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Abstract. Let R = Fyn + uF,» with u> = 0, where p is an odd prime and m is any positive integer. This
article delves into the algebraic structure of skew negacyclic codes of length 2p° over a finite field IF,» and a
finite chain ring R. The focus is on the classification and structural properties of these codes. Based on the
different possible factorizations of x*" + 1 over F,n, a complete classification of the structural properties of
skew negacyclic codes and their duals for length 2p° over F,» and R is provided. Furthermore, the algebraic
structure of IF,»R-additive skew negacyclic codes with block length (p*, 2p°) is discussed. The separability
of [F,»R-additive skew negacyclic codes is also analyzed. To illustrate these results, several examples are
presented, including the construction of Maximum Distance Separable (MDS) and near-MDS codes.

1. Introduction

Error-correcting codes are an integral part of modern communication systems, ensuring reliable data
transmission even in the presence of noise or interference. Consider F,», a finite field with p™ elements,

where p is an odd prime and m is a positive integer. A linear code is any non-empty subspace C of the
. . . . . . . . Fym .
finite-dimensional vector space I, over [F,n. If C is an ideal of the quotient ring XL—BS, the code is called a

constacyclic code of length 1 over IF,», where A € [F,» \ {0}. A particularly important class of constacyclic
codes arises when A = +1. Specifically, C is cyclic when A = 1 and negacyclic when A = —1. Negacyclic
codes, introduced by Berlekamp in the early 1960s, form a significant subset of constacyclic codes [8].
These codes are noteworthy due to their algebraic structure, which offers advantages like simplicity in
construction and ease of encoding and decoding.

Numerous researchers have studied linear and negacyclic codes over commutative rings (see [9, 16, 18,
24, 29, 32]). Boucher et al. [12] extended this study to non-commutative rings, exploring a broader class of
codes. They introduced skew cyclic codes characterized by a generator polynomial in the non-commutative
ring IF,»[x; 1], where 7t is a field automorphism on IF,». These skew cyclic codes exhibited larger Hamming
distances compared to previously known linear codes. Further research into skew cyclic codes over finite
fields followed (see [14, 31]). Boucher et al. [13] and Jitman et al. [25] expanded the results to Galois
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rings and finite chain rings, respectively, providing the algebraic structure of these codes. Bagheri et al. [7]
introduced skew cyclic codes of length p* over F,» +ulF,», where > = 0. Hesari et al. [22] later described the
algebraic structure of the duals of skew constacyclic codes over this ring including self-dual codes. Several
other studies have explored skew cyclic codes over various skew polynomial rings (see [4, 20, 23, 30, 33]).

In 1973, Delsarte [15] introduced the concept of codes over mixed alphabets. Any code is called an
additive code if it is a subgroup of ¥", where ¥ is an Abelian group, and # is its direct product. Abualrub [1]
and Borges [10] later introduced and examined Z,7Z4-additive codes, which were subsequently generalized
to Z»Zys [6] and Z,Z,[u] [2, 5]. Recently, Juan et al. [26] investigated linear skew cyclic codes over mixed
alphabets IF;R, where R = FF, + ulF; with u? = 0, and determined the duals of separable skew cyclic codes.
They established a sufficient condition for these codes to be self-dual over IF;R. In 2024, Roghayeh et al.
[21] studied skew cyclic codes of length p* over Rs = Fyn + ulF,n + u?IF,» with u? = 0, classifying all possible
generator polynomials of skew cyclic codes of length p° over Rs. This result was later extended to mixed
alphabets IF»R3.

Motivated by the literature above on skew cyclic codes, we investigate skew negacyclic codes of length
2p® over the chain ring IF,» + ulF,». In this article, we investigate skew negacyclic codes of length 2p* over
the finite field IF,» and the chain ring R = Fpn + ulF,», with u? = 0, where p is an odd prime, and m is any
positive integer. We factor the polynomial x* +1 over F,» and R. By factoring the polynomial x*" + 1 under
different conditions on p, we obtain various constituent codes for the skew negacyclic code of length 2p°.
Using the algebraic structure over a single alphabet, we extend our exploration to skew negacyclic codes
of block length (p°, 2p°) over mixed alphabets IF,»R. Furthermore, we derive the generator polynomials for
skew negacyclic codes of block length (p°, 2p°) and separable skew negacyclic codes over mixed alphabets.

We present our article as follows: In Section 2, we discuss several useful results along with key definitions
relevant to our study. Section 3 is divided into two subsections to examine the cases p = 1 (mod 4) and
p =3 (mod 4). In Subsection 3.1, we address the case p = 1 (mod 4) and show that skew negacyclic codes
of length 2p° decompose into a direct sum of a skew (71, a)-constacyclic code and a skew (7, —a)-constacyclic
code of length p* over [F,». The algebraic structure of skew negacyclic codes and their duals is discussed
in Theorem 3.2. In Section 4, we extend the study from Section 3 to the ring R = Fpn + uF,», with u? = 0.
This section is also split into the cases p = 1 (mod 4) and p = 3 (mod 4). In Subsection 4.1, we discuss the
casep =1 (mod 4) and study the algebraic structure of skew negacyclic codes and their duals, as shown in
Proposition 4.1 and Theorem 4.2. In Subsection 4.2, we examine the case p = 3 (mod 4) and show that x> + 1
is irreducible over IF,». Furthermore, in Theorem 4.5, we describe the complete structure of left ideals of
R, and derive the generator polynomial of the left ideals in Theorem 4.9. In Section 5, we extend our work
to mixed alphabets IF,»R. We characterize all possible IF,»R-additive skew negacyclic codes of block length
(v°, 2p°) (see Theorem 5.2). Furthermore, we investigate an important class of codes called separable codes.
Using the definition of separable codes in Theorem 5.3, we demonstrate how separable [F,»R-additive skew
negacyclic codes of block length (p°,2p°) are a direct product of skew negacyclic codes C; and C,, with
lengths p* and 2p° over [F,» and R, respectively. In Theorem 5.4, we derive the generator polynomial of
separable IF,»R-additive skew negacyclic codes of block length (p*, 2p°). Section 6 concludes the paper.

. In Theorem 4.8, we investigate the algebraic structure of the annihilators of the left ideals of

2. Preliminaries
Consider the quotient ring K = 5’23[:;1 If an irreducible element a(x) € IFy[x] has degree m, then the
quotient ring K is known as a finite extension of IF,. That is, K is a field of order p™, and it has a subfield
isomorphic to IF,, so K forms a vector space over IF, with dimension m. This dimension, called the degree
of the extension, is denoted as [K : IF,]. If a(x) = so +s1x + -+ + 5,X™, where s; € [F,, then, by [19, Theorem
20.1], if £ € Kand a(&) = 0, then ¢ is a generator of K. The elements of K can be expressed as polynomials
in & with coefficients in F,. Hereafter, we refer to the finite field F,» = K = {0,&,&%,...,&" 2, &1 = 1},
Consider a ring R with unity, then and suppose R is referred to as a principal left (right) ideal ring if
every left (right) ideal of R can be generated by a single element. Furthermore, if R has a unique maximal
left (right) ideal, it is referred to as a local ring. If the set of all left (right) ideals of R forms a chain, then R
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is called a left (right) chain ring. A non-empty subset C of R" is referred to as a code of length n over R. If
C forms an R-submodule of R”, then it is called a linear code of length n over R.

Definition 2.1. Let 7t : Fyn — Fyu. If 1t satisfies the following conditions, then it is called a ring homomorphism:

1. m(&r + &2) = m(&1) + (&) for all &y, &r € Fym,
2. 7'1(5152) = 7'((51)7'((52) for all 51, 52 € ]Fpm.

Further, if 1t is bijective, then 1 is called an automorphism on Fyn.

Let © be an automorphism on [F,», and suppose 7 fixes each element of IF,, then 7t is called an IF,-
automorphism, with IF, being the fixed field with respect to . As we know, the set of all automorphisms
of R, denoted by Aut(R), forms a group with the binary operation of the composition of maps, then Aut(R)
has an identity automorphism I. Let 7 be a non-identity automorphism on ‘R. The smallest positive integer
t is called the order of 7 if ' = T, and this is denoted by ord(m). In this context, ' denotes the composition
of m applied ¢ times.

Definition 2.2. Let R be a finite commutative ring and t be an automorphism on ‘R. Then we define the set R[x; ]
as follows:

Rlx; 7] = {sg +s1x + -+ +5,x" : 5, € R},

where n is a non-negative integer.

The concepts of addition and equality for polynomials are defined in the usual way, whereas multiplication is
defined according to the underlying rule: xs = t(s)x (Vs € R). This multiplication is associative and distributive,
so using these two properties, we can easily extend this multiplication to every element of R[x;t]. The set R[x; t]
with the usual addition and the multiplication defined above forms a non-commutative ring, which is known as the
skew polynomial ring over R (see [12]). Moreover, any element of a skew polynomial ring is known as a skew
polynomial. In particular, if T is the identity automorphism on R, then the skew polynomial ring R[x; T] becomes a
commutative ring.

Definition 2.3. The center of any ring R, denoted by Z(R), is defined by
ZR)={aecR|ab=0baVbeR}.

Note 2.4. Let 1 be an automorphism on Fpn of order t. We now define the center of the ring Fyn[x; 7t]. Let I, be a
subfield of Fyn that remains fixed under the action of 1. Then the center Z(R) is precisely F,[x'], which represents a
commutative polynomial ring. It can be readily shown that any element f(x) in the center satisfies the commutative
relations f(x)x = xf(x)and af(x) = f(x)aforalla € Fyn. The element of F,[x'] is called a central skew polynomial.

Consider R = Fy» + ulF,» with u?> = 0. According to [17], R is a finite chain ring and R(u) is the only
maximal ideal of R. To define a skew polynomial structure over R, we first need to define an automorphism
on R.

Lemma 2.5. [3] Let € Aut(Fy») and 1) € IF,,.. Then the map IT: R — R given by
Iy 5 (a + ub) = m(a) + unm(b),

is an automorphism on R. Further, any automorphism on R is of the form Il ,. Moreover, the collection of all
automorphisms of R is denoted by Aut(R) and is given by

Aut(R) = {Ily, | © € Aut(Fy») and 1 € F}.
From now on, we take n = 1 and for our convenience, we denote I1,; as IL

Proposition 2.6. [25, Proposition 2.3] Let p(x) and s(x) be skew polynomials in R[x;I1]. If p(x)s(x) is a monic
polynomial in Z(R), then p(x)s(x) = s(x)p(x).
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Proposition 2.7. [27, Right division algorithm] Let p(x) and s(x) be skew polynomials in IFyn[x; 1], where p(x) is
monic. Then there exist some polynomials t(x) and r(x) in Fyn[x; 7] such that

s(x) = t(x)p(x) + r(x),
where r(x) = 0 or deg(r(x)) < deg(p(x)).
According to the above premise, p(x) is a right divisor of s(x) if and only if #(x) = 0. It is denoted

as p(x) | s(x). Similarly, p(x) is referred to as a left divisor of s(x) if s(x) = p(x)t(x), and it is denoted as
p(x) i s(x), where t(x) is any skew polynomial in IF«[x; ].

Example 2.8. Suppose Fg = {0,6,...,6% = 1}, where & is a root of the polynomial p(x) = x* + 1 € F3[x] and let 1t be
a Frobenius automorphism on Fg of order 2.

xt+2003 +0x+1 = (x+20)(x+0+2)(x +20)(x + 6+2). Therefore, x+06+2 is a right divisor of x* +26x> + 6x+ 1.
It can be easily verified that x + 6 + 2 cannot be a left divisor of x* + 26x® + 6x + 1 in Fo[x; 1t].

Definition 2.9. [28] Consider skew polynomials p(x) and s(x) in Fyn[x; 7t]. We define the greatest common right
divisor (abbreviated as gcd,) of p(x) and s(x) as the unique monic skew polynomial d(x) in Fyn[x; 1] satisfying the
following conditions:

1. d(x) is a right divisor of p(x) and s(x).
2. Any other skew polynomial d’(x) in Fpn[x; 7] that is a right divisor of both p(x) and s(x) must also be a right
divisor of d(x).

Definition 2.10. [28] Skew polynomials p(x) and s(x) in Fpn[x; 7] are called right relative prime if and only if
ged:(p(x),s(x)) = 1.

Lemma 2.11. [28, Right Bézout identity] If d(x) = gcd,(p(x), s(x)), then there exist r1(x) and r(x) in Fyn[x; 1] such
that

d(x) = r(p(x) + r2(x)s(x).

Definition 2.12. [23] Let p(x) € Fpu[x; 7] be a skew polynomial. If p(x) is monic and irreducible, then it is called
prime.

Definition 2.13. Let I be any non-empty subset of Fpu[x; 1t]. If I satisfies the following conditions, then 1 is called
a left ideal of Fyn[x; 1]

1. a(x) +b(x) € 7,V a(x),b(x) € 7,
2. r(x)a(x) € I,V a(x) € I and r(x) € Fpn[x; 7].

Remark 2.14. Every left (or right) ideal of Fyn[x; 7] is principally generated. Thus, Fpu[x; 1] is a left (or right)
principal ideal domain. Further, from [12], it is well known that the ring Fyn[x; ] is not a unique factorization
domain.

Example 2.15. SupposeFyn = Fo7 = {0,6,6%,...,6%,6% = 1}, where  is a root of the polynomial p(x) = x>+2x+1 €
F;[x], and let > = I. Consider a skew polynomial x3 — 1 in Fyy[x; 1]. We have,

X —1= (=06 +0Bx+6%) = (x = 8°)(? + %+ 6%°) = (x = D)(x = 1)(x = 1).
That is, the skew polynomial x> — 1 in Fy[x; 1] is not uniquely factorized.

Definition 2.16. A non-empty subset I of Fyn[x; 1t] is called a two-sided ideal of IF,n [x; 7] if and only if it is generated
by a central skew polynomial.
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Let IT € Aut(R) be an automorphism of order /. Note that any automorphism maps —1 to —1. The ideal
(x" +1) is a two-sided ideal of R[x;I1] if and only if ord(IT) = ord(r) = I | p* (see [25]). This implies that if
ord(IT) divides 1, then (x" + 1) is a two-sided ideal of R[x; IT]. From Proposition 2.6, we have that x*" + 1 is
a monic central skew polynomial, and hence any right divisor of x*" + 1 is also a two-sided divisor. That

is, if x?" + 1 = y1(x)y2(x) = y2(x)y1(x), then ya(x) = x;’l’s(;)l, where y;(x) € R[x; 1] fori=1,2.

Let IT € Aut(R) and A be a unit element of ‘R. Let C be a linear code of length 1 over R. Then C is a skew
(I'T, A)-constacyclic code over R if for (co, c1,...,cn-1) € C, it holds that (H(Acn_l), I(cy), - -, H(cn_z)) eC.In
particular, for A = 1, C is a skew cyclic code, and for A = -1, C is a skew negacyclic code over R.

To establish an algebraic representation from the combinatorial structure of skew negacyclic codes,

we examine the following correspondence: Let ¢ = (co,c1,...,cn-1) € C be a codeword. Then the skew
_ R
= Gorel)

polynomial representation of cis c(x) = co + c1x +--- + Cp1x 1 in Ry
Now onward, we denote the quotient rings:

R[x; ]

]Fpm [x,' n] , IFpm [x; T(] _
e+ 1)

Ri=wny R ™

d R,

where 11 = 2p° and we assume [F» is a field, with p being an odd prime, m and s being any positive integers,
unless otherwise stated.

Proposition 2.17. [25, Theorem 2.2] Let C be a linear code of length n over R. Then C is a skew negacyclic code if
and only if its polynomial representation forms a left ideal of Ry. Moreover, C = (f(x)) = Rao(f(x)), where f(x) is a
monic factor of x" + 1.

Note 2.18. We can define a ring epimorphism p : R — Fpn by u(a + ub) = a. This epimorphism can be extended

from R[x; T1] to IFyn[x; 1] as follows:
n n
Z(ﬂ,‘ + ubi)xi [ Z aixi.
i=0 i=0

Additionally, u can be extended from Ry to R]. Thus, the image of any left ideal I of Ry, (I w, u) =
p(fv € Ry :ou € 1), is a left ideal of R. Since any skew negacyclic code C of length n over R forms a left
ideal of Ry, the code u(C g, u) can be considered a skew negacyclic code over . This code is called the torsion code
of C and is denoted by Tor(C).

Now, we define a Gray map

¢ . m s ]F;m
¢(a +ub) = (b,a +b), where a,b € Fyn.

Furthermore, we can verify that ¢ is an IF»-linear map. The map ¢ can be naturally extended component-
wise from R”" to ]F;,’,i as follows:

(7.0/ 7’1, . -/rn—l) g (bO/aO + bO/ .. 'rbn—llan—l + bn—l)/

wherer; = a;+ub; € R,and a;, b; € Fyn, fori = 0,1,...,n—1. The Lee weight of an element r € R is denoted by
w(r) and is given by wy (r) = wy(P(r)), where wy is the Hamming weight. For any r = (ro,71,...,7-1) € R”,
the Lee weight of r is given by wy (r) = Z:-qz_ol wr(¢(r;)). For any two elements r and 1’ of R", the Lee distance
between them, denoted by dy, is defined as di.(r, t') = w(r — t') = wy(Pp(r — r’)). The minimum Lee distance
of Cis defined as d;, = d.(C) = min{dy(r, 1) | r # 1, r, ¥’ € R"}. It follows from the definition of the Gray map
that ¢ is a distance-preserving map from the Lee distance to the Hamming distance, and ¢ is a bijective

map. Thus, ¢(C) is a linear code over IF,» with parameters [2n, k, dy], where d; = di and k is the dimension

of H(C).
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Now, we define the dual of a linear code C over R. The dual code of C is denoted by C+ and is given by
Ct={c eR"|(,c)=0,YceC},
where (c¢’, ¢) denotes the Euclidean inner product of ¢’ and c.
Definition 2.19. Let C be a [n, k, d]-linear code over IFyn. Then the parameters satisfy
d<n—-k+1.
If equality holds, the code C is called a maximum distance separable (MDS) code.

Proposition 2.20. [17, Proposition 2.5] Let R be a finite chain ring of cardinality pi. The cardinality of a linear
code C of length n over R is p*, where k is an integer such that 0 < k < nq. Furthermore, the dual code C* has p'
codewords, where the sum of the dimensions of C and C* is ng, i.e., k + | = nq. Thus, the product of the cardinalities
of C and C* equals the cardinality of R".

Proposition 2.21. [25] Let m € Aut(IF,»)and C be a linear code of length n over . If Cis a skew (11, A)-constacyclic
code over [Fyn, then C* is a skew (, A~Y)-constacyclic code over Fym.

Proposition 2.22. [12] Let i : R[x; 1] — R[x; IT] be the map defined by

Y [Z ﬂixi] = Y TI(a)x,
i=0

i=0
wherea; € R fori=0,1,...,n. Then  is a surjective ring homomorphism.

Definition 2.23. Consider a skew polynomial p(x) = ag + a1x + -+ + axk in R[x; 1], where ax # 0. Its reciprocal
polynomial is denoted by p*(x) and is given by

k
pr(x) = ap + (ag_1)x + - + [T (ag)x* = Z IT (ag_;)x'.
i=0

Lemma 2.24. Suppose p(x) and s(x) are elements of R[x; I1]. Then the following results hold:

(i) If deg(p(x)) > deg(s(x)), then (p(x) +5(x))" = p*(x) + x1BCD=de8EDg (x),
(ii) (p(0)s(x))” = PI8rs*(x)p’ (x),
(iii) If the constant coefficient of p(x) is non-zero, then (p*(x))* = Y*(p(x)), where k is the degree of p(x).

Remark 2.25. Let C be a skew negacyclic code over R and let T be the polynomial representation of C, which forms
a left ideal of Ry. If 1 is a left ideal of Ry, then I™ = {p*(x) | p(x) € I} is a right ideal of R,. The annihilator of 1 is
defined as:

AT) = {s(x) € Ry | p(x)s(x) = Ofor all p(x) € 17},

and A(T) forms a right ideal of Ro. Thus, if 1 is the left ideal associated with C, then the associated left ideal of the
dual code C* is A(L)".
3. The algebraic structure of skew negacyclic codes of length 2p° over FF,»

This section provides a detailed study of the algebraic structure of skew negacyclic codes of length 2p°
over F,n. The study is based on the factorization of x#" + 1 under various conditions.

Note 3.1. Sincep™ —1=(p-1)pP" +p" 2 +---+p+1), where (p"1 +p"™ 2 +--- + p+ 1) is an odd integer, it
follows that 4 divides p — 1 if and only if 4 divides p™ — 1 for an odd prime p and an odd positive integer m.
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3.1. p=1 (mod 4)
Recall from Section 2 that IF, is a finite field, and

Fpr ={0,&,&,..., & 72,&" 1 =1},

where & € IF,» is a primitive root of an irreducible polynomial a(x) over IF,[x].
Since 4 | p — 1, there exists an element « € [F, such that a = C%, where C is a generator of F, =T, \ {0}

Letp=a’ = C%. Then g € IF, and ord(p) = 2. Since I, is cyclic, the unique element of order 2 in IF}, is —1.
Thus, g = -1.
Therefore, we can factor the polynomial x%" + 1 as follows:

X rl=2% —a® = —a)¥ +a).

Since x%° + 1 is factorize in IF,, and I, is a subfield of IF,», we can extend this factorization to IF,», where
a € F, is embedded in IFpn.

1= —a) W +a).

Any automorphism of [F,» fixes [F, so (a) = « for any = € Aut(IF,»). By [25, Proposition 2.2], o + a)
forms a two-sided ideal of F,«[x; 1]. Hence, by the Chinese Remainder Theorem (CRT), we have
]Fpm [x; T(] - IFpm [x; 71] IFpm [x; 71]

/

L7 +1) (o —a) (& +a)

From this decomposition of R|, we deduce that every left ideal of R| can be uniquely expressed as the

direct sum of left ideals of (pp W and <”': [i”; Therefore, every skew negacyclic code of length 2p° over IFn

can be expressed as a direct sum of a skew (7, a)-constacyclic code and a skew (7, —a)-constacyclic code,
each of length p°.

Now we investigate the decomposition of skew negacyclic codes of length 2p° over IF,». We can represent
such a code C as follows:

C=C19Cy,

pn x 7'[] m[ ]
> and o

In the following theorem, we present the cardmahty of the skew negacyclic code C of length 2p® over
IF,» and the algebraic structure of the dual code of C.

where C; and C; are left ideals of , respectively.

Theorem 3.2. Let C = Cy @ C; be a skew negacyclic code of length 2p° over IFpn. Then

(@) ICl = IC1lIC2l. o —
(ii) C+ = Cy ®Cy, where Ci and Cy are left ideals of P ra ) and 5=

, respectively.

Proof. The proof of (i) is straightforward, so we focus on proving (ii).
Itis clear that C; @ C; is a subset of C*. Furthermore, the cardinality of C; @ C; is given by the product
of the cardinalities of C; and C;, as follows:

| p’” | |]Fp”l |ps |]Fpnl |2ps
IC; @ C5 | = ICTIICy| = = =[C*.
2 2 IC1l IC2l ICl
Thus, we conclude that C*+ = C; @ C;.
Since a = C%, we have a1 = C¥ = —a, and (—a)™' = a. By Proposition 2.21, C; is a skew (1, —)-

constacyclic code, and Cj is a skew (7, @)-constacyclic code of length p* over [F,». Therefore, C{ and C; are

left ideals of =227 apg Tl >,1:espect1vely O

(x° +x) (" —




R. Raj et al. / Filomat 39:20 (2025), 6943-6966 6950

55 [x;7]

Example 3.3. Leta =2, R = R and 1t € Aut(IF,) such that m(a) = a® for any a € Fss. Then ord(m) = 5. Let

w be a primitive root of an irreducible polynomial of degree 5 in Fs[x] of order 5° — 1. The factorization of x> — 2 in
Fss[x; ] is given by

x° =2 =(x + 3w + w® + 4w? + 3w + 3)(x + w® + 2w? + 2w + 3)(x + 2w* + 3w + 2u? + w + 4)

X (x + 4w + 4w® + 3w + 3)(x + w + W + w? + 2w + 3).

Consider C = R(f(x)), where f(x) = (x+3w*+w?+4w? +3w+3)(x+ w3 +2w? +2w+3) (x +2w* + 3w + 2w* +w+4).
This simplifies to:

fx) = 2%+ Qw® + 2w + 3w)x® + (4w + 3w® + 3w? + 3w)x + 3wt + w? + 2w + 4.
Therefore, C has a generator matrix of the form:
3wt +w? +2w+4 4wt + 3w + 3w’ + 3w 2w? + 2w? + 3w 1 0
0 3w + w'® +2w° +4  4w® + 3w + 3w + 3w’ 2w + 2w + 3w’ 1|

Hence, using the MAGMA algebra system [11], we find that C is an MDS code with parameters [5,2,4].

Fgs [x;m]
(x5+2) *

Example 3.4. As in Example 3.3, we consider « = =2, and R = The factorization of x° + 2 in Fss[x; 1] is

given by

X +2 =(x + 2wt + w® + 2w? + w + 2)(x + 4wt + 4w’ + 3w? + 4w + 4)(x + W’ + w + 3)

X (x + 2w* 4+ 2w + 3)(x + 2w* + 3w? + 4w + 4).

Consider C = R(f(x)), where f(x) = (x +2w* + w3 + 2w? + w + 2)(x + 4w* + 4w> + 3w? + 4w + 4). This simplifies
to:

Fx) = 2+ @W* + 2w’ + 3w + 2)x + 3w + w® + w + 4.

Therefore, C has a generator matrix of the form:

3w+t +w+4 wr+ 2w +3w+2 1 0 0
0 3w +wP +w” +4 w4+ 2w + 3w +2 1 0].
0 0 3wl + w” +w?® +4 w0 4207 + 3w +2 1

Hence, using the MAGMA algebra system [11], we find that C is an MDS code with parameters [5, 3, 3].

Example 3.5. Consider R| = Beloml pnd e Aut(F,») such that m(a) = a° for any a € Fss. Then ord(n) 5. Let

G0y
w be a (5° — 1)"-primitive root of an irreducible polynomial of degree 5 in Fs. The factorization of x'° + 1 in Fss[x; 7]
is given by
x10+ 1 =(x + 3w® + 3w? + 4w + 3)(x + 4w* + 4w® + 20” + 4w)(x + w + 4w? + 3w + 3)
X (x + 4w* + 3w° + 3w? + 4w + 4)(x + w* + 4w’ + 4w’ + 2w + 1)(x + 4w’ + 4w)
X (x + dw* + 4w + 4w + 2)(x + dw* + w? + 2w + 1)(x + 2w + 2w + 3w? + 4w + 1)

X (x +w® +w +3).
Consider C = R; ( f (x)), where

F(x) =(x + 3w® + 3w? + 4w + 3)(x + dw* + 4w’ + 2w + 4w)(x + w* + 4w® + 4w + 2w + 1)
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X (x + 4w* + 4w0® + 4w + 2)(x + 4wt + w? + 2w + 1)(x + 2wt + 2w + 3w? + 4w + 1).
= f(x) =x" + (dw* + 4w® + w? + 4w + 2)x° + (W® + 2w? + 4w + 1)x° + Bw* + 3w® + 2w? + 3w + 1)x*
+ Quw* + 4w® + 2)x° + (dw* + 3w + w + 3)x% + Bw* + 3w? + w + 3)x + 3w + W + 2w + 2.
Therefore, C has a generator matrix whose first row is 3w* + w® + 2w + 2, 3w* + 3w? + w + 3,4w* + 3w® + w +
3,2w* + 4w + 2, 3w* + 3w + 2w? + 3w + 1, w® + 2w? + 4w + 1, 4w* + 4w® + w? + 4w +2,1,0,0, and the (i + 1)

row is given by the coefficients of x' f(x), where i = 0,1,2. Hence, using the MAGMA algebra system [11], we find
that C is an MDS code with parameters [10, 3, 8].

Example 3.6. As in Example 3.5, we have a factorization of x'° + 2 in Fss[x; t]. Consider C = R; ( f (x)), where

fx) =(x+ 4wt + 4w® + 20 + 4w)(x + 4w* + 3w + 3w + 4w + 4)(x + w + 4w’ + 4w? + 2w + 1)
X (x + 4w* + 4w® + 4w + 2)(x + 2w* + 2w + 3w + 4w + 1).
= f(x) =X + Quw? + 2)x* + Qu* + 4w + 4)x° + (dw* + 2w + 4w + 2)x* + (W + 2w + 2w? + 3w

+3)x + 2w” + 2w + 3.

Therefore, C has a generator matrix whose first row is 2w* + 2w + 3, w* + 2w’ + 2w* + 3w + 3, 4w* + 2w’ + 4w* +
2, 2wt +4w+4, 2u?+2,1,0,0,0,0,and the (i +1)™ row is given by the coefficients of x' f(x), wherei =0,1,2,3,4.
Hence, using the MAGMA algebra system [11], we find that C is an MDS code with parameters [10,5, 6].

Fjislxm]

Example 3.7. Consider Ry = —1y- and 1 € Aut(Fyz0) such that 7i(a) = a'3 for any a € Fizi. Then ord(rt) = 13.

Let w be a (1313 — 1)"-primitive root of an irreducible polynomial of degree 13 in F13[x]. We then have a factorization
of x*® + 1 over Fzi[x; 7t].
Consider C = Ry ( f (x)), where

F) =(x + 10w + 11w + 11w + 6w® + 7w® + w” + 8w® + 2w’ + 6w* + 9w’ + 6w? + 12w
+3)(x + 11w + w't + 6w'® + 40” + 1208 + 100® + 6w + 2w* + 10w® + 6w + 4w
+5)(x + 2w + 3w + 2w'® + 50° + w? + 9w + 4w’ + 4w® + 11wt + 4w + 7w
+ 11w + 11)(x + 2w + 7wt + 110" + 20° + 10w® + 3w’ + 12w° + w’® + w? + 10w
+ D(x + 7wt + 20" + 3w’ + 40d + 507 + 11w® + 120° + 120 + 6w + w? + 8w
+9)(x + 9w + 8w + 6w’ + 4w’ + 10w® + 9" + 11w® + 50° + w? + 9w® + 4w?
+ 9w + 4)(x + 4w'? + 120" + 20'° + 8w° + 2w® + 1207 + 7w® + 10w* + 12w?

+ 12w + 3)(x + 11w + 9w + 4w' + 50° + 2u® + 6w” + 12w + 5w° + 12w*
+w° + 507 + 10w)(x + 7w'? + 2w + 110° + 8w® + 6w’ + 6w’ + 7w* + 10w?
+ 5w + 1)(x + 10w + w' + 10w + 2w° + 50® + 4w’ + 6w° + 9w + 2w*

+ 7w + 8w + 9)(x + 8w'? + 3w'® + 2w’ + 2u® + 4w’ + 9u® + 3w® + 4wt + 2u?
+9w? + 5w)(x + 2w'? + 4w + 5w + 7w’ + 6w + 5w° + 10w° + 2w* + 12w°
+120” + 6w + 4)(x + 8w'? + 9w'! + 50'° + 4w’ + 20’ + 7w’ + 6w° + 2w

+ 3wt + 2w? + w + 6)(x + 4w'? + 8w + 6w'® + 120° + 3uw® + 3w’ + 6w’

+ 6w’ + 5wt + 8w + 9w? + 12w + 7)(x + 7w'? + 3w + 120" + 11w° + 3w®
+ 7w + 5w® + 10w° + 8w* + 10w? + 5w” + 2w + 5)(x + 2w'? + 10w"!

+9w'% + 11w0° + 8w® + w” + 3w’ + 4w’ + 8w* + w® + w? + 12w + 12)(x + 4w'?

+5w'% + 1200° + 6w® + 120" + 7w’ + 11w° + 10w* + 6w® + 5w + 6)(x + w'? + w'
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+ 10w’ + 12w® + 100’ + 110° + 7w® + 12w* + 2w° + 4w? + 12w + 6)(x + 7w'?
+ 9w +2w” + 9w® + 4w’ + 7w + W’ + 2wt + 4w® + 6w? + 7w + 9)(x + w'?
+ 10w +50° + 1208 + 2w + 4w® + 11w* + 9w + 11w? + 2w)(x + 11w'?
+ 2w + 110" + 40’ + 4w’ + 6w® + 120° + 2w* + 12w° + 4w? + 3w + 8)
X (x + 4w'? + 70t + 70 + 100® + 1107 + 120° + 9w + 10w*
+ 8w + 5w? + 9w + 10)(x + 2w'? + 4w'® + 8uw° + 5w® + 7w’ + 8w’ + 4w*
+20° + 120 + 7w + 12)(x + 10w0*? + w'! + 7w + 4w° + 50° + 7w’
+2u® + 6w° + 12w* + 11w + 9w + 3)(x + 7w'? + 6w'! + 50° + 3w® + 2w’
+120° + 6w° + 8w* + 9w® + 12w? + 2w + 7)(x + 9w'? + 2w + 12w
+ 70’ + 8w + 6w’ + 5u° + 11w’ + 4w + 7w® + 8w? + 2w)(x + 7w'? + 120"
+6w'" + 100’ + 9u® + 8w’ + 4w’ + 6w® + 3wt + 11w® + 6w* + 7w + 10)(x
+ 2w + 4w + 40" + 6w” + 8w® + 3w’ + 10w’ + 7w’ + 9wt + 10w°
+20” + 11w + 3)(x + 6w'? + 10w + 9w'® + 11w° + 4w® + 20 + 11w°
+ 8w’ + 6wt + 5w° + 6w + 9w + 11)(x + 5w'? + 2w + 7w'® + 20’
+ 7u® + 3w’ + 6w’ + 11w’ + 12w* + 50° + 9w? + 6w + 1)(x + 3w'? + 11w
+ 90" + 50”7 + 10w® + 110" + 12u° + 8w° + 10w* + 7w? + 6w)(x + Sw'?
+ 7wt + 110" + 20° + 10w® + 110’ + 120° + 6w° + 6w* + 120° + 3w?
+ 10w)(x + 4w'? + 11" + 120" + 6w” + 10w® + 20’ + 11w® + 50°
+ 7wt + 50° + 6w? + 8w + 9)(x + 3w'? + 8w + 10w + 12w° + 12wd+
2w’ + 120° + 2w® + 10w* + 6w® + 5w* + 2w + 11)(x + 4w'? + 5w'! + 7w’
+ 3w’ + 6w® + 10w’ + 9w® + 12w° + 8w* + 7w® + 5w + 11w + 4)
X (x + 10w + 6wt + 9w'® + 11w° + 11w® + 4w” + 7w® + 5uw°
+ 12w + 9w® + 2uw? + 3w + 12)(x + 2w'? + 5wt + 10w'® + 6w° + 2w
+ 4w’ + 8uw® + 6w’ + 11w + 12w® + 12w? + 10w + 2)(x + 11w'? + 4w'!
+ 901 + 100° + 7w® + 8w’ + 5u® + 9w°® + 2w* + 7w® + 5w + 12w + 8)(x
+ 7w + 120" + 20 + 40° + 10w® + 8w’ + 4w’ + 9w’ + 11w* + 12w
+2w? + 5w + 6)(x + 12w0'? + 11w + 3w'® + 6w’ + 8w® + 4w’ + 12w®
+12w° + 9w* + 7w + 10w? + 7w + 1)(x + 120" + 2w!'! + 6w'® + 100’
+9w8 + 4w’ + 5uw® + 12w° + 2w + 8w + 11w? + 7w + 10)(x + 12w'? + 10w!!
+ 120" + 40® + 3w + 110" + 9w® + 7w’ + 11w* + 12w? + 5w)(x + 5w'?
+ 1w + 6w + 40° + 11w® + 207 + 7w’ + 120° + 9w* + 10w + 6w? + 7w)
X (x + 11w + 3wt + 6w'® + 70’ + 4w® + 1207 + 2w® + 9uw°
+ 8wt + 10w + 120 + 6w + 2)(x + 9w'? + 5wt + 8w + 12w° + 4w
+ 10w + 6w + 5w° + 7w + 2w + 2w? + 3w + 1)
is an MDS skew negacyclic code of length 26 over IF3.
3.2. p=3 (mod 4)

In this subsection, we consistently assume that p = 3 (mod 4). In this class of primes, there does not
exist any a € FF» such that 4> = —1. Hence, x* + 1 is an irreducible polynomial in F,«[x; 7t]. Since FF,» has
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characteristic p, we can further simplify this to:
X +1= 2+ 1)
Lemma 3.8. The ideal ((x* + 1)") is a two-sided ideal of Fy [x; ]

Proof. AsTF, is fixed by € Aut(IF,»), we have (1) = —1, and ord(m) | p°. Hence, by [25, Proposition 2.2],
the ideal ((x? + 1)"") is a two-sided ideal of Fpulx;m]. O

Define a set
B = {f(x) | £(x) is a monic divisor of (x* + 1)”5}.
Eym [x;7]

Proposition 3.9. The quotient ring R| = ) is a principal left ideal ving. Moreover, the generator of any left
ideal is of the form f(x) + ((x*> + 1)), where f(x) € B.

Proof. Let I = <(x2+1 =
IFyn[x; 7] is a principal left ideal ring, 3 = (f(x)) for some f(x) € IF,u[x; 7], where f(x) is a divisor of (2 +1)7.
Thus, we infer that f(x) + ((x? + 1)"") is a generator of 7. [

be a left ideal of R}, where J is a left ideal of IF,»[x; 1] containing ((x* + 1)/"). Since

Lemma 3.10. Let p(x) be a non-zero skew polynomial in R]. Then p(x) has a left inverse in R} if and only if
ged: (p(x), (2 + 1)) =1

Proof. Assume ged, (p(x), (x% + 1)}”‘) =1. Let 2+1 be a left ideal of R, where J is a left ideal of IFn [x; rt]
containing ((x* + 1)”'). The left ideal of Epn [x | generated by p(x) is given by F,»[x; 7](p(x)). Hence,

(2 +1yP) c Fpn [x; ] (p(x)) + ((x* + 1)7") is a left ideal of IFyn[x; 7t]. This implies that il ng(xgi)i;g(;hl)p )
left ideal of R]. Since IF,»[x; 7] is a principal ideal ring, we have FF«[x; 7t](a(x)) = Fpn[x; 7](p(x)) + (2 + 1))

for some a(x) € [Fyn[x; t]. Therefore, there exist polynomials 11 (x) and #;(x) in IF,«[x; 7] such that

a(x) = my (X)p(x) + t(x) (62 + 1)
Similarly, there exist polynomials m(x) and t;(x) in IF,«[x; 7] such that
p(x) = mp(x)a(x) and (2 + 1) = tr(x)a(x).

This implies that a(x) is a right divisor of both p(x) and (x? + 1)V". Thus, we conclude that a(x) = 1. Further,
we have

1+ {(2 + 1)) = my(x)p(x) + (% + 1)
= (m (@) + (2 + 7)) (p() + (2 + 1))

This implies m; (x) is a left inverse of p(x) in R;.
Conversely, suppose m(x) is a left inverse of p(x). Let a(x) be a common right divisor of p(x) and (x> +1)7".
Thus, there exists a polynomial b(x) € IF,»[x; 7] such that p(x) = b(x)a(x). Therefore,

m(x)b(x)a(x) = m(x)p(x) = 1in R].

Hence, a(x) has a left inverse in R]. Since a(x) is a monic polynomial in [F,«[x; 1], it implies a(x) = 1. Thus,

ged, (p(x), (* + 1)7”5) =1
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F3[x;m]

Example 3.11. Consider R| = iy and 7 € Aut(Fs) such that ri(a) = a° for any a € Fs. Then ord(m) = 3.

Let w be a (3% — 1)"-primitive root of an irreducible polynomial of degree 3 in Fs[x). The factorization of x° + 1 in
a3 [x; ] is given by
X +1 =02+ wx + 0P + x + 20 + 2w + 1)(x* + Qu* + w + 1)x + 1).
Consider C = R (f(x)), where

Fx) = (& + x + 2% + 2w + 1)(x* + Qu? +w + 1)x + 1)
= f(x) =2+ Qu? + 2w + 2)x° + (W? + 2w + 1)x + (W? + 2w + 2)x + 2w* + 2w + 1.
Therefore, C has a generator matrix of the form

202 +2w+1 wW+2w+2  wr4+2w+1 2uwr4+2w+?2 1 0
0 20 + 2wt +1 wl+2uP+2 wt+2wt+1 2ub+2w+2 1|

Hence, by the MAGMA algebra system [11], we find that C is an MDS code with parameters [6,2, 5].

4. The algebraic structure of skew negacyclic codes of length 2p° over R

Consider R = Fyn + uF,» with u? = 0. It is well known that R is a finite chain ring with nilpotency index
2, and the ideal generated by u is the only maximal ideal of R.

This section delves into the algebraic structure of skew negacyclic codes of length 2p° over R. We assume
that ord(IT) divides p°, where IT € Aut(R). Let a + uff € R. If a is a non-zero element of IF,», then a + up is
a unit in R. Furthermore, a code C of length 2p° over ‘R is called a skew negacyclic code if and only if the

polynomial representation of C forms a left ideal of R, = <9:2[;F1]>

41. p=1 (mod 4)
From Subsection 3.1, we have the factorization of ¥*" + 1 over IF,n as follows:
¥ +1=x" - a?

= (7 - +a),

where a = CP% is an element of I, and C is a generator of ]F; Since IF,» is a subring of R, we can consider
this factorization over R. For any IT € Aut(R), we have nt(a) = @, where € Aut(IF,»). Thus, by Lemma 2.5,
for any IT € Aut(R), we have Il(@) = a. From [25, Proposition 2.2], (x”" + a) are two-sided ideals of R[x; IT].
Hence, by the Chinese Remainder Theorem (CRT), we have

R[x; I1] N R[x; I1] R[x; IT]
o2 +1) T (F—a) (o +a)

h =

Following this decomposition of R,, we can see that every left ideal of R, can be uniquely expressed as
Z: ,Ef;_lg d g;[,xg ]>, respectively. Thus, any skew negacyclic code of length 2p°
over R can be written as the direct sum of two skew codes over R: namely, a skew (11, &)-constacyclic code
and a skew (I, —a)-constacyclic code. We can determine the algebraic structure of skew negacyclic codes
of length 2p° over R by using the study conducted on the algebraic structures of skew constacyclic codes
of length p* over R as performed in [7]. The number of codewords in skew constacyclic codes of length p*
over R is examined in [22]. Based on this, we can determine the number of codewords in skew negacyclic
codes of length 2p° over R.

By a similar argument as given in Subsection 3.1, we can represent the skew negacyclic code of length
2p° over R as the direct sum of two constituent codes, i.e.,

C=C10C,,

the direct sum of left ideals of

Rt g RLsl]

where C; and C» are left ideals of — )

respectively.



R. Raj et al. / Filomat 39:20 (2025), 6943-6966 6955
Proposition 4.1. Let C = C; @ C, be a skew negacyclic code of length 2p° over R. Then |C| = |C1[|Cx.

In [22, Theorem 3.15], the authors determined the algebraic structure of the dual of skew (I, A)-
constacyclic codes of length p° over R. Using this result, we also examine the algebraic structure of
the dual of skew negacyclic codes of length 2p* over R. The following theorem presents the algebraic
structure of the dual code of length 2p° over R.

Theorem 4.2. Let C = Cy ® C; be a skew negacyclic code of length 2p° over R. Then its dual is given by:
Ct=CyeCy,

; R[] R[] ;
where Cy and Cy are left ideals of (xpf g and (xf’f—oo’ respectively.

Proof. Since C; @ Cy; € C*, the cardinality of C; & C; is given by the product of the cardinalities of C; and
Cy, ie,

P OmE R
ICil1C2l ICl

Thus, we conclude that C* = C{ ®©C;.

Since a = C%, wehavea™ = C$ =—aand (-a)!' = ain F,» € R. From Proposition 2.21, C’ll is a skew
(I, —a)-constacyclic code and C; is a skew (I, @)-constacyclic code of length p* over R. Hence, C; is a left

. RIxI] L . RIxI]
ideal of ) and C; is a left ideal of o U

=|C*.

ICi ® Cy| = IC11IC; |

By considering the above discussion, we now present an example.

Example 4.3. Let o = 2, R = Fss + ulFss with u? = 0, Ry = 228 40d IT € Aut(R) such that Ti(a) = a5 for any

ooy
a € R. Then ord(TT) = 5. Let w be a (5° — 1) primitive root of an irreducible polynomial of degree 5 in Fs[x]. The
factorization of x° — 2 in R[x; T1] is given by

¥ =2 =(x+3w +w + 4% + 3w + 3)(x + W’ + 2w* + 2w + 3)(x + 2w* + 3w + 20 + w + 4)

X (x + 4w* + 4w® + 3w? + 3)(x + w* + w® + w? + 2w + 3).
Consider C = Rao(f(x)), where
Fx) = (x + 3w* + w® + 4w? + 3w + 3)(x + w® + 2w* + 2w + 3) + u(x + 3w + w® + 4w? + 3w + 3).
This simplifies to
f(x) :xz+(3w4+2w3+2w2+1+u)x+2w4+3w3+2w2+w+3+u(3w4+w3+4w2+3w+3).

Therefore, C has a generator matrix G with its rows given as follows:
First row: 2w* + 3w? + 2w? + w + 3 + u(Bw* + w® + 4w? + 3w + 3), 3w* + 2w® + 2w? + 1+ u,1,0,0.
Second row: 0,2w*° + 3w + 2w'% + w® + 3 + uBw? + w'® + 4w + 3w° + 3), 3w + 2w + 2w'® + 1 +u,1,0.
Third row: 0,0, 2w'% + 3w” + 210 + w? + 3 + uBw'® + " + 4w + 3w?® + 3), 3w' % + 20" + 2w + 1 +u, 1.
The generator matrix of ¢(C) is given by

_(¢©)
¢(C) - (¢(MG))’
with all six rows of the matrix ¢(C) given as follows:

First row: 3w* + w® + 4w? + 3w + 3, 3w* + w3 + 4w? + 3w + 3 + 2w* + 3w + 2uw? + w + 3,1, 1 + 3w* + 2w’ +
2w? +1,0,1,0,0,0,0.
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Second row: 0,0,3w? + w' + 4w'% + 3w® + 3, 3w + w'® + 4w + 3w® + 3 + 2?0 + 3w + 20 + W’ +
3,1,1+ 3w + 2w + 200 + 1,0,1,0,0.

Third row: 0,0,0,0,3w'% + w7 + 4w + 3w + 3, 3w + ™ + 4w + 3w + 3 + 2w + 3w” + 2w +
w? +3,1,1+3w'% + 207 + 200 + 1,0, 1.

Fourthrow: 2w*+3w3+2w?+w+3, 2w* + 3w’ + 2w +w+3, 3w + 2w’ + 2w+ 1, 3w* + 2wl +2w?+1,1,1,0,0,0, 0.

Fifth row: 0,0,2w? + 3w' + 2w + w° + 3,20 + 3w + 2w'° + @’ + 3,3w? + 2w'® + 2w'" + 1,3w® +
2w +2w% +1,1,1,0,0.

Sixth row: 0,0,0,0,2w'% + 3w” + 2w + w? + 3,2w'%0 + 37 + 2w + W + 3,300 + 20" + 2000 +
1, 3w + 207 + 200 + 1,1, 1.

Hence, by the MAGMA algebra system [11], we get that C is an MDS code with parameters [10, 6, 5].

Example 4.4. As in Example 4.3, similarly, we consider a = -2, and

_ Ry 1]
Re= oy

We have a factorization of x° + 2 in R[x; I1] as follows:

X +2 =(x + 2wt + w® + 2w? + w + 2)(x + 4wt + 4w’ + 3w? + 4w + 4)

(x+ w0 + w + 3)(x + 2w* + 2w + 3)(x + 2w* + 3w + 4w + 4).
Consider C = Rao(f(x)), where
flx) = (x + 2wt + w® + 207 + w + 2)(x + dw* + 4w® + 3w + 4w + 4)(x + 2w* + 3w? + 4w + 4)
+u(x + 2wt + W + 20 + w + 2).
Expanding f(x), we obtain
Fx) = 2% + Bw* + 4w® + 3w + 2)x* + Bw* + 2w° + 3w + 2 + u)x + w® + 4w? + uQw* + w® + 2w* + w + 2).

Therefore, C has a generator matrix G, with its rows given as follows:
First row: w3 + 4w? + uQuw* + w® + 2w? + w + 2), 3w* + 2w + 3w + 2 + u, 3w* + 4w’ + 3w + 2,1, 0.
Second row: 0, w"® +4w'° + u(2w? + w' + 2w'° + w’ +2), 3w + 2w + 3w + 2 + u, 3w + 4w + 3w’ + 2, 1.
The generator matrix of ¢(C) is given by

_[9©)
Qb(c) - (QD(MG) 7
and all four rows of the matrix ¢(C) can be obtained similarly to those in Example 4.3. Hence, by the MAGMA
algebra system [11], we get that ¢(C) is a near-MDS code with parameters [10, 4, 6].

4.2. p=3 (mod 4)
This section consistently assumes that p = 3 (mod 4), i.e., 4 | (p — 3). This implies that either 8 | (p — 3)
or 8 | (p — 7). Moreover, in both cases, x> + 1 is irreducible over R. Thus, by considering the arguments

given in Proposition 3.9 and Lemma 3.10, we can discuss the algebraic structure of left ideals of «Tz[fll;,]s).

For convenience, we denote

Rx; ]

SR(CES

Theorem 4.5. All left ideals of R = ; gfgp]s) can be expressed in the following form:

I =R (fi(x) + ug(x)) + Ra (ufa(x)),

where fi(x) is either 0 or in B, g(x) € R, fo(x) is either 0 or in B, fo(x) |, fi(x), and deg(fo(x)) > deg(g(x)).
Furthermore, g(x) is unique under the above constraints.
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Proof. As previously noted, the left ideal 7 of R; is W, where J is a left ideal of R[x;II] containing
((x*+1)P"). According to Note 2.18, since the map u is a surjective homomorphism from R[x; IT] to F,u[x; 7],
it follows that u(3) forms a left ideal in FFy[x;]. Thus, for some polynomial s(x) € R[x;I1], we have
U(3) = Byl el (u(s(2))).

If we restrict the map p to J, denoted by uly : 3 — u(3J), this restricted map is also surjective. Therefore,
there exists a polynomial t(x) € J such that u(t(x)) = u(s(x)).

It is evident that R[x; [T](#(x)) + (I NuR[x; I1]) € J. Consider an arbitrary skew polynomial ¢ (x) € J. We
have u(ti(x)) € u(3J) = Fypn[x; 7] (u(t(x))), which implies there exists another skew polynomial w(x) € R[x; IT]
such that u(t;(x)) = p(w(x))u(t(x)) = u(w(x)t(x)). Hence, we can express t1(x) as t1(x) = w(x)t(x) + r(x) for
some r(x) € uR[x;I1]. Since t1(x) € J and r(x) = t1(x) — w(x)t(x) € J, it follows that (x) € I N uR[x; I1].

Therefore, t1(x) = w(x)t(x) + r(x) € R[x; IT](¢(x)) + (I N uR[x; [1]), which leads to the conclusion that
3 = Rx; T](Hx)) + (3 N uR[x; T1]). Given that ((x? + 1)7') C J, the ideal I can be expressed as follows:

_ 3
= w@m
(R0 TI(E) + (3 N uR[x TT)) + (2 + 1))

(> +1)7)
_ R HI() + (> + D) N ( 3 A YRDG ] + (> + 1))
(2 + 1)) (2 + 1)) (2 + 1))
= Ro(t(x)) + (£ N Ra(w)).

We have Tor(1) = u(Z g, u) = R|(f(x)), where f(x) € B or 0. It can be easily seen that

TN Ry(u) = u™ (1T g, 1)) = up™ (Tor(D)) = up™ (R} (f2(x))) = Ra(ufo(x)).

Since u(7) is a left ideal of R}, by Proposition 3.9, we get

u() = Ry (ut(x)) = Ry (i),

where fi(x) is either 0 or an element of 8. Thus, fi(x) = y(x)u(t(x)) for some y(x) in R]. This implies that
p(#(x)) is a factor of (x2 + 1)7".
Now suppose, and this does not affect the general case, t(x) = f1(x) + ug(x), where g(x) € R]. Hence,

T = Ro(filx) + ug(x)) + Ro(u fo(x).
Suppose f»(x) # 0. Using the right division algorithm, we get
g9(x) = h(x) fo(x) + ' (x),
where 7/(x) = 0 or deg(r'(x)) < deg(f2(x)). Therefore,
A@) +ur' () = A) +u(9(x) — hx) ()
= fi(x) + ug(x) — uh(x) f2(x)

= filx)+ur'(x)el.

Hence, we can write 7 = R2< filx) + ur’(x)) + Ro(ufr(x)), and deg(r'(x)) is strictly less than deg(f>(x)).
Furthermore, since u(f1(x) + ur’'(x)) € I, it implies that fi(x) + ur’(x) € Tor(X) = R|(f2(x)). Thus, we infer
that f2(x) |- f1().

Now, suppose that g’(x) is a polynomial satisfying

T = Ro(fi(x) + ug' (x)) + Ro(ufolx)).



R. Raj et al. / Filomat 39:20 (2025), 6943-6966 6958
Since f1(x) + ug(x) and fi(x) + ug’(x) are elements of 7, it follows that

(i) +ug(x)) = ((x) + ug' (v)) = u(g(x) = g'(x)) € L.

This implies that g(x) — g’ (x) € Tor(Z).

If g(x) # g'(x), then deg(f2(x)) < deg(g(x) — g’(x)). However, since deg(g(x)) and deg(g’(x)) are both
strictly less than deg(f»(x)), it follows that deg(g(x) — g’(x)) < deg(f2(x)). This leads to a contradiction
because deg(g(x) — g’(x)) should not be less than deg(f2(x)).

Therefore, we must have g(x) = g’(x). This completes the proof. [

We explicitly present all possible types of generator polynomials of left ideals of R,.
Theorem 4.6. All possible left ideals of the quotient ring Ry have generator polynomials of the following forms:
o Type 1: Trivial ideals: R»(0) and Ro(1).

o Type 2: Principal left ideal generated by a non-monic skew polynomial: R2<u fz(x)>, where fo(x) € B and
0 < deg(fa(x)) <2(p° - 1).

e Type 3: Principal left ideal generated by a monic skew polynomial: R2< filx) + ug(x)), where fi(x) € B,
2 < deg(fi(x)) <2(p° — 1), and deg(fi(x)) > deg(g(x)).

o Type 4: Non-principal left ideal: Ry (ufo(x)) + Rz( filx) + ug(x)), where f1(x), f2(x) € B, 2 < deg(f1(x)) <
2(p° = 1), o(x) |y f1(x), and deg(g(x)) < deg(f2(x)).

Proof. From Theorem 4.5, let 7 be any left ideal of R,. Then

I = Ro(fi(x) + ug(x)) + Ro(ufo()),

where fi(x) and f,(x) are either 0 or elements of B, g(x) € R!, fo(x) |, fi(x), and deg (f2(x)) > deg (g(x)).
Now, consider the following cases:

e Type 1: There are two cases for the trivial left ideal.
Case 1. If fi(x) = fo(x) = g(x) = 0, then 1 is the trivial left ideal R5(0).
Case 2. If fi(x) and f»(x) are constant skew polynomials, then g(x) = 0 and 7 is the trivial left ideal R>(1).

o Type 2: If deg(fi(x)) = 2p° and fy(x) # 0, then g(x) € Tor(Z) and T = Ry(ufs(x)).

e Type 3: If 2 < deg(f1(x)) < 2(p° — 1) and deg(f2(x)) = deg(f1(x)), then
T =Ry(fi(x) + ug(x)).

e Type 4: If 2 < deg(fi(x)) < 2(p° — 1) and deg(g(x)) < deg(f>(x)) < deg(fi(x)), then
T = Ro(fi(x) + ug(x)) + Ro(ufa(x)).

O

Example 4.7. Consider the ring R = Fas + ulFs3 with u® = 0, the quotient ring Ry = %, and the automorphism

I1 € Aut(R) defined by I1(a) = a° for any a € R. Then ord(I1) = 3. Let w be a (3% — 1)-primitive root of an irreducible
polynomial of degree 3 in F3[x].
The factorization of x° + 1 in R[x; T1] is given by

x®+1 =02+ wx + wH)(® + x + 20 + 2w+ 1)
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X (2 + Qu* +w + Dx +1).
Consider C = 7%2( f(x)+ ug(x)), where g(x) = (x> + wx + w?) and
Fx) = (% +x+ 200 + 2w + 1)(x¥* + Qw* + w + 1)x + 1)

= f(x) = x* + Qw* + 2w + 2)x° + (W? + 2w + 1)x?

+ (w? + 2w + 2)x + 2w* + 2w + 1.

Therefore, C has a generator matrix G, with its rows given as follows:
o First row: 2w? + 2w + 1 + uw?, w? + 2w + 2 + uw?, w? + 2w + 1 + u, 2w? + 2w + 2,1, 0.
e Second row: 0,2w° + 2w + 1 + uw®, w® + 2w’ + 2 + uw®, w? + 2w’ + 1 4+ u, 2w® + 2w + 2, 1.

The generator matrix of ¢(C) is

_ (9@
¢(C) - ((P(MG) 7
and all four rows of the matrix ¢p(C) can be obtained similarly as given in Example 4.3. Hence, using the MAGMA
algebra system [11], we find that ¢(C) is a near-MDS code with parameters [12,4, 8].

Theorem 4.8. Let I be any left ideal of Ro. Then A(I)" has generator polynomials of the following forms:

Type 1: If 1 is a trivial ideal, Ry(0) or Ra(1), then A(X)* = Ro(1) or R (0), respectively.
Type 2: If T = Ro(ufr(x)), then

ALY = Ro(f5(x)) + Ra(u).

Type 3: If I = Ra(p(x)), where p(x) = f1(x) + ug(x), then

ATY = Rolf" ().

Type 4: If T = Ro(f1(x) + ug(x)) + Ra(ufo(x)), then

AI) = Ro((fax) — uk(x))") + Ro(u(A())),

where k(x) € R with ﬂ(x)g(x) = k(x) fo(x) and a(x) = “‘Eﬁf”s.

Proof. The proof directly follows from [25, Theorem 3.3]. O

By using a similar approach as in [23, Lemma 6.1], we can express any polynomial Q(x) € R, in the
following form:

p-1

p-1
Q) = ) (a0 + b + 1) + 1 Y (v + i) (o + 1,
i=0

i=0
where aji, bji (S ]Fpm for ] =0,1.

We now have a different polynomial form in R,. Therefore, Theorem 4.6 can be rewritten as follows:

Theorem 4.9. Let I be a left ideal of the quotient ring Ro. Then, I has the following forms of generator polynomials
based on the above assumptions:
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o Type 1: Trivial ideals: R,(0) and Rx(1).
o Type 2: Principal left ideal generated by a non-monic skew polynomial: 722(Ll(x2 + 1)i), where0 <i<p° -1
o Type 3: Principal left ideal generated by a monic skew polynomial:
Ro((? + 1) + uh(x)(:® + 1)'),

where 1 <i<p°*—1,0 <t <1, and either h(x) = 0 or h(x) is a unit. Furthermore, h(x) can be expressed as

i—t=1

W) = Y (hojx + In)( + 1Y,
j=0

where hoj, h1j € Fyn, hoox + hio # 0, and deg(h(x)) < 2(T —t) — 1, with T being the smallest positive integer
such that u(x*> + 1)T € I.

o Type 4: Non-principal left ideal:
Ro (2 + 1) + uh(x)(? + 1)) + Ra(u(x® + 1)),
where1 <i<p*—-1,0<t<i,w<T,andh(x) and T are as described in Type 3, with deg(h(x)) <w —t—1.

5. F,»MR-additive skew negacyclic codes

In this section, we discuss the algebraic structure of IF,» R-additive skew negacyclic codes of block length
(r°,2p°). Moreover, we characterize all possible forms of generators of IF,»R-additive skew negacyclic codes
of block length (p°, 2p°). Subsequently, we study the separable IF,»R-additive skew negacyclic codes.

Consider the set
IFpmm = {(ﬂ, b) | ae lenz,b [S m}.

We can easily see that the set IF,»R is not a R-module under usual ring multiplication. With the help of
the ring epimorphism p, we define a R-scalar multiplication “+” on IF,»R as r = (a,b) = (u(r)a, b). Under this
scalar multiplication and usual addition, the set IF,»R forms a left R-module.

Further, we can define the R-module structure on IFZ},,‘.R”Z by considering the R-scalar multiplication as

follows:
r* (ﬂ(), al/ e /anl—lr bO/ ey bnz—l) = (‘U(r)ﬂo, l’l(r)alr ey ‘u'(r)a}’ll—ll bO/ bl/ ey bnz—l)/
where r € R and (ap, a1, .. .,4n,-1,bo, ..., bn,-1) € ]FZ;,YR”Z. From now on, we consider n; = p° and n, = 2p°.

We have a natural bijection between ]FZ;ERzps and R = R; X Ry, which is given by

(ao,ﬂl,. ce s Ops_1, by, b, .- -rprLl) [ (a() +amx+---+ aps,lxps_l, bo+b1+---+ bszlep’—l).

Furthermore, the scalar multiplication * induces a scalar multiplication on R as follows:

r(x) * (f(0), 9(0)) = (RO @) f), r)g(@)),
where r(x) € R[x; 1] and (f(x), g(x)) € R. Under this * operation, R forms a left R[x; IT]-module.

Let C be a non-empty subset of ]Fi;ﬂ?zﬂs. If C forms a subgroup of ]FZ?,,ERZPS, then C is called an IF,»R-
additive code of block length (p°,2p°). For any IF,»®R-additive code C, it is called an [F,»R-additive linear
code of block length (p°, 2p°) if and only if C forms an R-submodule of ]Fz; R,

Any F,»R-additive linear code is called an IF,»R-additive skew negacyclic code if, for any vector
(a0, a1, ..., 8p1,bo, b1, ..., by 1) € C, the vector (~1t(@y 1), (@o), ..., T(@—2), ~T1(bzye 1), TI(by), . .., TL(bays2))
also belongs to C.
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Proposition 5.1. A code C is an [F,»R-additive skew negacyclic code of block length (p°, 2p°) if and only if C is a left
Rlx; [T]-submodule of R.

Proof. We only prove the implication part, as the converse follows a similar argument. Let C be an IF,»R-
additive skew negacyclic code of block length (p°, 2p°), and letc = (a, b) € C, wherea = (ag, a1, ..., ap-1) € ]FZ;
and b = (bo, bl, .. -/prS—l) € i}{zps.
Since there is a bijection between ]FZ;, R¥ and R = Ry x Ry, we have c(x) = (a(x), b(x)) € R. Consider the
action of x on c(x):
x*c(x) = (xao +xa1x + -+ xaps_zx”s‘z + xaps_lxps‘l, xbo + xbix + - + xbzps_zxz”s‘z + xb2p5_1x2p5—1)
= (=m(@y 1) + m(@0)x + -+ + (@)% 7, ~TT(by 1) + TT(bo)x + TI(B1)A? + - - + TI(byr )2 7).

This expression is the skew negacyclic shift of c. Hence, x * c(x) € C. Since C is linear, for any f(x) € R[x;I1],
f(x) * c(x) € C. Therefore, C is a left R[x; [T]-submodule of R. O

. . 2 .
In Section 2, we defined a Gray map ¢ from R to IF,,,, and subsequently extended this Gray map ¢ from

R" to ]F%. In this section, we further extend this Gray map from mixed alphabets ]FZZ, R to ]F;,Zs as follows:
S R 5p°
(I) . ]Fpm% — ]Fpm 7
q)((a()/ ay, ... /aps—ll bO/ bl/ ceey prS—l)) = (aO/ aA1,eeey aps—ll (P(bo)/ Qb(bl)/ ceey (P(prS—l))-

Since the map ¢ is distance-preserving, @ is also a distance-preserving map, converting Lee distance
to Hamming distance. Moreover, @ is a bijective map, which implies that if C is an [F,»R-additive skew
negacyclic code of block length (p°, 2p°), then ®(C) is a linear code of length 5p° over IF,n.

Now, we present the key theorem of this section, which determines the generator polynomials of
IF,»R-additive skew negacyclic codes of block length (p®, 2p°) in the next result.

Theorem 5.2. All possible IF,»R-additive skew negacyclic codes of block length (p°, 2p®) are of the following types:
e Type1: (0), R.
o Type 2: R, ((a(x),0)), where 0 < deg(a(x)) <p° - 1.
o Type 3: Ry ((k1(x), f1(x) + ug(x))), where 2 < deg(f1(x)) < 2(p° — 1) and deg(f1(x)) > deg(g(x)).
o Type 4: R, ((ka(x), ufo(x))), where 0 < deg(fo(x)) < 2(p° —1).

e Type 5: Ry ((a(x),0)) + Rz ((k1(x), f1(x) + ug(x))), where 0 < deg(a(x)) < p°* — 1,2 < deg(fi(x)) <2(p° - 1),
and deg(f1(x)) > deg(g(x)).

e Type 6: R, ((a(x),0)) + Ry ((k2(x), ufo(x))), where 0 < deg(a(x)) < p° — 1 and 0 < deg(f2(x)) < 2(p° — 1).

o Type 7: Ry ((ki(x), fr(x) + ug(x))) + Ra ((k2(x), uf2(x))), where 0 < deg(f2(x)) < 2(p° — 1), 2 < deg(f1(x)) <
2(p° = 1), fo(x) Ir f(x), and deg(f2(x)) > deg(g(x)).

o Type 8: Rz ((a(x),0)) + Ra ((k1(x), f1(x) + ug(x))) + Ra ((k2(x), uf2(x))),
where deg(f2(x)) > deg(g(x)), fa(x) I fi(x), 0 < deg(a(x)) < p* -1, 0 < deg(fo(x)) < 2(p° - 1), 2 <
deg(fi(x)) < 2(p° — 1), and max{deg(ki(x)), deg(k2(x))} < deg(a(x)).

Moreover, in all these types, a(x) € B, fi(x), fa(x) € B, k1(x), ka(x) € Ry, g(x) € R}, and the polynomial g(x) is
unique under the conditions mentioned. Here, B is the set of all monic factors of (x + 1)P" over Fpu[x; 7t].
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Proof. Let © be the canonical projection on the R[x; IT]-module defined by
0:C - Ry,
(a(x), b)) > b().
The kernel of © is given by
Ker(®) = {(v(x),0) € C | v(x) € Ry}

Thus, | = {v(x) € Ry | (v(x),0) € Ker(©)} is a left ideal of R;. By [25, Proposition 3.1], there exists a(x) € B
such that | = R;(a(x)). Therefore, Ker(®) is a left R[x; [1]-submodule of C generated by a single element of
the form (a(x),0), i.e.,

Ker(®) = Ro(a(x), 0).

By the first isomorphism theorem, we have

C ~
Ker(©®) — o),

which is a left ideal of R,. From Theorem 4.5, we get

C
Ker(®)

= O(C) = Ry (fi(x) + ug(x)) + R (ufa(x)),

where f1(x), f2(x) € B, g(x) € R}, fo(x) |- f1(x), and deg(f2(x)) > deg(g(x)). This implies that ©(C) is generated
by fi(x)+ug(x) and u f>(x). For ki(x), ka(x) € Ry, there exist two elements (k1 (x), f1(x)+ug(x)) and (k2(x), u fo(x))
such that

O((k1(x), f1(x) + ug(x))) = fi(x) + ug(x),
O((k2(x), ufa(x))) = ufa(x).
Hence,
O (Ra(k1(x), f1(x) + ug(x)) + Ra(ka(x), ufo(x))) = Ra (fi(x) + ug(x)) + Rz (ufa(x)) .

Thus, any codeword of C is generated by these three elements, namely, (a(x),0), (ki(x), fi(x) + ug(x)), and
(k2(x), uf2(x)). Therefore,

C = Ro(a(x),0) + Ra(k1(x), f1(x) + ug(x)) + Ra(ka(x), uf2(x))-
We then have the following cases:

e Type 1: We have two cases for the trivial left ideal.
1. Case 1. If deg(a(x)) = deg(fi(x)) = deg(f2(x)) = 0, then ki (x) = ka(x) = g(x) = 0 and C = R(1).
2. Case 2. If deg(a(x)) = p°, deg(fi(x)) = deg(f2(x)) = 2p°, and k1 (x) = ka(x) = g(x) = 0, then C = R(0).

o Type 2: If deg(fi(x)) = deg(f2(x)) = 2p°, 0 < deg(a(x)) < p°* — 1, and ki(x) = ka(x) = g(x) = 0, then
C =R, (a(x), 0).

o Type 3: If deg(a(x)) = p°, 0 < deg(ki(x)) < p° -1, fi(x) € B, 2 < deg(fi(x)) < 2(p° — 1), deg(f2(x)) =
deg(f1(x)), deg(f1(x)) > deg(g(x)), and kz(x) = 0, then C = Ry (k1(x), f1(x) + ug(x)).

e Type 4 If deg(a(x)) = p*, deg(f1(x)) = 2p°, 0 < deg(ka(x)) < p* — 1, fo(x) € B, 0 < deg(f2(x)) < 2(p° — 1),
deg(f2(x)) > deg(g(x)), and ki (x) = 0, then C = Ry (ka(x), uf2(x)).
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e Type5: If 0 < deg(a(x)) < p°—1,0 < deg(ki(x)) < p°—1, fi(x) € B,2 < deg(f1(x)) < 2(p°—1), deg(fa(x)) =
deg(fi(x)), deg(fi(x)) > deg(g(x)), and ka(x) = 0, then C = Ra(a(x), 0) + Rz (k1(x), f1(x) + ug(x)).

o Type 6: If deg(fi(x)) = 2p°, 0 < deg(a(x)) < p° — 1,0 < deg(ko(x)) < p° — 1, fo(x) € B, 0 < deg(fo(x)) <
2(p° — 1), deg(fa(x)) > deg(g(x)), and ki (x) = 0, then C = R, (a(x), 0) + Ra (ka(x), 1 fo(x)).

o Type 7: If deg(a(x)) = p°, 0 < deg(ki(x)) < p° =1, 0 < deglko(x)) < p° =1, fi(x), folx) € B, 0 <
deg(h(x) < 20" — 1), 2 < deg(i(X) < 2" ~ 1), fo(x) |, fi(v), and deg(f(x)) > deg(g(x)), then
C =R (ki (x), f(x) + ug(x)) + Ra (ka(x), ufo(x)).

o Type 8: If 0 < deg(a(x)) < p° -1, 0 < deg(ki(x)) < p° =1, 0 < deg(ka(x)) < p° - 1, fi(x), fo(x) € B,
0 < deg(fa(x)) < 2(p° — 1), 2 < deg(fi(x)) < 2(p° = 1), fo(x) | fi(x), and deg(fa(x)) > deg(g(x)), then

C =Rz (a(x),0) + Ra (k1 (x), fu(x) + ug(x)) + Rz (ka(x), 1 f2(x)).
O

By considering our above discussion, we present the algebraic structure of separable IF,»R-additive
skew negacyclic codes. A [F,»R-additive skew negacyclic code C is called a separable IF,»R-additive skew
negacyclic code if it can be written as C = C; ® C,, where C; and C; are the canonical projections of C on
the first p* and the last 2p° coordinates, respectively.

Theorem 5.3. Let C = C; ® C; be a separable IFy»R-additive linear code of block length (p°, 2p°), where Cy and C,
are linear codes of length p* and 2p° over Fyn and R, respectively. Then C is an IFy»R-additive skew negacyclic code
if and only if C1 and Cs are skew negacyclic codes of length p* and 2p° over IF,n and R, respectively.

Proof. Let C be an FF,»R-additive skew negacyclic code and (ag, a1, ...,ap-1,bo,...,bayps-1) € C such that
(ao, a1, ...,ap-1) € Crand (b, by, ..., baps—1) € Ca. Since C is closed under a skew negacyclic shift, we get

( = 1(aps-1), ™(a0), (@1), - - ., W@y —2), —T1(bps—1), T1(bo), I1(b1), . . - /H(pr"—Z)) €C,
which implies that

(= m@y1), (@), .., m@y—2)) € Cy and (= TI(byy-1), TI(bo), - . ., TT(byye 2)) € Ca.

Therefore, C is a skew negacyclic code of length p* over [F,» and C; is a skew negacyclic code of length 2p°
over R.
Conversely, let C1 and C; be skew negacyclic codes of length p* and 2p° over F,» and R, respectively,

and let (ao,al,...,aps_l,bo, bl,...,bzps_l) € C. Then we have ( - 1(ap-1), 7(ao), ..., n(a,,s_z)) € C1 and ( -
T1(baps—1), TT(bo), - - .,n(bng_z)) € Cy. Thus,

( = 1(aps-1), 7(0), - - ., Tap—2), —~T1(bzps-1), (Do), - - -, H(bzps—z)) €C,

that is, C is closed under skew negacyclic shift. Hence, C is an [F,»R-additive skew negacyclic code of block
length (p°, 2p°). O

Theorem 5.3 states that any separable IF,»R-additive skew negacyclic code of block length (p°, 2p°) is
precisely the direct product of left ideals of R; = ]sir:s[fg] and left ideals of R, = ggﬁﬂly In Section 3, we

discussed the complete structure of left ideals of R?, and in Section 4, a similar study was conducted for the
left ideals of R,. We now present the generator polynomials of separable codes in the following result:

Theorem 5.4. Let C be a separable IF,»R-additive skew negacyclic code of block length (p°, 2p°). Then the generator
polynomials of C are given as follows:

o Type 1: ((x — 1), 0)) and (((x — 1), 1)), where 0 < k < p* — 1.
e Type 2: {((x — D)X, 0), (0, u(x? + 1)), where 0 < k< p*—1and 0 <i < p° - 1.
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o Type 3: {((x — 1,0, (0, (x* + 1) + uh(x)(x* + 1)), where 0 <k < p*=1,1<i<p'=1,0<t < i and
either h(x) = 0 or h(x) is a unit. Furthermore, h(x) can be expressed as h(x) = Z’]«;i{l(ho jx +hy j)(x2 +1)/, where
hoj, h1j € Byn, hoox + h1g # 0, and deg(h(x)) < 2(T —t) — 1, where T is the smallest positive integer such that

u(x® + 1T e (2 + 1) + uh(x)(x* + 1)).

e Type 4: {((x — D, 0),(0, (¢ + 1) + uh(x)(x? + 1)!), (0, u(x? + 1)*)), where 0 <k < p°-1,1<i <p° -1,
0<t<i,w<T,andh(x)and T are as in Type 3. Additionally, deg(h(x)) <w —t—1.

Proof. Let C = C1 ® C; be a separable F,»R-additive skew negacyclic code of block length (p°,2p°). By
Theorem 5.3, C; is a skew negacyclic code of length p* over IF,». This implies that there exists a skew
polynomial a(x) such that C; = {(a(x)), where a(x) is a monic divisor of (x + 1)/". Similarly, C; is a skew
negacyclic code of length 2p° over R. By Theorem 4.9, C, = (b(x)), where b(x) is one of the 4 types of
polynomials. Therefore, by the definition of a separable code, C = {(a(x),0), (0, b(x))). O

Remark 5.5. The obtained additive skew negacyclic codes over R contribute significantly to the literature by
offering a novel extension of the existing framework of skew constacyclic and negacyclic codes over finite chain rings
and mixed alphabets. These codes generalize the classical additive codes by incorporating both the algebraic structure
of finite fields and the underlying non-commutative nature of skew polynomial rings.

In the current literature, additive codes have been extensively studied over various algebraic structures, including
finite fields, finite chain rings, and mixed alphabets such as Z, 24 and Z,Z5[u]. The present work builds upon these
foundations by introducing and classifying skew negacyclic codes over the mixed alphabet IF,n R, where R = Fyn +ulFyn
with u?> = 0. This extension is motivated by the algebraic properties of the chain ring R, which allows the construction
of new classes of additive codes with potentially improved error-correcting capabilities.

A key contribution of this work is the explicit characterization of the algebraic structure of these codes through
their generator polynomials and separability conditions. The relationship between the obtained codes and classical
constacyclic codes is established via the decomposition of skew negacyclic codes into direct sums of skew constacyclic
codes of shorter lengths, as demonstrated in Theorem 3.2, Proposition 3.9, Theorems 4.2, 4.5, 5.2 and 5.3. This
decomposition not only provides insight into the structure of the codes but also facilitates the construction of Maximum
Distance Separable (MDS) and near-MDS codes, which are of great importance in coding theory.

Moreover, the separability property of the additive codes over F,nR plays a crucial role in linking these codes
to their torsion codes over Fyn, as shown through the Gray map and the annihilator structure of left ideals. This
connection establishes a bridge between additive codes over mixed alphabets and their classical counterparts, further
enriching the existing body of knowledge on skew cyclic and additive codes.

Example 5.6. Consider the ring R = Fzs + ulFs with u® = 0, the quotient ring Ry = %, and the automorphism

I1 € Aut(R) defined by T1(a) = a> for any a € R. Then ord(I1) = 3. Let w be a (3° — 1)-primitive root of an irreducible
polynomial of degree 3 in F[x].
The factorization of x° + 1 in R[x; T1] is given by

x®+1 =02+ Quw? +2)x + 1) + Qu? + 2w)x + 2w? + w + 1)(x? + Qw?
+w+2)x +w? +w+ 1).
Consider C = Rz(a(x), 0) + Rz(kz(x) +u fz(x)), where a(x) = ka(x) = x> + 1 and
flx) = 02+ Quw? + 2w)x + 2w + w+ D) + Qe + w+ x + w? +w + 1)
= f(x) =x* + @ + w+ 2)x° + (W? + w)x® + (w? + Dx + 1.
Therefore, C has a generator matrix G, with its rows given as follows:
e First row: 0,0,0, u, u(w? + 1), u(w? + w), w(w? + w + 2),u,0.

e Second row: 0,0,0,0,u, u(w® + 1), u(w® + w3), u(w® + w3 + 2), u.
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The rows of the generator matrix ®(C) are
o Firstrow: 0,0,0,1,1,w? + 1,0 +1,w? +w,w?* +w,w* +w+2,w*+w+2,1,1,0,0.
e Second row: 0,0,0,0,0,1,1,w® + 1, w® + 1,w® + w?, w® + w?, w® + w® + 2, w® + w® +2,1,1.

Hence, using the MAGMA algebra system [11], ®(C) having parameters [15,2,10].

6. Conclusion

This study delves into the algebraic properties of skew negacyclic codes of length 2p° over F,» and

. . . F,m H
R = Fpn + ulF,» with u? = 0 for an odd prime p. These codes can be represented as left ideals of ? = Zﬂ[j;] and
‘z . respectively, where ord(n) and or ivide p°. We examine two cases based on p = a (mo ,
4L, respectively, where ord d ord(IT) divide p°. Wi t based on p d4

where a = 1 and 2. For each case, we analyze the algebraic structure and generator polynomials of these
skew negacyclic codes. Similarly, we study the structural properties and the generator polynomials of skew
negacyclic codes of length 2p° over R for both congruence cases. After establishing the code structures for a
single alphabet, we extend our investigation to IF,»R-additive skew negacyclic codes of block length (p°, 2p°).
Moreover, we determine generator polynomials for IF,»%R-additive skew negacyclic codes and separable
skew negacyclic codes of block length (p*,2p°). To illustrate our findings, we present some examples and
obtain MDS and near-MDS codes. Investigating skew negacyclic codes of block length (np®, kp®) over the
mixed alphabets IF,»R in the future might be an interesting field of investigation.

References

[1] T. Abualrub, I. Siap, N. Aydin, Z,Z-additive cyclic codes, IEEE Trans. Inf. Theory, 60(3) (2014), 1508-1514.
[2] T. Abualrub, I. Aydogdu, I. Siap, On Z,Z5[u]-additive codes, Int. ]. Comput. Math., 92(9) (2015), 1806-1814.
[3] Y. Alkhamees, The determination of the group of automorphisms of a finite chain ring of characteristic p, Q. J. Math., 42(1) (1991), 387-391.
[4] M Ashraf, G Mohammad, Skew cyclic codes over F; + ulF; + vlF,, Asian-Eur. J. Math., 11(05) (2018), 1850072.
[5] 1. Aydogdu, T. Abualrub, The structure of ZoZ[ul-cyclic and constacyclic codes, IEEE Trans. Inf. Theory, 63(8) (2017), 4883-4893.
[6] I. Aydogdu, L Siap, The Structure of ZZys-Additive Codes: Bounds on the Minimum Distance, Appl. Math. and Inf. Sci., 7(6) (2013),
2217-2223.
[7] S.Bagheri, R. M. Hesari, H. Rezaei, K. Samei, Skew cyclic codes of length p* over Fym + ulF,m, Iran. J. Sci. Technol. Trans. A Sci., 46(5)
(2022), 1469-1475.
[8] E.R.Berlekamp, Negacyclic codes for the Lee metric, Proceeding of the Conference on Combinatorial Mathematics and its Applica-
tions, pages 98-316, 1969.
[9] T.Blackford, Negacyclic codes over Z, of even length IEEE Trans. Inf. Theory, 49(6) (2003), 1417-1424.
[10] J. Borges, C. Fernandez-Cérdoba, J. Pujol, J. Rifa, M. Villanueva, Z,Z4-linear codes: Generator matrices and duality, Des. Codes
Cryptogr., 54(2) (2010), 167-179.
[11] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system, 1. The user language. J. Symbolic Comput., 24(3-4) (1997),235-265.
[12] D. Boucher, W. Geiselmann, F. Ulmer, Skew-cyclic codes, Appl. Algebra Engrg. Comm. Comput., 18 (2007), 379-389.
[13] D. Boucher, P. Solé, E. Ulmer, Skew constacyclic codes over galois rings, Adv. Math. Commun., 2(3) (2008), 273-292.
[14] D. Boucher, F. Ulmer, Codes as modules over skew polynomial rings, Lecture Notes in Computer Science, 5921 (2009), 38-55.
[15] P. Delsarte, The association schemes of coding theory, In Combinatorics: Proceedings of the NATO Advanced Study Institute held at
Nijenrode Castle, Breukelen, The Netherlands 8-20 July 1974, pages 143-161. Springer, 1975.
[16] H. Q. Dinh, Negacyclic codes of length 2° over galois rings, IEEE Trans. Inf. Theory, 51(12) (2005), 4252-4262.
[17] H. Q. Dinh, Constacyclic codes of length p* over Fym + ulF,m, J. Algebra, 324(5) (2010), 940-950.
[18] H.Q.Dinh, S. R. Lépez-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inf. Theory, 50(8) (2004), 1728-1744.
[19] J. A. Gallian, Contemporary Abstract Algebra, (4th Edition), Textbooks in Mathematics, CRC Press, 2008.
[20] F. Gursoy, 1. Siap, B. Yildiz, Construction of skew cyclic codes over Iy + vlF;, Adv. Math. Commun., 8(3) (2014), 313-322.
[21] R. M. Hesari, M. Hosseinanbadi, R. Rezaei, K. Samei, IFm IFm [u2]-additive skew cyclic codes of length 2p°, Adv. Math. Commun.,
18(3) (2024), 753-770.
[22] R.M. Hesari, R. Rezaei, K. Samei, On self-dual skew cyclic codes of length p* over Fym + ulF,m, Discrete Math., 344(11) (2021), 112569.
[23] R. M. Hesari, K. Samei, Skew constacyclic codes of lengths p* and 2p* over Fym + ulF,m, Finite Fields Appl., 91 (2023), 102269.
[24] S.]Jitman, S. Ling, J. Tharumnokthun, Generalized negacyclic codes over finite fields, J. Appl. Math. Comput., 69(1) (2023), 421-449.
[25] S.]Jitman, S. Ling, P. Udomkavanich, Skew constacyclic codes over finite chain rings, Adv. Math. Commun., 6 (2012), 39-63.
[26] J.Li,J. Gao, E-W. Fu, IF;R-linear skew cyclic codes, J. Appl. Math. Comput., 68(3) (2022), 1719-1741.
[27] B.R. McDonald, Finite rings with identity. Monographs and textbooks in pure and applied mathematics. M. Dekker, 1974.
[28] O. Ore, Theory of non-commutative polynomials, Ann. of Math., 34(3) (1933), 480-508.
[29] A. Saldgean, Repeated-root cyclic and negacyclic codes over a finite chain ring, Discrete Appl. Math., 154(2) (2006), 413—419.



R. Raj et al. / Filomat 39:20 (2025), 6943-6966 6966

[30] A.K.Sharma, M. Bhatnawal, A class of skew-constacyclic codes over Z; + uZ,, Int. J. Inf. Coding Theory, 4 (2017), 289-303.
[31] I Siap, T. Abualrub, N. Aydin, P. Seneviratne, Skew cyclic codes of arbitrary length, Int. J. Inf. Coding Theory, 2 (2011), 10-20.
[32] J. Wolfmann, Negacyclic and cyclic codes over Zy, IEEE Trans. Inf. Theory, 45(7) (1999), 2527-2532.

[33] T.Yao, M. Shi, P. Solé, Skew cyclic codes over Fq + ulF; + vlFq + uvlF,, J. Algebra Comb. Discrete Appl., 2(3) (2015), 163-168.



