problem, often represented by the
matrix equation AX = YB. In this paper, by using the vector operators of dual quaternion matrices, the
properties of the real representation of dual quaternion matrices and the properties of semi-tensor product
(STP) of dual quaternion matrices, we aim to propose the general solution and the Hermitian solution of
the dual quaternion matrix equation AX — YB = C, which is the general case of AX = YB, where X and Y are
unknown dual quaternion matrices. Firstly, we can vectorize the matrix equation AX—YB = C and combine
it with STP and the real representation of dual quaternion matrices, to transform the dual quaternion matrix
AX-YB = Cintoareal linear system, thus we can get the necessary and sufficient condition for the solvability
and the general solution expression of the dual quaternion matrix equation AX — YB = C. Based on this,
we also get the Hermitian solution of the dual quaternion matrix equation AX — YB = C by simplifying the
complexity of computation with GIH-representation of special dual quaternion matrix. Additionally, we

propose corresponding algorithms and provide the numerical examples to verify the effectiveness of the
corresponding method.

1. Introduction

In this paper, R/Q/D/DQ/R,/R"/Q"/DQ,/DQ" denote the sets of all real numbers, quaternions, dual
numbers, dual quaternions, real row vectors, real column vectors, quaternion column vectors, dual quater-
nion row vectors, dual quaternion column vectors with n-dimension, respectively. R"™"/Q"*"/DQ"*"
denote the sets of all m X n real matrices, quaternion matrices, dual quaternion matrices, respectively.

REX”/RZX”/DQIZX” denote the sets of all n X n real symmetric matrices, real anti-symmetric matrices, and

dual quaternion Hermitian matrices, respectively. A" represents the transpose of matrix A. A represents
the conjugate of matrix A. A" represents the conjugate transpose of matrix A. A" represents Moore-Penrose
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inverse of A. A ® B, A x B represent the Kronecker product and the semi-tensor product of matrices A and
B, respectively. ||-||r represents the Frobenius norm of a real matrix or a quaternion matrix.

Dual quaternions were introduced by William Kingdon Clifford [3] in 1873. As a powerful tool, dual
quaternions spread some properties of quaternions and dual numbers, and are widely used in many fields.
For example, Wang et al. [11] constructed a new kinematic control model with unit dual quaternion descrip-
tors, and explored Lie-group and Lie-algebra on unit dual quaternions and the approximate logarithms. Qi
[8] proved that the dual quaternion optimization problems arising from the hand-eye calibration problem
and the simultaneous localization and mapping (SLAM) problem are equality constrained standard dual
quaternion optimization problems. Leclercq et al. [7] used dual quaternions to describe the 3D position and
orientation of these objects, which can be used for position-only transformations (point transformations)
or for combined position and orientation transformations (through line transformations). Based on the
2-norm of dual quaternion vectors, Chen et al. [5] proposed a new dual quaternion optimization method
for the hand-eye calibration problem, letting the dual quaternion optimization problem decomposed to two
quaternion optimization subproblems.

In recent years, dual quaternion matrix equations have been applied more and more in hand-eye
calibration. Some dual quaternion matrix equations have been deeply studied by many scholars. Zhuang
et al. [15] initially formulated the hand-eye calibration, and transformed the problem into the matrix
equation AX = YB. Chen et al. [4] gave the necessary and sufficient conditions for the solvability of the
dual quaternion matrix equation AXB = C, and presented the expression for the general solution. Xie et al.
[12] surveyed the solutions of the matrix equation AXB = C across various number systems and explored
its application in color image processing, including a scheme for encrypting and decrypting two images.
Xie et al. [13] utilized the M-P inverses and ranks of quaternion matrices, to derive the necessary and
sufficient conditions for solving the system of dual quaternion matrix equations (AX, XC) = (B, D). Wang et
al. [10] reviewed theoretical research on the matrix equation system AX = C and XB = D, exploring various
solution methods and their applications in fields like control theory, optimization, image processing, and
robotics. Xie et al. [14] established the conditions for solvability of this generalized hand-eye calibration
dual quaternion matrix equation AX — YB = C and provided a general expression for its solutions when it
is solvable. Subsequent research has shown that the matrix equation AX = YB can be converted into a dual
quaternion equation gaqx = qvqs [6, 8, 17], demonstrating that the matrix equation AX = YB is a specific
case of the broader dual quaternion matrix equation

AX-YB=C. 1)

In this paper, we propose a new method to solve (1) by equivalently transforming (1) into a real linear
system, so that we can get the necessary and sufficient condition for the solvability, the general solution,
the special solution and the minimal FR-norm solution of (1). Specifically, we will solve the following two
problems:

Problem 1.1. Let A € DQ™", B e DQ™?, C € DQ™?, solving
Sp = {(X, Y)IX e DQ"?,Y € DQ™", AX - YB = C}.

Find (Xp, Yp) € Sp such that
(XD) (X)
Yp - Y

(Xp, Yp) is called the minimal FR-norm solution of AX-YB=C.

= min
X,YeSp

FR

Problem 1.2. Let A, B,C € DQ™", solving
Spi = {(X, V)X € DQ", Y € DQY™, AX - YB = C}.

I, e

Find (}’(B, )75) € Spy such that

= min
X,YESpH

ER ER
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()/(B, ?\D) is called the minimal FR-norm Hermitian solution of AX-YB=C.

An outline of this paper is as follows:

In Section 2, we introduce the correlation properties of dual quaternion matrices, including the STP
and vector operators of dual quaternion matrices. Meanwhile, we give the definition and properties of
the real representation of dual quaternion matrices, and we prove the relationship between the FR-norm
of dual quaternion matrices and the Frobenius norm of its first column block of the corresponding real
representation. In Section 3, under the condition when the equation has a solution, we establish the
expression of the general solution and the Hermitian solution of the dual quaternion matrix equation
AX —YB = C. In Section 4, we give numerical algorithms and examples. In Section 5, we summarize the
paper and give conclusions.

2. Preliminary
A quaternion p can be represented by four-tuple notation:
P =Ppo+pii+p2j+psk,
while the orthonormal basis components i, j, k, as defined above satisfy the following well-known rules:
? ==k =ijk=-1

It is essential to acknowledge that multiplication in the quaternion domain does not adhere to the
commutative property.
A quaternion matrix P can be represented as

P=Py+ Pqii+ Pz] + P3k,
and we have the conjugate of P is defined as P = P — Pyi — P,j — P3k; the conjugate transpose of P is defined
as P* =Pl — Pli— P} j— Pik.
A dual quaternion a has the form
a=ag+are,

where a5 and a; are quaternions given below:
st = (aO)st + (al)sti + (aZ)stj + (113)5tk,

ar = (ao)r + ()i + (a2)1] + (a3)ik,
the quaternions ay and gy are the standard part and dual part of a, respectively.
For any two dual quaternions a = ay + are, b = by + bje € DQ, we have

a+b=(as+by) + (ar + by)e,
ab = agbg + (ﬂstb] + ﬂ]bst)&'.
The set of n-dimentional dual quaternion vectors is denoted by

DQ" = {x = xy + x¢|xs, x; € Q"}.

X1 can be denoted as

A dual quaternion matrix X € DQ
X = Xgt + Xpe = (Xn)st + (X2)sti + (X3)st] + (Xa)sth + (X1)16 + (Xo)1ie + (X3)1j¢ + (Xg)ike, )
where X;, X; € Q™" are the standard part and dual part of X, respectively.

The conjugate of the dual quaternion matrix X is defined as X = Xy + X;e. The conjugate transpose of
the dual quaternion matrix X is defined as X = X! + XH¢. For Y = Y + Yie € DQ™", by analogy, we have
X =Y if X = Yy and X; = Yy, furthermore,

X+Y=Xg+ Y+ X+ Yye,
XY = XstYst + (XstYI + X[Yst)g.
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2.1. The real representation of dual quaternion matrices

Next we will give the definition and the relevant properties of the real representation of dual quaternion
matrices, which can be combined with the vector operators of dual quaternion matrices, to further transform
(1) into a real linear system.

Definition 2.1. For dual quaternion matrix X € DQ™" as (2). Let O represents m X n zero matrix, the real
representation of dual quaternion matrix X is defined as

»(Xl)st _(XZ)st _(XS)st _(X4)st
(X2)st (Xl)st _(X4)st (XS)st
(X3)st (X4)st (Xl)st _(Xz)st
¢(X)= (X4)St _(XS)st (XZ)st (Xl)st

X X)) (X Xy Xp)s —(X2)s —(Xz)st  —(Xa)st|”
Xo)r X Xy X X)s  Xp)s —(Xa)st  (X3)st
X3 X X (X)) X3 Xo)s  (Xn)s —(X2)st
| (Xr =Xz (X2 X Xs —(X3)s (Xo)st (X1)st ]

The first column block of P(X) is

OO0
OO0
QO QO0
OO0

V(Xl )st—
(XZ)st
(X3)st

c _ (X4)st
yx = X |’

(X2
(X3)1
[ (Xq)1 ]

it can be proved that the real representation (X) and its the first column block °(X) have the following properties.
Theorem 2.2. Let X, Y € DQ™", Z ¢ DQ™?, A € R, then

1) PX +7Y) = P(X) + (Y); p(AX) = AP(X); P(XZ) = PX)P(Z).
(2) PX +Y) = (X)) + P (Y); Y (AX) = APe(X); ¥(XZ) = P(X)Ye(2).

In order to facilitate numerical example and better illustrate the accuracy of the algorithms, we use the
FR-norm of dual quaternion matrix given in [2], where

Xl = I XlE + IX11IE-

In attention, FR-norm is not a norm, because it doesn’t satisfy the scaling condition of norms. The specific

content can be referred to [2].
A result is given below to illustrate the relation between the FR-norm and the Frobenius norm of the

first column block of the real representation of dual quaternion matrix.
Theorem 2.3. Let X = (Xl)st + (Xz)sti + (X3)stj + (X4)stk + (X1)18 + (Xz)[iS + (X3)1j€ + (X4)1k€ [S Dmen, then

IXIlex = [ (X,

Proof. According to Definition 2.1,
[1X 11

= JIXal2 + 1X12

= \/n(Xl)stn% + 1(X2)stllf + 1(Xa)stllF + IXa)stlE + XD + 1K)l + 1K)l + (Xl
=g -
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2.2. The STP and vector operators of dual quaternion matrices

Based on the concept of STP of real matrices and STP of quaternion matrices, we will introduce the
concept and properties of the STP of dual quaternion matrices in this section.

Definition 2.4. ([9]) Suppose A € DQ™", B € DQ”*, and t = lcm(n, p) is the least common multiple of n and p.
Then the left STP of A and B is defined by

AxB=(A®Iy,)BOL).

The right STP of A and B is defined by
A= B = (Iys ® Ay, ® B).

If n = p, the left and the right STP of dual quaternion matrices reduce to the conventional matrix product. We use
the symbol » to express the left and right STP.

Lemma 2.5. ([9]) Let A, B, C € DQ™", a, b be dual numbers, then
(@) Ava(@B+bC) =aA»B+bAwC, (aA+bB)C=aA»C+bB»C(,
(b) A»a (B> C) = (A B)»=C_,
(€) (A = B)l! = B o Al

Definition 2.6. ([9]) For A € DQ™", Col,(A)(1 < v < n) and Row,(A)(1 < u < m) represent the v-th column and
the u-th row of A, respectively. Denote

Ve(A) = [(Coh(A), (Col(A), -+, (Col(A)'T,

Vi(A) = [Row:(A), Rows(A), -+, Rowu(A)]".

Ve(A) and V,(A) are called the column vector representation and the row vector representation of dual quaternion
matrix A, respectively. The column vector representation and the row vector representation of matrices are collectively
referred as the vector operators of matrices.

The next two lemmas are the core to transform the dual quaternion matrices equation into the real linear
system. For the proof of properties of vector operators on dual quaternion matrices, please refer to [9].

Lemma 2.7. Let A € DQ™", X € DQ™?, then

Vi(AX) = A= Vi(X),

3
Vo(AX) = A » Vo(X). @)
Lemma 2.8. Let B € DQ™",Y € DQ™", then
V(YB) = B = V(Y),
4)

V,(YB) = B" < V,(Y).

Subsequently, we give the necessary and sufficient condition for the solvability and the general solution
expression of the real linear system.

Lemma 2.9. ([1]) Let A € R™" and b € R™. Then the linear system Ax = b has a solution if and only if AA™b = b.
In this case, the general solution can be written in following parametric form

x=Ab+(1-A"A)y,

where y € R is an arbitrary vector. A'b is the minimal norm solution of the linear system Ax = b.
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3. The solutions of Problem 1.1 and Problem 1.2

First, we will introduce the H-representation of special real matrices, which will be used to reduce the
complexity of solving matrix equations.

Definition 3.1. ([16]) Consider a p-dimensional real matrix subspace X C R™". Assumeey, ey, , e, form the bases
of X, which means that for any X € X, we have X = x1e1+xze2+- - -+xpep, and define H = [V, (e1), Vi(e2), -+, Vi(ep)].
Then

V,(X) = HX
and X = [x1,%0,---, xp]T, HX is called an H-representation of V.(X), and H is called an H-representation matrix of
Vi(X).

Lemma 3.2. ([9]) Let X; € R, X5 € RY". Then

V(X)) = Hi Xy,

V,(X2) = HaXa,

where

Hy = (Vr(Pll)/ Tty Vr(Pln)/ VY(PZZ)/ Tty Vr(P2n)/ Tty Vr(Pnn))/

and Py = (Pik)nxn With pyy = pou = 1, the other entries being zero, and

T
Xl = (xlll"' sy X1n, X22,0 0, Xop, 0 rxnn) .

H; = (Vr(Q12)r Tty Vr(an)/ Vr(QZS)r R Vr(QZn)/ Tty Vr(Q(n—l),n))r

and Quy = (Gi)uxn With Guy = —qou = 1, the other entries being zero, and

Y. — T
XZ - (x12/ X, X23, 00y Xon, /x(n—l),n) .

‘H-representation can separate independent elements from a special structure matrix. In the following part, we will
give GH-representation of dual quaternion matrices with special structures.

Definition 3.3. Consider a p-dimensional dual quaternion matrix subspace Y c IDQ™". For each X = (X1)s +
(X2)sti + (X3)st] + (Xa)stk + (X1)re + (Xp)iie + (X3)1je + (Xy)rke €Y, if we express

—(Xl )st-
(XZ)st
(X3)st
(X4)st
0:6))]
(X2

(Xa)1

[ (Xg)1 ]

= HpX,
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-(Xl)st-
(XZ)st
(XS)st
then HpX is called the GH-representation of V, (()}%1);; , where
(X2)t
(X3)t
[ (Xa)r ]
Hxyy, (/\1)jt
H(XZ)st (/@it
Hexs), Xs)y
Hp = Hx,, . X=Xy
(X1 (/X\/l)l
Hxy), X,
Hxy), X3,
Hx,, | X,

Hx, st tepresents the H-representation matrix of (X,,)s: and H x, 1 represents the H-representation matrix of (Xu)1,
(m=1,2,3,4), respectively.

Based on Definition 3.3, the GH-representation of dual quaternion Hermitian matrix is given in the following
Theorem.

Theorem 3.4. Let X = (Xl)st + (Xz)sti + (Xg)stj + (X4)stk + (Xl)lé‘ + (Xz)[Si + (X3)18j + (X4)18k € DQZXH, then

, . D]
Vi (X1)s H ping
Vr(X;)si 1 HZ (/Xi)s/t
Vr(X3)st H, (/Xi)gf
YV(X)) = “//(éi))lf - e %{il))jf = HpX,

r I
V(X2 H, X,
V(X3 H, X,
VXl L H, | kot

where Hy, Hy are matrices defined in Lemma 3.2.

According to the real representation, the vector operators and STP of dual quaternion matrices, we can
convert Problem 1 into the corresponding problem of solving the real linear system.

Theorem 3.5. Let A € DQ™", B € DQ"?, C € DQ™. Denote

U=9yA®Il,),

V=-NipIn® BH)N2,

N1 = diag[Lup, —Lnp, —Lp, —Lups Lups =Lup, =Lup, —Lnp),
Ny = diag(Lun, —Lnn, =Lnn, =Lnn, Inns =Lns —Lnn, —Inn]-

Dual quaternion matrix equation (1) has a solution if and only if

([u VI[u V] -t wrviccon =o. ®
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In this case, the solution set in Problem 1 can be represented as

sDz{(x,yn(ii((‘éjggi)z[u V] Y (VO + Usugem — [U V] [ V])y}, ®)

where y € R¥"¥*™ is an arbitrary vector.
Then, the minimal FR-norm solution (Xp, Yp) of (1) satisfies

(o) =lu T wwo ?

Proof. According to the properties of the vector operators, the real representation and STP of dual quaternion

matrices, we have

AX-YB=C
e V,(AX) - V,(YB) = V,(C)

=AxV,(X) - V,(YB) = V,(C)
A V(X)) = BE < V,(Y) = V,(C)
S(ARL)VH(X) — (I ® BH)V,(Y) = V,(C)

S Y (ARL)VAX) = (I ® BH)V,(Y)) = ¢°(V,(C))

S PA® L)Y (VA(X)) = ¢ ((In ® BHV,(Y)) = Y*(V,(C))

SPAB L)Y (VX)) = Nig((In ® BYV(Y)) = ¢°(V,(C))

SPAB L)Y (VA(X)) = N1t ® By (VA(Y)) = ¢°(V(C))

SPAR LY (VX)) = Nigo(ly ® BN (V,(Y)) = ¥°(V,(0))
PVX)) _ e

= [pael) -Niyd,®BNN,] ( v, (Y))) = 9(V,(C))

=[u V(5= v

Then we can get the general solution (X, Y) of the dual quaternion matrix equation (1) through Lemma
2.9, which satisfies

o Y LS T s (R g

where y € R¥*™ is an arbitrary vector.
For (8), we can also get the minimal FR-norm solution (Xp, Yp) of (1), which satisfies

)l v

0
Based on Theorem 3.5, we can further get the Hermitian solution of (1).
Theorem 3.6. Let A, B € DQ™", X, Y € DQ};". Denote
U=yA®I,),

V = =N3y(I, ® B¥)N3,
N3 = diag[l,,z, —Inz, —Inz, —Inz, Inz, —Inz, —Inz, —Inz],
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(1) has a Hermitian solution if and only if
([U‘HD VHp|[UHp  VHp| - 18,12) YE(V,(C)) = 0. )

In this case, the Hermitian solution set of (1) can be represented as
X t o t
Sou = {(X, )l @ = [UHp  VH| (VO + (how - [UHD  VH| [UHy  VHy)) y}, (10)

where X, Y, Hp are defined in Theorem 3.4, and y € R is an arbitrary vector.
Then, the minimal FR-norm Hermitian solution (Xp, Yp) of (1) satisfies

(2) = [utto Vo] v, an
D

Proof. From Theorem 3.5, we can get the following equation which is equivalent to (1),

[u V() - v
By using Theorem 3.4, we can get _

P (VX)) = HpX,

Y (VAY) = HpY,
then, we obtain

urto vrs] (3 = prvcon,

thus, we can obtain the Hermitian solution (X, Y) of (1) by using Lemma 2.9, which satisfies
X + +
@ = [utHy  VHp| ye(v.(0) + (116,,2 ~[uHy  vHL| [uHy V(]'{z)]) n (12)
From (12), we can get the minimal FR-norm Hermitian solution (Xp, Yp) of (1), which satisfies
Xp '
(AD) ~ (Ut V| Vi),
Yp
|

4. Numerical Algorithm and Example

In this section, by using the discussion in Section 3, we propose Algorithm 4.1 and Algorithm 4.3 to solve
Problem 1.1 and Problem 1.2, respectively. Two numerical examples are given to show the effectiveness of
algorithms.

Algorithm 4.1. Calculate the minimal FR-norm solution.
Input: A € DQ™", B € DQ™", C € DQ™;
“(V(Xp))

Output : Pi(

e (W(Vr(YD))
(1): Fix the form of ¢ satisfying Definition 2.1;
(2): Calculate A® 1, 1,, ® BY;
(3): Calculate the matrix [U V];

(4): If (5) holds, then calculate the minimal FR-norm solution according to (7).
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Example 4.2. Given A € DQ"™",B € DQ™", C € DQ"?, where

4 _ [ 083-037i +0.16 - 0.3%
= |-0.76 — 0.25i + 0.58] — 0.14k

0.34 + 0.35i + 0.70j + 0.52k

*1-0.02 - 0.65i + 0.72] + 0.24k

—0.64 — 0.64i + 0j — 0.43k
—0.27 — 0.96i — 0.03; + Ok

0.41 —0.29i — 076]—041k]

0.33 + 0.50i + 0.34j — 0.73k

[ 0.54 +0.10i — 0.13j - 0.82k  —0.29 — 0.81i + 0.45] + 0.2411

B= 0.55-0.83i + 0.08] — 0.05k  0.43 + 0.53i + 0.13j — 0.72k
+ -0.95+0.19i + 0.12j + 0.21k  —0.60 + 0.44i — 045]—O50k
—0.64 + 0.09i — 0.27j — 0.71k 040+0391+011]—082k
C= 0.79 + 0.30i + 0.53j — 0.08k  —0.08 + 0.18i + 0.59j — 0.78k
~10.53 - 0.35i + 0.63] + 0.45k  0.57 — 0.70i + 0.31j — 0.30k

0.06 +0.93i +0.12j - 0.34k  —0.92 +0.24i + 0.11j + 0. 28k
—-0.33 -0.67i — 0.28j — 0.60k  0.62 + 0.06i + 0.02j — 0.78k

By using Algorithm 4.1, it is easy to get the minimal FR-norm solution of the equation (1), where

~|-0.04 +0.17i — 0.36j + 0.32k  0.24 + 0.32i — 0.09] + 0.67k

+ [ 0.43 + 0.30i — 0.03j - 041k  —0.05+0.15i — 0.12j - 0. 29k
|—0.49 - 0.27i+ 0.23j + 0.02k  —0.21 - 0.24i — 0.07] + 0. 04k | ©

<= [—0.01 +0.35i —0.11j + 0.15k  —0.25 + 0.26i + 0.27] — o.o3k]

y - [0:27-0.07i + 047+ 0.06k  ~0.04 ~0.38i + 0.35] +0.43k
= 012-0.44i - 012j- 024k -0.15 - 0.24i — 0.42] — 0.12k

+ [-0.14 + 0.22i + 0.48j — 0.17k  0.40 — 0.08i + 0.35] — 31k
| 0.37-0.19i-0.08j+ 0.30k ~ 0.18 +0.16i — 0.22] + 0. 11k| €

and, ||AX — YB — C||px is 6.80e — 15.

Algorithm 4.3. Calculate the minimal FR-norm Hermitian solution.
Input: A, B,C € DQ™";

Output : (}/(Q)
Yp
(1): Fix the form of Y satisfying Definition 2.1;

(2): Calculate A®1,, I, ® BY;
(3): Calculate the matrix [Uﬂp VW@];

(4): If (9) holds, then calculate the minimal FR-norm Hermitian solution according to (11).
Example 4.4. Given A, B, C € DQ™", where

A= 0.70 —1.58{ —1.33j + 0.02k  —0.35+ 0.28i + 0.35j — 1.75k
~|-2.05+0.51i +1.13j - 0.26k  —0.82 + 0.03i — 0.30j — 0.29k

—-0.83 —2.00i — 0.04j - 0.72k  -1.16 +0.52i + 1.02j - 0. 23k
—0.98 + 0.96i — 0.80j + 1.35k  —0.53 — 0.02i — 0.137 - 0. 59k | €
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B= —0.29 + 1.66i — 0.18j —1.45k -1.12 —1.26i — 1.33j + 0.3%
~|-0.85+0.31i + 0.79j + 0.33k  2.53 — 0.87i — 2.33] + 0.45k

—-0.13 - 1.36i + 0.55j + 0.66k  —0.48 — 0.85{ — 1.12j — 0.20k
0.18 + 0.46i + 1.04j — 0.07k 0.86 — 0.34i + 1.26] — 0.22k &

2.39-0.27i +2.15j - 1.06k —-3.15+2.51i — 3.58j — 0.37k

+ 1.58 +0.19 +1.10j —2.55k  —4.84 + 1.24i + 1.46j — 5.03k
-2.13-3.52i - 0.02j +1.32k  0.46 — 0.21i — 4.46j — 0.80k &

co [0.06 +2.22i-0.19j — 145k  —0.07 - 5.05 — 1.17] — 6.23k]

By using the Algorithm 4.3, it is easy to get the minimal FR-norm Hermitian solution of (1), where

X = -0.31+0.09i — 0.12j — 0.16k  0.28 — 0.55i + 0.53j + 0.15k
~ | 0.40 + 0.46i — 0.70j + 0.50k  0.85 + 0.48i — 0.39j + 0.23k

+ [0.05 +0.13i + 0.34j - 0.54k —-0.13 —0.02i + 0.14j — 0.08k
0.34 - 0.06i — 0.46j — 0.09c  0.22 - 0.05i — 0.07j — 0.24k &
y = [-0.98 — 0.20i + 0.24j-0.18k —0.18 —0.087 — 0.02j + 0.96k
B -0.40 + 0.20i — 0.10j — 119k —0.03 + 0.02i + 0.22j — 0.14k
+ [-0.06 — 0.19i + 0.03j — 0.38k  0.51 +0.21i + 0.16] — 0.07k
| 0.46 —0.40i + 0.10j + 0.20k ~ —0.12 + 0.08i + 0.42j — 0.05k &

and, ||AX — YB = C||px is 1.67e — 14.

5. Conclusion

In this paper, we studied the general solution and the Hermitian solution of dual quaternion matrix
equation AX—-YB = C. Firstly, we defined the concept of the real representation of dual quaternion matrices.
Then by using the vector operators, the properties of the STP and the GIH-representation of dual quaternion
matrices, we transformed the dual quaternion matrix equation AX — YB = C into a real linear system
equivalently, thus obtaining the general solution and the Hermitian solution of equation(1). Corresponding
numerical examples were provided to verify the effectiveness of the methods.
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