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Abstract. Let R = Fpm + uFpm with u2 = 0, where p is an odd prime and m is any positive integer. This
article delves into the algebraic structure of skew negacyclic codes of length 2ps over a finite field Fpm and a
finite chain ring R. The focus is on the classification and structural properties of these codes. Based on the
different possible factorizations of x2ps

+ 1 over Fpm , a complete classification of the structural properties of
skew negacyclic codes and their duals for length 2ps overFpm andR is provided. Furthermore, the algebraic
structure of FpmR-additive skew negacyclic codes with block length (ps, 2ps) is discussed. The separability
of FpmR-additive skew negacyclic codes is also analyzed. To illustrate these results, several examples are
presented, including the construction of Maximum Distance Separable (MDS) and near-MDS codes.

1. Introduction

Error-correcting codes are an integral part of modern communication systems, ensuring reliable data
transmission even in the presence of noise or interference. Consider Fpm , a finite field with pm elements,
where p is an odd prime and m is a positive integer. A linear code is any non-empty subspace C of the
finite-dimensional vector space Fn

pm over Fpm . If C is an ideal of the quotient ring
Fpm [x]
⟨xn−λ⟩ , the code is called a

constacyclic code of length n over Fpm , where λ ∈ Fpm \ {0}. A particularly important class of constacyclic
codes arises when λ = ±1. Specifically, C is cyclic when λ = 1 and negacyclic when λ = −1. Negacyclic
codes, introduced by Berlekamp in the early 1960s, form a significant subset of constacyclic codes [8].
These codes are noteworthy due to their algebraic structure, which offers advantages like simplicity in
construction and ease of encoding and decoding.

Numerous researchers have studied linear and negacyclic codes over commutative rings (see [9, 16, 18,
24, 29, 32]). Boucher et al. [12] extended this study to non-commutative rings, exploring a broader class of
codes. They introduced skew cyclic codes characterized by a generator polynomial in the non-commutative
ring Fpm [x;π], where π is a field automorphism on Fpm . These skew cyclic codes exhibited larger Hamming
distances compared to previously known linear codes. Further research into skew cyclic codes over finite
fields followed (see [14, 31]). Boucher et al. [13] and Jitman et al. [25] expanded the results to Galois
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rings and finite chain rings, respectively, providing the algebraic structure of these codes. Bagheri et al. [7]
introduced skew cyclic codes of length ps overFpm +uFpm , where u2 = 0. Hesari et al. [22] later described the
algebraic structure of the duals of skew constacyclic codes over this ring including self-dual codes. Several
other studies have explored skew cyclic codes over various skew polynomial rings (see [4, 20, 23, 30, 33]).

In 1973, Delsarte [15] introduced the concept of codes over mixed alphabets. Any code is called an
additive code if it is a subgroup ofF n, whereF is an Abelian group, and n is its direct product. Abualrub [1]
and Borges [10] later introduced and examinedZ2Z4-additive codes, which were subsequently generalized
to Z2Z2s [6] and Z2Z2[u] [2, 5]. Recently, Juan et al. [26] investigated linear skew cyclic codes over mixed
alphabets FqR, where R = Fq + uFq with u2 = 0, and determined the duals of separable skew cyclic codes.
They established a sufficient condition for these codes to be self-dual over FqR. In 2024, Roghayeh et al.
[21] studied skew cyclic codes of length ps over R3 = Fpm + uFpm + u2Fpm with u3 = 0, classifying all possible
generator polynomials of skew cyclic codes of length ps over R3. This result was later extended to mixed
alphabets Fpm R3.

Motivated by the literature above on skew cyclic codes, we investigate skew negacyclic codes of length
2ps over the chain ring Fpm + uFpm . In this article, we investigate skew negacyclic codes of length 2ps over
the finite field Fpm and the chain ring R = Fpm + uFpm , with u2 = 0, where p is an odd prime, and m is any
positive integer. We factor the polynomial x2ps

+1 overFpm andR. By factoring the polynomial x2ps
+1 under

different conditions on p, we obtain various constituent codes for the skew negacyclic code of length 2ps.
Using the algebraic structure over a single alphabet, we extend our exploration to skew negacyclic codes
of block length (ps, 2ps) over mixed alphabets FpmR. Furthermore, we derive the generator polynomials for
skew negacyclic codes of block length (ps, 2ps) and separable skew negacyclic codes over mixed alphabets.

We present our article as follows: In Section 2, we discuss several useful results along with key definitions
relevant to our study. Section 3 is divided into two subsections to examine the cases p ≡ 1 (mod 4) and
p ≡ 3 (mod 4). In Subsection 3.1, we address the case p ≡ 1 (mod 4) and show that skew negacyclic codes
of length 2ps decompose into a direct sum of a skew (π, α)-constacyclic code and a skew (π,−α)-constacyclic
code of length ps over Fpm . The algebraic structure of skew negacyclic codes and their duals is discussed
in Theorem 3.2. In Section 4, we extend the study from Section 3 to the ring R = Fpm + uFpm , with u2 = 0.
This section is also split into the cases p ≡ 1 (mod 4) and p ≡ 3 (mod 4). In Subsection 4.1, we discuss the
case p ≡ 1 (mod 4) and study the algebraic structure of skew negacyclic codes and their duals, as shown in
Proposition 4.1 and Theorem 4.2. In Subsection 4.2, we examine the case p ≡ 3 (mod 4) and show that x2+1
is irreducible over Fpm . Furthermore, in Theorem 4.5, we describe the complete structure of left ideals of
R2 =

R[x;Π]
⟨(x2+1)ps

⟩
. In Theorem 4.8, we investigate the algebraic structure of the annihilators of the left ideals of

R2 and derive the generator polynomial of the left ideals in Theorem 4.9. In Section 5, we extend our work
to mixed alphabets FpmR. We characterize all possible FpmR-additive skew negacyclic codes of block length
(ps, 2ps) (see Theorem 5.2). Furthermore, we investigate an important class of codes called separable codes.
Using the definition of separable codes in Theorem 5.3, we demonstrate how separable FpmR-additive skew
negacyclic codes of block length (ps, 2ps) are a direct product of skew negacyclic codes C1 and C2, with
lengths ps and 2ps over Fpm and R, respectively. In Theorem 5.4, we derive the generator polynomial of
separable FpmR-additive skew negacyclic codes of block length (ps, 2ps). Section 6 concludes the paper.

2. Preliminaries

Consider the quotient ring K = Fp[x]
⟨a(x)⟩ . If an irreducible element a(x) ∈ Fp[x] has degree m, then the

quotient ring K is known as a finite extension of Fp. That is, K is a field of order pm, and it has a subfield
isomorphic to Fp, so K forms a vector space over Fp with dimension m. This dimension, called the degree
of the extension, is denoted as [K : Fp]. If a(x) = s0 + s1x + · · · + smxm, where si ∈ Fp, then, by [19, Theorem
20.1], if ξ ∈ K and a(ξ) = 0, then ξ is a generator of K. The elements of K can be expressed as polynomials
in ξ with coefficients in Fp. Hereafter, we refer to the finite field Fpm = K = {0, ξ, ξ2, . . . , ξpm

−2, ξpm
−1 = 1}.

Consider a ring R with unity, then and suppose R is referred to as a principal left (right) ideal ring if
every left (right) ideal of R can be generated by a single element. Furthermore, if R has a unique maximal
left (right) ideal, it is referred to as a local ring. If the set of all left (right) ideals of R forms a chain, then R
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is called a left (right) chain ring. A non-empty subset C of Rn is referred to as a code of length n over R. If
C forms an R-submodule of Rn, then it is called a linear code of length n over R.

Definition 2.1. Let π : Fpm → Fpm . If π satisfies the following conditions, then it is called a ring homomorphism:

1. π(ξ1 + ξ2) = π(ξ1) + π(ξ2) for all ξ1, ξ2 ∈ Fpm ,
2. π(ξ1ξ2) = π(ξ1)π(ξ2) for all ξ1, ξ2 ∈ Fpm .

Further, if π is bijective, then π is called an automorphism on Fpm .

Let π be an automorphism on Fpm , and suppose π fixes each element of Fp, then π is called an Fp-
automorphism, with Fp being the fixed field with respect to π. As we know, the set of all automorphisms
of R, denoted by Aut(R), forms a group with the binary operation of the composition of maps, then Aut(R)
has an identity automorphism I. Let π be a non-identity automorphism onR. The smallest positive integer
t is called the order of π if πt = I, and this is denoted by ord(π). In this context, πt denotes the composition
of π applied t times.

Definition 2.2. Let R be a finite commutative ring and τ be an automorphism on R. Then we define the set R[x; τ]
as follows:

R[x; τ] = {s0 + s1x + · · · + snxn : si ∈ R},

where n is a non-negative integer.
The concepts of addition and equality for polynomials are defined in the usual way, whereas multiplication is

defined according to the underlying rule: xs = τ(s)x (∀s ∈ R). This multiplication is associative and distributive,
so using these two properties, we can easily extend this multiplication to every element of R[x; τ]. The set R[x; τ]
with the usual addition and the multiplication defined above forms a non-commutative ring, which is known as the
skew polynomial ring over R (see [12]). Moreover, any element of a skew polynomial ring is known as a skew
polynomial. In particular, if τ is the identity automorphism on R, then the skew polynomial ring R[x; τ] becomes a
commutative ring.

Definition 2.3. The center of any ring R, denoted byZ(R), is defined by

Z(R) = {a ∈ R | ab = ba∀b ∈ R}.

Note 2.4. Let π be an automorphism on Fpm of order t. We now define the center of the ring Fpm [x;π]. Let Fp be a
subfield of Fpm that remains fixed under the action of π. Then the centerZ(R) is precisely Fp[xt], which represents a
commutative polynomial ring. It can be readily shown that any element f (x) in the center satisfies the commutative
relations f (x)x = x f (x) and a f (x) = f (x)a for all a ∈ Fpm . The element ofFp[xt] is called a central skew polynomial.

Consider R = Fpm + uFpm with u2 = 0. According to [17], R is a finite chain ring and R(u) is the only
maximal ideal ofR. To define a skew polynomial structure overR, we first need to define an automorphism
on R.

Lemma 2.5. [3] Let π ∈ Aut(Fpm ) and η ∈ F∗pm . Then the map Π : R→ R given by

Ππ,η(a + ub) = π(a) + uηπ(b),

is an automorphism on R. Further, any automorphism on R is of the form Ππ,η. Moreover, the collection of all
automorphisms of R is denoted by Aut(R) and is given by

Aut(R) = {Ππ,η | π ∈ Aut(Fpm ) and η ∈ F∗pm }.

From now on, we take η = 1 and for our convenience, we denote Ππ,1 as Π.

Proposition 2.6. [25, Proposition 2.3] Let p(x) and s(x) be skew polynomials in R[x;Π]. If p(x)s(x) is a monic
polynomial inZ(R), then p(x)s(x) = s(x)p(x).
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Proposition 2.7. [27, Right division algorithm] Let p(x) and s(x) be skew polynomials in Fpm [x;π], where p(x) is
monic. Then there exist some polynomials t(x) and r(x) in Fpm [x;π] such that

s(x) = t(x)p(x) + r(x),

where r(x) = 0 or deg(r(x)) < deg(p(x)).

According to the above premise, p(x) is a right divisor of s(x) if and only if r(x) = 0. It is denoted
as p(x) |r s(x). Similarly, p(x) is referred to as a left divisor of s(x) if s(x) = p(x)t(x), and it is denoted as
p(x) |l s(x), where t(x) is any skew polynomial in Fpm [x;π].

Example 2.8. Suppose F9 = {0, δ, . . . , δ8 = 1}, where δ is a root of the polynomial p(x) = x2 + 1 ∈ F3[x] and let π be
a Frobenius automorphism on F9 of order 2.

x4+2δx3+δx+1 = (x+2δ)(x+δ+2)(x+2δ)(x+δ+2). Therefore, x+δ+2 is a right divisor of x4+2δx3+δx+1.
It can be easily verified that x + δ + 2 cannot be a left divisor of x4 + 2δx3 + δx + 1 in F9[x;π].

Definition 2.9. [28] Consider skew polynomials p(x) and s(x) in Fpm [x;π]. We define the greatest common right
divisor (abbreviated as gcdr) of p(x) and s(x) as the unique monic skew polynomial d(x) in Fpm [x;π] satisfying the
following conditions:

1. d(x) is a right divisor of p(x) and s(x).
2. Any other skew polynomial d′(x) in Fpm [x;π] that is a right divisor of both p(x) and s(x) must also be a right

divisor of d(x).

Definition 2.10. [28] Skew polynomials p(x) and s(x) in Fpm [x;π] are called right relative prime if and only if
gcdr(p(x), s(x)) = 1.

Lemma 2.11. [28, Right Bézout identity] If d(x) = gcdr(p(x), s(x)), then there exist r1(x) and r2(x) in Fpm [x;π] such
that

d(x) = r1(x)p(x) + r2(x)s(x).

Definition 2.12. [23] Let p(x) ∈ Fpm [x;π] be a skew polynomial. If p(x) is monic and irreducible, then it is called
prime.

Definition 2.13. Let I be any non-empty subset of Fpm [x;π]. If I satisfies the following conditions, then I is called
a left ideal of Fpm [x;π]

1. a(x) + b(x) ∈ I,∀ a(x), b(x) ∈ I,
2. r(x)a(x) ∈ I,∀ a(x) ∈ I and r(x) ∈ Fpm [x;π].

Remark 2.14. Every left (or right) ideal of Fpm [x;π] is principally generated. Thus, Fpm [x;π] is a left (or right)
principal ideal domain. Further, from [12], it is well known that the ring Fpm [x;π] is not a unique factorization
domain.

Example 2.15. SupposeFpm = F27 = {0, δ, δ2, . . . , δ25, δ26 = 1}, where δ is a root of the polynomial p(x) = x3+2x+1 ∈
F3[x], and let π2 = I. Consider a skew polynomial x3

− 1 in F27[x;π]. We have,

x3
− 1 = (x − δ2)(x2 + δ18x + δ24) = (x − δ6)(x2 + δ2x + δ20) = (x − 1)(x − 1)(x − 1).

That is, the skew polynomial x3
− 1 in F27[x;π] is not uniquely factorized.

Definition 2.16. A non-empty subsetI ofFpm [x;π] is called a two-sided ideal ofFpm [x;π] if and only if it is generated
by a central skew polynomial.
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Let Π ∈ Aut(R) be an automorphism of order l. Note that any automorphism maps −1 to −1. The ideal
⟨x2ps

+ 1⟩ is a two-sided ideal of R[x;Π] if and only if ord(Π) = ord(π) = l | ps (see [25]). This implies that if
ord(Π) divides n, then ⟨xn + 1⟩ is a two-sided ideal of R[x;Π]. From Proposition 2.6, we have that x2ps

+ 1 is
a monic central skew polynomial, and hence any right divisor of x2ps

+ 1 is also a two-sided divisor. That
is, if x2ps

+ 1 = y1(x)y2(x) = y2(x)y1(x), then y2(x) = x2ps
+1

y1(x) , where yi(x) ∈ R[x;Π] for i = 1, 2.

LetΠ ∈ Aut(R) andΛ be a unit element ofR. Let C be a linear code of length n overR. Then C is a skew
(Π,Λ)-constacyclic code over R if for (c0, c1, . . . , cn−1) ∈ C, it holds that

(
Π(Λcn−1),Π(c0), . . . ,Π(cn−2)

)
∈ C. In

particular, for Λ = 1, C is a skew cyclic code, and for Λ = −1, C is a skew negacyclic code over R.
To establish an algebraic representation from the combinatorial structure of skew negacyclic codes,

we examine the following correspondence: Let c = (c0, c1, . . . , cn−1) ∈ C be a codeword. Then the skew
polynomial representation of c is c(x) = c0 + c1x + · · · + cn−1xn−1 in R2 =

R[x;Π]
⟨xn+1⟩ .

Now onward, we denote the quotient rings:

R1 =
Fpm [x;π]
⟨xps + 1⟩

, R
′

1 =
Fpm [x;π]
⟨xn + 1⟩

and R2 =
R[x;Π]
⟨xn + 1⟩

,

where n = 2ps and we assume Fpm is a field, with p being an odd prime, m and s being any positive integers,
unless otherwise stated.

Proposition 2.17. [25, Theorem 2.2] Let C be a linear code of length n over R. Then C is a skew negacyclic code if
and only if its polynomial representation forms a left ideal of R2. Moreover, C = ⟨ f (x)⟩ = R2( f (x)), where f (x) is a
monic factor of xn + 1.

Note 2.18. We can define a ring epimorphism µ : R → Fpm by µ(a + ub) = a. This epimorphism can be extended
from R[x;Π] to Fpm [x;π] as follows:

n∑
i=0

(ai + ubi)xi
7→

n∑
i=0

aixi.

Additionally, µ can be extended from R2 to R′1. Thus, the image of any left ideal I of R2, µ(I :R2 u) =
µ ({v ∈ R2 : vu ∈ I}), is a left ideal of R′1. Since any skew negacyclic code C of length n over R forms a left
ideal of R2, the code µ(C :R2 u) can be considered a skew negacyclic code over Fpm . This code is called the torsion code
of C and is denoted by Tor(C).

Now, we define a Gray map

ϕ : R→ F2
pm

ϕ(a + ub) = (b, a + b), where a, b ∈ Fpm .

Furthermore, we can verify thatϕ is anFpm -linear map. The mapϕ can be naturally extended component-
wise from Rn to F2n

pm as follows:

(r0, r1, . . . , rn−1) 7→ (b0, a0 + b0, . . . , bn−1, an−1 + bn−1),

where ri = ai+ubi ∈ R, and ai, bi ∈ Fpm , for i = 0, 1, . . . ,n−1. The Lee weight of an element r ∈ R is denoted by
wL(r) and is given by wL(r) = wH(ϕ(r)), where wH is the Hamming weight. For any r = (r0, r1, . . . , rn−1) ∈ Rn,
the Lee weight of r is given by wL(r) =

∑n−1
i=0 wH(ϕ(ri)). For any two elements r and r′ of Rn, the Lee distance

between them, denoted by dL, is defined as dL(r, r′) = wL(r − r′) = wH(ϕ(r − r′)). The minimum Lee distance
of C is defined as dL = dL(C) = min{dL(r, r′) | r , r′, r, r′ ∈ Rn

}. It follows from the definition of the Gray map
that ϕ is a distance-preserving map from the Lee distance to the Hamming distance, and ϕ is a bijective
map. Thus, ϕ(C) is a linear code over Fpm with parameters [2n, k, dH], where dL = dH and k is the dimension
of ϕ(C).
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Now, we define the dual of a linear code C over R. The dual code of C is denoted by C⊥ and is given by

C
⊥ = {c′ ∈ Rn

| ⟨c′, c⟩ = 0,∀c ∈ C},

where ⟨c′, c⟩ denotes the Euclidean inner product of c′ and c.

Definition 2.19. Let C be a [n, k, d]-linear code over Fpm . Then the parameters satisfy

d ≤ n − k + 1.

If equality holds, the code C is called a maximum distance separable (MDS) code.

Proposition 2.20. [17, Proposition 2.5] Let R be a finite chain ring of cardinality pq. The cardinality of a linear
code C of length n over R is pk, where k is an integer such that 0 ≤ k ≤ nq. Furthermore, the dual code C⊥ has pl

codewords, where the sum of the dimensions of C and C⊥ is nq, i.e., k + l = nq. Thus, the product of the cardinalities
of C and C⊥ equals the cardinality of Rn.

Proposition 2.21. [25] Letπ ∈ Aut(Fpm ) andC be a linear code of length n overFpm . IfC is a skew (π,Λ)-constacyclic
code over Fpm , then C⊥ is a skew (π,Λ−1)-constacyclic code over Fpm .

Proposition 2.22. [12] Let ψ : R[x;Π]→ R[x;Π] be the map defined by

ψ

 n∑
i=0

aixi

 = n∑
i=0

Π(ai)xi,

where ai ∈ R for i = 0, 1, . . . ,n. Then ψ is a surjective ring homomorphism.

Definition 2.23. Consider a skew polynomial p(x) = a0 + a1x + · · · + akxk in R[x;Π], where ak , 0. Its reciprocal
polynomial is denoted by p∗(x) and is given by

p∗(x) = ak +Π(ak−1)x + · · · +Πk(a0)xk =

k∑
i=0

Πi(ak−i)xi.

Lemma 2.24. Suppose p(x) and s(x) are elements of R[x;Π]. Then the following results hold:

(i) If deg(p(x)) ≥ deg(s(x)), then (p(x) + s(x))∗ = p∗(x) + xdeg(p(x))−deg(s(x))s∗(x),
(ii) (p(x)s(x))∗ = ψdeg(p(x))s∗(x)p∗(x),

(iii) If the constant coefficient of p(x) is non-zero, then (p∗(x))∗ = ψk(p(x)), where k is the degree of p(x).

Remark 2.25. Let C be a skew negacyclic code over R and let I be the polynomial representation of C, which forms
a left ideal of R2. If I is a left ideal of R2, then I∗ = {p∗(x) | p(x) ∈ I} is a right ideal of R2. The annihilator of I is
defined as:

A(I) = {s(x) ∈ R2 | p(x)s(x) = 0 for all p(x) ∈ I},

and A(I) forms a right ideal of R2. Thus, if I is the left ideal associated with C, then the associated left ideal of the
dual code C⊥ isA(I)∗.

3. The algebraic structure of skew negacyclic codes of length 2ps over Fpm

This section provides a detailed study of the algebraic structure of skew negacyclic codes of length 2ps

over Fpm . The study is based on the factorization of x2ps
+ 1 under various conditions.

Note 3.1. Since pm
− 1 = (p − 1)(pm−1 + pm−2 + · · · + p + 1), where (pm−1 + pm−2 + · · · + p + 1) is an odd integer, it

follows that 4 divides p − 1 if and only if 4 divides pm
− 1 for an odd prime p and an odd positive integer m.
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3.1. p ≡ 1 (mod 4)
Recall from Section 2 that Fpm is a finite field, and

Fpm = {0, ξ, ξ2, . . . , ξpm
−2, ξpm

−1 = 1},

where ξ ∈ Fpm is a primitive root of an irreducible polynomial a(x) over Fp[x].

Since 4 | p − 1, there exists an element α ∈ Fp such that α = ζ
p−1

4 , where ζ is a generator of F∗p = Fp \ {0}.

Let β = α2 = ζ
p−1

2 . Then β ∈ F∗p and ord(β) = 2. Since F∗p is cyclic, the unique element of order 2 in F∗p is −1.
Thus, β = −1.

Therefore, we can factor the polynomial x2ps
+ 1 as follows:

x2ps
+ 1 = x2ps

− α2 = (xps
− α)(xps

+ α).

Since x2ps
+ 1 is factorize in Fp, and Fp is a subfield of Fpm , we can extend this factorization to Fpm , where

α ∈ Fp is embedded in Fpm .

x2ps
+ 1 = (xps

− α)(xps
+ α).

Any automorphism of Fpm fixes Fp, so π(α) = α for any π ∈ Aut(Fpm ). By [25, Proposition 2.2], ⟨xps
± α⟩

forms a two-sided ideal of Fpm [x;π]. Hence, by the Chinese Remainder Theorem (CRT), we have

R
′

1 =
Fpm [x;π]

⟨x2ps + 1⟩
�
Fpm [x;π]
⟨xps
− α⟩

⊕
Fpm [x;π]
⟨xps + α⟩

.

From this decomposition of R′1, we deduce that every left ideal of R′1 can be uniquely expressed as the

direct sum of left ideals of
Fpm [x;π]
⟨xps
−α⟩

and
Fpm [x;π]
⟨xps
+α⟩

. Therefore, every skew negacyclic code of length 2ps over Fpm

can be expressed as a direct sum of a skew (π, α)-constacyclic code and a skew (π,−α)-constacyclic code,
each of length ps.

Now we investigate the decomposition of skew negacyclic codes of length 2ps overFpm . We can represent
such a code C as follows:

C = C1 ⊕ C2,

where C1 and C2 are left ideals of
Fpm [x;π]
⟨xps
−α⟩

and
Fpm [x;π]
⟨xps
+α⟩

, respectively.

In the following theorem, we present the cardinality of the skew negacyclic code C of length 2ps over
Fpm and the algebraic structure of the dual code of C.

Theorem 3.2. Let C = C1 ⊕ C2 be a skew negacyclic code of length 2ps over Fpm . Then

(i) |C| = |C1||C2|.
(ii) C⊥ = C⊥1 ⊕ C

⊥

2 , where C⊥1 and C⊥2 are left ideals of
Fpm [x;π]
⟨xps
+α⟩

and
Fpm [x;π]
⟨xps
−α⟩

, respectively.

Proof. The proof of (i) is straightforward, so we focus on proving (ii).
It is clear that C⊥1 ⊕C

⊥

2 is a subset of C⊥. Furthermore, the cardinality of C⊥1 ⊕C
⊥

2 is given by the product
of the cardinalities of C⊥1 and C⊥2 , as follows:

|C
⊥

1 ⊕ C
⊥

2 | = |C
⊥

1 ||C
⊥

2 | =
|Fpm |

ps

|C1|
·
|Fpm |

ps

|C2|
=
|Fpm |

2ps

|C|
= |C⊥|.

Thus, we conclude that C⊥ = C⊥1 ⊕ C
⊥

2 .

Since α = ζ
p−1

4 , we have α−1 = ζ
3p−3

4 = −α, and (−α)−1 = α. By Proposition 2.21, C⊥1 is a skew (π,−α)-
constacyclic code, and C⊥2 is a skew (π, α)-constacyclic code of length ps over Fpm . Therefore, C⊥1 and C⊥2 are

left ideals of
Fpm [x;π]
⟨xps
+α⟩

and
Fpm [x;π]
⟨xps
−α⟩

, respectively.
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Example 3.3. Let α = 2, R = F55 [x;π]
⟨x5−2⟩ , and π ∈ Aut(Fpm ) such that π(a) = a5 for any a ∈ F55 . Then ord(π) = 5. Let

w be a primitive root of an irreducible polynomial of degree 5 in F5[x] of order 55
− 1. The factorization of x5

− 2 in
F55 [x;π] is given by

x5
− 2 =(x + 3w4 + w3 + 4w2 + 3w + 3)(x + w3 + 2w2 + 2w + 3)(x + 2w4 + 3w3 + 2w2 + w + 4)

× (x + 4w4 + 4w3 + 3w2 + 3)(x + w4 + w3 + w2 + 2w + 3).

ConsiderC = R( f (x)), where f (x) = (x+3w4+w3+4w2+3w+3)(x+w3+2w2+2w+3)(x+2w4+3w3+2w2+w+4).
This simplifies to:

f (x) = x3 + (2w3 + 2w2 + 3w)x2 + (4w4 + 3w3 + 3w2 + 3w)x + 3w4 + w2 + 2w + 4.

Therefore, C has a generator matrix of the form:

[
3w4 + w2 + 2w + 4 4w4 + 3w3 + 3w2 + 3w 2w3 + 2w2 + 3w 1 0

0 3w20 + w10 + 2w5 + 4 4w20 + 3w15 + 3w10 + 3w5 2w15 + 2w10 + 3w5 1

]
.

Hence, using the MAGMA algebra system [11], we find that C is an MDS code with parameters [5, 2, 4].

Example 3.4. As in Example 3.3, we consider α = −2, and R = F55 [x;π]
⟨x5+2⟩ . The factorization of x5 + 2 in F55 [x;π] is

given by

x5 + 2 =(x + 2w4 + w3 + 2w2 + w + 2)(x + 4w4 + 4w3 + 3w2 + 4w + 4)(x + w3 + w + 3)

× (x + 2w4 + 2w + 3)(x + 2w4 + 3w2 + 4w + 4).

Consider C = R( f (x)), where f (x) = (x+2w4+w3+2w2+w+2)(x+4w4+4w3+3w2+4w+4). This simplifies
to:

f (x) = x2 + (w4 + 2w3 + 3w + 2)x + 3w4 + w3 + w + 4.

Therefore, C has a generator matrix of the form:

3w4 + w3 + w + 4 w4 + 2w3 + 3w + 2 1 0 0
0 3w20 + w15 + w5 + 4 w20 + 2w15 + 3w5 + 2 1 0
0 0 3w100 + w75 + w25 + 4 w100 + 2w75 + 3w25 + 2 1

 .
Hence, using the MAGMA algebra system [11], we find that C is an MDS code with parameters [5, 3, 3].

Example 3.5. Consider R′1 =
F55 [x;π]
⟨x10+1⟩ and π ∈ Aut(Fpm ) such that π(a) = a5 for any a ∈ F55 . Then ord(π) = 5. Let

w be a (55
− 1)th-primitive root of an irreducible polynomial of degree 5 in F5. The factorization of x10 + 1 in F55 [x;π]

is given by

x10 + 1 =(x + 3w3 + 3w2 + 4w + 3)(x + 4w4 + 4w3 + 2w2 + 4w)(x + w4 + 4w2 + 3w + 3)

× (x + 4w4 + 3w3 + 3w2 + 4w + 4)(x + w4 + 4w3 + 4w2 + 2w + 1)(x + 4w3 + 4w)

× (x + 4w4 + 4w3 + 4w + 2)(x + 4w4 + w2 + 2w + 1)(x + 2w4 + 2w3 + 3w2 + 4w + 1)

× (x + w3 + w + 3).

Consider C = R′1
(

f (x)
)
, where

f (x) =(x + 3w3 + 3w2 + 4w + 3)(x + 4w4 + 4w3 + 2w2 + 4w)(x + w4 + 4w3 + 4w2 + 2w + 1)
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× (x + 4w4 + 4w3 + 4w + 2)(x + 4w4 + w2 + 2w + 1)(x + 2w4 + 2w3 + 3w2 + 4w + 1).

=⇒ f (x) =x7 + (4w4 + 4w3 + w2 + 4w + 2)x6 + (w3 + 2w2 + 4w + 1)x5 + (3w4 + 3w3 + 2w2 + 3w + 1)x4

+ (2w4 + 4w3 + 2)x3 + (4w4 + 3w3 + w + 3)x2 + (3w4 + 3w2 + w + 3)x + 3w4 + w3 + 2w + 2.

Therefore, C has a generator matrix whose first row is 3w4 + w3 + 2w + 2, 3w4 + 3w2 + w + 3, 4w4 + 3w3 + w +
3, 2w4 + 4w3 + 2, 3w4 + 3w3 + 2w2 + 3w + 1,w3 + 2w2 + 4w + 1, 4w4 + 4w3 +w2 + 4w + 2, 1, 0, 0, and the (i + 1)th

row is given by the coefficients of xi f (x), where i = 0, 1, 2. Hence, using the MAGMA algebra system [11], we find
that C is an MDS code with parameters [10, 3, 8].

Example 3.6. As in Example 3.5, we have a factorization of x10 + 2 in F55 [x;π]. Consider C = R′1
(

f (x)
)
, where

f (x) =(x + 4w4 + 4w3 + 2w2 + 4w)(x + 4w4 + 3w3 + 3w2 + 4w + 4)(x + w4 + 4w3 + 4w2 + 2w + 1)

× (x + 4w4 + 4w3 + 4w + 2)(x + 2w4 + 2w3 + 3w2 + 4w + 1).

=⇒ f (x) =x5 + (2w2 + 2)x4 + (2w4 + 4w + 4)x3 + (4w4 + 2w3 + 4w2 + 2)x2 + (w4 + 2w3 + 2w2 + 3w

+ 3)x + 2w2 + 2w + 3.

Therefore, C has a generator matrix whose first row is 2w2 + 2w + 3, w4 + 2w3 + 2w2 + 3w + 3, 4w4 + 2w3 + 4w2 +
2, 2w4+4w+4, 2w2+2, 1, 0, 0, 0, 0, and the (i+1)th row is given by the coefficients of xi f (x), where i = 0, 1, 2, 3, 4.
Hence, using the MAGMA algebra system [11], we find that C is an MDS code with parameters [10, 5, 6].

Example 3.7. Consider R1 =
F1313 [x;π]
⟨x26+1⟩ and π ∈ Aut(F1313 ) such that π(a) = a13 for any a ∈ F1313 . Then ord(π) = 13.

Let w be a (1313
− 1)th-primitive root of an irreducible polynomial of degree 13 in F13[x]. We then have a factorization

of x26 + 1 over F1313 [x;π].
Consider C = R1

(
f (x)

)
, where

f (x) =(x + 10w12 + 11w11 + 11w10 + 6w9 + 7w8 + w7 + 8w6 + 2w5 + 6w4 + 9w3 + 6w2 + 12w

+ 3)(x + 11w12 + w11 + 6w10 + 4w9 + 12w8 + 10w6 + 6w5 + 2w4 + 10w3 + 6w2 + 4w

+ 5)(x + 2w12 + 3w11 + 2w10 + 5w9 + w8 + 9w7 + 4w6 + 4w5 + 11w4 + 4w3 + 7w2

+ 11w + 11)(x + 2w12 + 7w11 + 11w10 + 2w9 + 10w8 + 3w7 + 12w6 + w5 + w2 + 10w

+ 1)(x + 7w11 + 2w10 + 3w9 + 4w8 + 5w7 + 11w6 + 12w5 + 12w4 + 6w3 + w2 + 8w

+ 9)(x + 9w12 + 8w11 + 6w10 + 4w9 + 10w8 + 9w7 + 11w6 + 5w5 + w4 + 9w3 + 4w2

+ 9w + 4)(x + 4w12 + 12w11 + 2w10 + 8w9 + 2w8 + 12w7 + 7w6 + 10w4 + 12w2

+ 12w + 3)(x + 11w12 + 9w11 + 4w10 + 5w9 + 2w8 + 6w7 + 12w6 + 5w5 + 12w4

+ w3 + 5w2 + 10w)(x + 7w12 + 2w10 + 11w9 + 8w8 + 6w6 + 6w5 + 7w4 + 10w2

+ 5w + 1)(x + 10w12 + w11 + 10w10 + 2w9 + 5w8 + 4w7 + 6w6 + 9w5 + 2w4

+ 7w3 + 8w + 9)(x + 8w12 + 3w10 + 2w9 + 2w8 + 4w7 + 9w6 + 3w5 + 4w4 + 2w3

+ 9w2 + 5w)(x + 2w12 + 4w11 + 5w10 + 7w9 + 6w7 + 5w6 + 10w5 + 2w4 + 12w3

+ 12w2 + 6w + 4)(x + 8w12 + 9w11 + 5w10 + 4w9 + 2w8 + 7w7 + 6w6 + 2w5

+ 3w4 + 2w2 + w + 6)(x + 4w12 + 8w11 + 6w10 + 12w9 + 3w8 + 3w7 + 6w6

+ 6w5 + 5w4 + 8w3 + 9w2 + 12w + 7)(x + 7w12 + 3w11 + 12w10 + 11w9 + 3w8

+ 7w7 + 5w6 + 10w5 + 8w4 + 10w3 + 5w2 + 2w + 5)(x + 2w12 + 10w11

+ 9w10 + 11w9 + 8w8 + w7 + 3w6 + 4w5 + 8w4 + w3 + w2 + 12w + 12)(x + 4w11

+ 5w10 + 12w9 + 6w8 + 12w7 + 7w6 + 11w5 + 10w4 + 6w3 + 5w + 6)(x + w12 + w10
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+ 10w9 + 12w8 + 10w7 + 11w6 + 7w5 + 12w4 + 2w3 + 4w2 + 12w + 6)(x + 7w12

+ 9w11 + 2w9 + 9w8 + 4w7 + 7w6 + w5 + 2w4 + 4w3 + 6w2 + 7w + 9)(x + w12

+ 10w11 + 5w9 + 12w8 + 2w7 + 4w6 + 11w4 + 9w3 + 11w2 + 2w)(x + 11w12

+ 2w11 + 11w10 + 4w9 + 4w7 + 6w6 + 12w5 + 2w4 + 12w3 + 4w2 + 3w + 8)

× (x + 4w12 + 7w11 + 7w10 + 10w8 + 11w7 + 12w6 + 9w5 + 10w4

+ 8w3 + 5w2 + 9w + 10)(x + 2w12 + 4w10 + 8w9 + 5w8 + 7w6 + 8w5 + 4w4

+ 2w3 + 12w2 + 7w + 12)(x + 10w12 + w11 + 7w10 + 4w9 + 5w8 + 7w7

+ 2w6 + 6w5 + 12w4 + 11w2 + 9w + 3)(x + 7w12 + 6w11 + 5w9 + 3w8 + 2w7

+ 12w6 + 6w5 + 8w4 + 9w3 + 12w2 + 2w + 7)(x + 9w12 + 2w11 + 12w10

+ 7w9 + 8w8 + 6w7 + 5w6 + 11w5 + 4w4 + 7w3 + 8w2 + 2w)(x + 7w12 + 12w11

+ 6w10 + 10w9 + 9w8 + 8w7 + 4w6 + 6w5 + 3w4 + 11w3 + 6w2 + 7w + 10)(x

+ 2w12 + 4w11 + 4w10 + 6w9 + 8w8 + 3w7 + 10w6 + 7w5 + 9w4 + 10w3

+ 2w2 + 11w + 3)(x + 6w12 + 10w11 + 9w10 + 11w9 + 4w8 + 2w7 + 11w6

+ 8w5 + 6w4 + 5w3 + 6w2 + 9w + 11)(x + 5w12 + 2w11 + 7w10 + 2w9

+ 7w8 + 3w7 + 6w6 + 11w5 + 12w4 + 5w3 + 9w2 + 6w + 1)(x + 3w12 + 11w11

+ 9w10 + 5w9 + 10w8 + 11w7 + 12w6 + 8w5 + 10w4 + 7w2 + 6w)(x + 8w12

+ 7w11 + 11w10 + 2w9 + 10w8 + 11w7 + 12w6 + 6w5 + 6w4 + 12w3 + 3w2

+ 10w)(x + 4w12 + 11w11 + 12w10 + 6w9 + 10w8 + 2w7 + 11w6 + 5w5

+ 7w4 + 5w3 + 6w2 + 8w + 9)(x + 3w12 + 8w11 + 10w10 + 12w9 + 12w8+

2w7 + 12w6 + 2w5 + 10w4 + 6w3 + 5w2 + 2w + 11)(x + 4w12 + 5w11 + 7w10

+ 3w9 + 6w8 + 10w7 + 9w6 + 12w5 + 8w4 + 7w3 + 5w2 + 11w + 4)

× (x + 10w12 + 6w11 + 9w10 + 11w9 + 11w8 + 4w7 + 7w6 + 5w5

+ 12w4 + 9w3 + 2w2 + 3w + 12)(x + 2w12 + 5w11 + 10w10 + 6w9 + 2w8

+ 4w7 + 8w6 + 6w5 + 11w4 + 12w3 + 12w2 + 10w + 2)(x + 11w12 + 4w11

+ 9w10 + 10w9 + 7w8 + 8w7 + 5w6 + 9w5 + 2w4 + 7w3 + 5w2 + 12w + 8)(x

+ 7w12 + 12w11 + 2w10 + 4w9 + 10w8 + 8w7 + 4w6 + 9w5 + 11w4 + 12w3

+ 2w2 + 5w + 6)(x + 12w12 + 11w11 + 3w10 + 6w9 + 8w8 + 4w7 + 12w6

+ 12w5 + 9w4 + 7w3 + 10w2 + 7w + 1)(x + 12w12 + 2w11 + 6w10 + 10w9

+ 9w8 + 4w7 + 5w6 + 12w5 + 2w4 + 8w3 + 11w2 + 7w + 10)(x + 12w12 + 10w11

+ 12w10 + 4w9 + 3w8 + 11w7 + 9w6 + 7w5 + 11w4 + 12w2 + 5w)(x + 5w12

+ 11w11 + 6w10 + 4w9 + 11w8 + 2w7 + 7w6 + 12w5 + 9w4 + 10w3 + 6w2 + 7w)

× (x + 11w12 + 3w11 + 6w10 + 7w9 + 4w8 + 12w7 + 2w6 + 9w5

+ 8w4 + 10w3 + 12w2 + 6w + 2)(x + 9w12 + 5w11 + 8w10 + 12w9 + 4w8

+ 10w7 + 6w6 + 5w5 + 7w4 + 2w3 + 2w2 + 3w + 1)

is an MDS skew negacyclic code of length 26 over F13.

3.2. p ≡ 3 (mod 4)
In this subsection, we consistently assume that p ≡ 3 (mod 4). In this class of primes, there does not

exist any a ∈ Fpm such that a2 = −1. Hence, x2 + 1 is an irreducible polynomial in Fpm [x;π]. Since Fpm has
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characteristic p, we can further simplify this to:

x2ps
+ 1 = (x2 + 1)ps

.

Lemma 3.8. The ideal ⟨(x2 + 1)ps
⟩ is a two-sided ideal of Fpm [x;π].

Proof. As Fp is fixed by π ∈ Aut(Fpm ), we have π(−1) = −1, and ord(π) | ps. Hence, by [25, Proposition 2.2],
the ideal ⟨(x2 + 1)ps

⟩ is a two-sided ideal of Fpm [x;π].

Define a set

B :=
{

f (x) | f (x) is a monic divisor of (x2 + 1)ps}
.

Proposition 3.9. The quotient ring R′1 =
Fpm [x;π]
⟨(x2+1)ps

⟩
is a principal left ideal ring. Moreover, the generator of any left

ideal is of the form f (x) + ⟨(x2 + 1)ps
⟩, where f (x) ∈ B.

Proof. Let I = J

⟨(x2+1)ps
⟩

be a left ideal of R′1, where J is a left ideal of Fpm [x;π] containing ⟨(x2 + 1)ps
⟩. Since

Fpm [x;π] is a principal left ideal ring, J = ⟨ f (x)⟩ for some f (x) ∈ Fpm [x;π], where f (x) is a divisor of (x2 + 1)ps
.

Thus, we infer that f (x) + ⟨(x2 + 1)ps
⟩ is a generator of I.

Lemma 3.10. Let p(x) be a non-zero skew polynomial in R′1. Then p(x) has a left inverse in R′1 if and only if
gcdr

(
p(x), (x2 + 1)ps

)
= 1.

Proof. Assume gcdr

(
p(x), (x2 + 1)ps

)
= 1. Let J

⟨(x2+1)ps
⟩

be a left ideal of R′1, where J is a left ideal of Fpm [x;π]
containing ⟨(x2 + 1)ps

⟩. The left ideal of Fpm [x;π] generated by p(x) is given by Fpm [x;π](p(x)). Hence,

⟨(x2 + 1)ps
⟩ ⊂ Fpm [x;π](p(x)) + ⟨(x2 + 1)ps

⟩ is a left ideal of Fpm [x;π]. This implies that
Fpm [x;π](p(x))+⟨(x2+1)ps

⟩

⟨(x2+1)ps
⟩

is a
left ideal of R′1. Since Fpm [x;π] is a principal ideal ring, we have Fpm [x;π](a(x)) = Fpm [x;π](p(x))+ ⟨(x2 + 1)ps

⟩

for some a(x) ∈ Fpm [x;π]. Therefore, there exist polynomials m1(x) and t1(x) in Fpm [x;π] such that

a(x) = m1(x)p(x) + t1(x)(x2 + 1)ps
.

Similarly, there exist polynomials m2(x) and t2(x) in Fpm [x;π] such that

p(x) = m2(x)a(x) and (x2 + 1)ps
= t2(x)a(x).

This implies that a(x) is a right divisor of both p(x) and (x2 + 1)ps
. Thus, we conclude that a(x) = 1. Further,

we have

1 + ⟨(x2 + 1)ps
⟩ = m1(x)p(x) + ⟨(x2 + 1)ps

⟩

=
(
m1(x) + ⟨(x2 + 1)ps

⟩

) (
p(x) + ⟨(x2 + 1)ps

⟩

)
.

This implies m1(x) is a left inverse of p(x) in R′1.
Conversely, suppose m(x) is a left inverse of p(x). Let a(x) be a common right divisor of p(x) and (x2+1)ps

.
Thus, there exists a polynomial b(x) ∈ Fpm [x;π] such that p(x) = b(x)a(x). Therefore,

m(x)b(x)a(x) = m(x)p(x) = 1 in R′1.

Hence, a(x) has a left inverse in R′1. Since a(x) is a monic polynomial in Fpm [x;π], it implies a(x) = 1. Thus,

gcdr

(
p(x), (x2 + 1)ps)

= 1.
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Example 3.11. Consider R′1 =
F33 [x;π]
⟨(x2+1)3⟩

and π ∈ Aut(F33 ) such that π(a) = a3 for any a ∈ F33 . Then ord(π) = 3.
Let w be a (33

− 1)th-primitive root of an irreducible polynomial of degree 3 in F3[x]. The factorization of x6 + 1 in
F33 [x;π] is given by

x6 + 1 = (x2 + w2x + w2)(x2 + x + 2w2 + 2w + 1)(x2 + (2w2 + w + 1)x + 1).

Consider C = R′1( f (x)), where

f (x) = (x2 + x + 2w2 + 2w + 1)(x2 + (2w2 + w + 1)x + 1)

=⇒ f (x) = x4 + (2w2 + 2w + 2)x3 + (w2 + 2w + 1)x2 + (w2 + 2w + 2)x + 2w2 + 2w + 1.

Therefore, C has a generator matrix of the form[
2w2 + 2w + 1 w2 + 2w + 2 w2 + 2w + 1 2w2 + 2w + 2 1 0

0 2w6 + 2w3 + 1 w6 + 2w3 + 2 w6 + 2w3 + 1 2w6 + 2w3 + 2 1

]
.

Hence, by the MAGMA algebra system [11], we find that C is an MDS code with parameters [6, 2, 5].

4. The algebraic structure of skew negacyclic codes of length 2ps over R

Consider R = Fpm + uFpm with u2 = 0. It is well known that R is a finite chain ring with nilpotency index
2, and the ideal generated by u is the only maximal ideal of R.

This section delves into the algebraic structure of skew negacyclic codes of length 2ps overR. We assume
that ord(Π) divides ps, where Π ∈ Aut(R). Let α + uβ ∈ R. If α is a non-zero element of Fpm , then α + uβ is
a unit in R. Furthermore, a code C of length 2ps over R is called a skew negacyclic code if and only if the
polynomial representation of C forms a left ideal of R2 =

R[x;Π]
⟨x2ps

+1⟩ .

4.1. p ≡ 1 (mod 4)
From Subsection 3.1, we have the factorization of x2ps

+ 1 over Fpm as follows:

x2ps
+ 1 = x2ps

− α2

= (xps
− α)(xps

+ α),

where α = ζ
p−1

4 is an element of Fp, and ζ is a generator of F∗p. Since Fpm is a subring of R, we can consider
this factorization over R. For anyΠ ∈ Aut(R), we have π(α) = α, where π ∈ Aut(Fpm ). Thus, by Lemma 2.5,
for any Π ∈ Aut(R), we have Π(α) = α. From [25, Proposition 2.2], ⟨xps

± α⟩ are two-sided ideals of R[x;Π].
Hence, by the Chinese Remainder Theorem (CRT), we have

R2 =
R[x;Π]
⟨x2ps + 1⟩

�
R[x;Π]
⟨xps
− α⟩

⊕
R[x;Π]
⟨xps + α⟩

.

Following this decomposition of R2, we can see that every left ideal of R2 can be uniquely expressed as
the direct sum of left ideals of R[x;Π]

⟨xps
−α⟩

and R[x;Π]
⟨xps
+α⟩

, respectively. Thus, any skew negacyclic code of length 2ps

over R can be written as the direct sum of two skew codes over R: namely, a skew (Π, α)-constacyclic code
and a skew (Π,−α)-constacyclic code. We can determine the algebraic structure of skew negacyclic codes
of length 2ps over R by using the study conducted on the algebraic structures of skew constacyclic codes
of length ps over R as performed in [7]. The number of codewords in skew constacyclic codes of length ps

over R is examined in [22]. Based on this, we can determine the number of codewords in skew negacyclic
codes of length 2ps over R.

By a similar argument as given in Subsection 3.1, we can represent the skew negacyclic code of length
2ps over R as the direct sum of two constituent codes, i.e.,

C = C1 ⊕ C2,

where C1 and C2 are left ideals of R[x;Π]
⟨xps
−α⟩

and R[x;Π]
⟨xps
+α⟩

, respectively.
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Proposition 4.1. Let C = C1 ⊕ C2 be a skew negacyclic code of length 2ps over R. Then |C| = |C1||C2|.

In [22, Theorem 3.15], the authors determined the algebraic structure of the dual of skew (Π, λ)-
constacyclic codes of length ps over R. Using this result, we also examine the algebraic structure of
the dual of skew negacyclic codes of length 2ps over R. The following theorem presents the algebraic
structure of the dual code of length 2ps over R.

Theorem 4.2. Let C = C1 ⊕ C2 be a skew negacyclic code of length 2ps over R. Then its dual is given by:

C
⊥ = C⊥1 ⊕ C

⊥

2 ,

where C⊥1 and C⊥2 are left ideals of R[x;Π]
⟨xps
+α⟩

and R[x;Π]
⟨xps
−α⟩

, respectively.

Proof. Since C⊥1 ⊕ C
⊥

2 ⊆ C
⊥, the cardinality of C⊥1 ⊕ C

⊥

2 is given by the product of the cardinalities of C⊥1 and
C
⊥

2 , i.e.,

|C
⊥

1 ⊕ C
⊥

2 | = |C
⊥

1 ||C
⊥

2 | =
|R|p

s

|C1|
·
|R|p

s

|C2|
=
|R|2ps

|C|
= |C⊥|.

Thus, we conclude that C⊥ = C⊥1 ⊕ C
⊥

2 .

Since α = ζ
p−1

4 , we have α−1 = ζ
3p−3

4 = −α and (−α)−1 = α in Fpm ⊂ R. From Proposition 2.21, C⊥1 is a skew
(Π,−α)-constacyclic code and C⊥2 is a skew (Π, α)-constacyclic code of length ps over R. Hence, C⊥1 is a left
ideal of R[x;Π]

⟨xps
+α⟩

and C⊥2 is a left ideal of R[x;Π]
⟨xps
−α⟩

.

By considering the above discussion, we now present an example.

Example 4.3. Let α = 2, R = F55 + uF55 with u2 = 0, R2 =
R[x;Π]
⟨x5−2⟩ , and Π ∈ Aut(R) such that Π(a) = a5 for any

a ∈ R. Then ord(Π) = 5. Let w be a (55
− 1)th primitive root of an irreducible polynomial of degree 5 in F5[x]. The

factorization of x5
− 2 in R[x;Π] is given by

x5
− 2 = (x + 3w4 + w3 + 42 + 3w + 3)(x + w3 + 2w2 + 2w + 3)(x + 2w4 + 3w3 + 2w2 + w + 4)

× (x + 4w4 + 4w3 + 3w2 + 3)(x + w4 + w3 + w2 + 2w + 3).

Consider C = R2( f (x)), where

f (x) = (x + 3w4 + w3 + 4w2 + 3w + 3)(x + w3 + 2w2 + 2w + 3) + u(x + 3w4 + w3 + 4w2 + 3w + 3).

This simplifies to

f (x) = x2 + (3w4 + 2w3 + 2w2 + 1 + u)x + 2w4 + 3w3 + 2w2 + w + 3 + u(3w4 + w3 + 4w2 + 3w + 3).

Therefore, C has a generator matrix G with its rows given as follows:
First row: 2w4 + 3w3 + 2w2 + w + 3 + u(3w4 + w3 + 4w2 + 3w + 3), 3w4 + 2w3 + 2w2 + 1 + u, 1, 0, 0.
Second row: 0, 2w20 + 3w15 + 2w10 +w5 + 3+u(3w20 +w15 + 4w10 + 3w5 + 3), 3w20 + 2w15 + 2w10 + 1+u, 1, 0.
Third row: 0, 0, 2w100+3w75+2w50+w25+3+u(3w100+w75+4w50+3w25+3), 3w100+2w75+2w50+1+u, 1.
The generator matrix of ϕ(C) is given by

ϕ(C) =
(
ϕ(G)
ϕ(uG)

)
,

with all six rows of the matrix ϕ(C) given as follows:
First row: 3w4 +w3 + 4w2 + 3w+ 3, 3w4 +w3 + 4w2 + 3w+ 3+ 2w4 + 3w3 + 2w2 +w+ 3, 1, 1+ 3w4 + 2w3 +

2w2 + 1, 0, 1, 0, 0, 0, 0.
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Second row: 0, 0, 3w20 + w15 + 4w10 + 3w5 + 3, 3w20 + w15 + 4w10 + 3w5 + 3 + 2w20 + 3w15 + 2w10 + w5 +
3, 1, 1 + 3w20 + 2w15 + 2w10 + 1, 0, 1, 0, 0.

Third row: 0, 0, 0, 0, 3w100 + w75 + 4w50 + 3w25 + 3, 3w100 + w75 + 4w50 + 3w25 + 3 + 2w100 + 3w75 + 2w50 +
w25 + 3, 1, 1 + 3w100 + 2w75 + 2w50 + 1, 0, 1.

Fourth row: 2w4+3w3+2w2+w+3, 2w4+3w3+2w2+w+3, 3w4+2w3+2w2+1, 3w4+2w3+2w2+1, 1, 1, 0, 0, 0, 0.
Fifth row: 0, 0, 2w20 + 3w15 + 2w10 + w5 + 3, 2w20 + 3w15 + 2w10 + w5 + 3, 3w20 + 2w15 + 2w10 + 1, 3w20 +

2w15 + 2w10 + 1, 1, 1, 0, 0.
Sixth row: 0, 0, 0, 0, 2w100 + 3w75 + 2w50 + w25 + 3, 2w100 + 3w75 + 2w50 + w25 + 3, 3w100 + 2w75 + 2w50 +

1, 3w100 + 2w75 + 2w50 + 1, 1, 1.
Hence, by the MAGMA algebra system [11], we get that C is an MDS code with parameters [10, 6, 5].

Example 4.4. As in Example 4.3, similarly, we consider α = −2, and

R2 =
R[x;Π]
⟨x5 + 2⟩

.

We have a factorization of x5 + 2 in R[x;Π] as follows:

x5 + 2 =(x + 2w4 + w3 + 2w2 + w + 2)(x + 4w4 + 4w3 + 3w2 + 4w + 4)

(x + w3 + w + 3)(x + 2w4 + 2w + 3)(x + 2w4 + 3w2 + 4w + 4).

Consider C = R2( f (x)), where

f (x) = (x + 2w4 + w3 + 2w2 + w + 2)(x + 4w4 + 4w3 + 3w2 + 4w + 4)(x + 2w4 + 3w2 + 4w + 4)

+u(x + 2w4 + w3 + 2w2 + w + 2).

Expanding f (x), we obtain

f (x) = x3 + (3w4 + 4w3 + 3w + 2)x2 + (3w4 + 2w3 + 3w + 2 + u)x +w3 + 4w2 + u(2w4 +w3 + 2w2 +w + 2).

Therefore, C has a generator matrix G, with its rows given as follows:
First row: w3 + 4w2 + u(2w4 + w3 + 2w2 + w + 2), 3w4 + 2w3 + 3w + 2 + u, 3w4 + 4w3 + 3w + 2, 1, 0.
Second row: 0,w15+4w10+u(2w20+w15+2w10+w5+2), 3w20+2w15+3w5+2+u, 3w20+4w15+3w5+2, 1.
The generator matrix of ϕ(C) is given by

ϕ(C) =
(
ϕ(G)
ϕ(uG)

)
,

and all four rows of the matrix ϕ(C) can be obtained similarly to those in Example 4.3. Hence, by the MAGMA
algebra system [11], we get that ϕ(C) is a near-MDS code with parameters [10, 4, 6].

4.2. p ≡ 3 (mod 4)
This section consistently assumes that p ≡ 3 (mod 4), i.e., 4 | (p − 3). This implies that either 8 | (p − 3)

or 8 | (p − 7). Moreover, in both cases, x2 + 1 is irreducible over R. Thus, by considering the arguments
given in Proposition 3.9 and Lemma 3.10, we can discuss the algebraic structure of left ideals of R[x;Π]

⟨(x2+1)ps
⟩
.

For convenience, we denote

R2 =
R[x;Π]
⟨(x2 + 1)ps

⟩
.

Theorem 4.5. All left ideals of R2 =
R[x;Π]
⟨(x2+1)ps

⟩
can be expressed in the following form:

I = R2
(

f1(x) + u1(x)
)
+ R2

(
u f2(x)

)
,

where f1(x) is either 0 or in B, 1(x) ∈ R′1, f2(x) is either 0 or in B, f2(x) |r f1(x), and deg( f2(x)) > deg(1(x)).
Furthermore, 1(x) is unique under the above constraints.
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Proof. As previously noted, the left ideal I of R2 is J

⟨(x2+1)ps
⟩
, where J is a left ideal of R[x;Π] containing

⟨(x2+1)ps
⟩. According to Note 2.18, since the map µ is a surjective homomorphism fromR[x;Π] to Fpm [x;π],

it follows that µ(J) forms a left ideal in Fpm [x;π]. Thus, for some polynomial s(x) ∈ R[x;Π], we have
µ(J) = Fpm [x;π](µ(s(x))).

If we restrict the map µ to J, denoted by µ|J : J→ µ(J), this restricted map is also surjective. Therefore,
there exists a polynomial t(x) ∈ J such that µ(t(x)) = µ(s(x)).

It is evident thatR[x;Π](t(x))+ (J∩uR[x;Π]) ⊆ J. Consider an arbitrary skew polynomial t1(x) ∈ J. We
have µ(t1(x)) ∈ µ(J) = Fpm [x;π](µ(t(x))), which implies there exists another skew polynomial w(x) ∈ R[x;Π]
such that µ(t1(x)) = µ(w(x))µ(t(x)) = µ(w(x)t(x)). Hence, we can express t1(x) as t1(x) = w(x)t(x) + r(x) for
some r(x) ∈ uR[x;Π]. Since t1(x) ∈ J and r(x) = t1(x) − w(x)t(x) ∈ J, it follows that r(x) ∈ J ∩ uR[x;Π].

Therefore, t1(x) = w(x)t(x) + r(x) ∈ R[x;Π](t(x)) + (J ∩ uR[x;Π]), which leads to the conclusion that
J = R[x;Π](t(x)) + (J ∩ uR[x;Π]). Given that ⟨(x2 + 1)ps

⟩ ⊆ J, the ideal I can be expressed as follows:

I =
J

⟨(x2 + 1)ps
⟩

=

(
R[x;Π](t(x)) + (J ∩ uR[x;Π])

)
+ ⟨(x2 + 1)ps

⟩

⟨(x2 + 1)ps
⟩

=
R[x;Π](t(x)) + ⟨(x2 + 1)ps

⟩

⟨(x2 + 1)ps
⟩

+

(
J

⟨(x2 + 1)ps
⟩
∩

uR[x;Π] + ⟨(x2 + 1)ps
⟩

⟨(x2 + 1)ps
⟩

)
= R2(t(x)) + (I ∩ R2(u)).

We have Tor(I) = µ(I :R2 u) = R′1( f (x)), where f (x) ∈ B or 0. It can be easily seen that

I ∩ R2(u) = µ−1 (
µ(I :R2 u)

)
= uµ−1 (Tor(I)) = uµ−1(R′1( f2(x))) = R2(u f2(x)).

Since µ(I) is a left ideal of R′1, by Proposition 3.9, we get

µ(I) = R′1
(
µ(t(x))

)
= R′1

(
f1(x)

)
,

where f1(x) is either 0 or an element of B. Thus, f1(x) = y(x)µ(t(x)) for some y(x) in R′1. This implies that
µ(t(x)) is a factor of (x2 + 1)ps

.
Now suppose, and this does not affect the general case, t(x) = f1(x) + u1(x), where 1(x) ∈ R′1. Hence,

I = R2

(
f1(x) + u1(x)

)
+ R2(u f2(x)).

Suppose f2(x) , 0. Using the right division algorithm, we get

1(x) = h(x) f2(x) + r′(x),

where r′(x) = 0 or deg(r′(x)) < deg( f2(x)). Therefore,

f1(x) + ur′(x) = f1(x) + u
(
1(x) − h(x) f2(x)

)
= f1(x) + u1(x) − uh(x) f2(x)
=⇒ f1(x) + ur′(x) ∈ I.

Hence, we can write I = R2

(
f1(x) + ur′(x)

)
+ R2(u f2(x)), and deg(r′(x)) is strictly less than deg( f2(x)).

Furthermore, since u( f1(x) + ur′(x)) ∈ I, it implies that f1(x) + ur′(x) ∈ Tor(I) = R′1( f2(x)). Thus, we infer
that f2(x) |r f1(x).

Now, suppose that 1′(x) is a polynomial satisfying

I = R2

(
f1(x) + u1′(x)

)
+ R2(u f2(x)).
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Since f1(x) + u1(x) and f1(x) + u1′(x) are elements of I, it follows that

( f1(x) + u1(x)) − ( f1(x) + u1′(x)) = u(1(x) − 1′(x)) ∈ I.

This implies that 1(x) − 1′(x) ∈ Tor(I).
If 1(x) , 1′(x), then deg( f2(x)) < deg(1(x) − 1′(x)). However, since deg(1(x)) and deg(1′(x)) are both

strictly less than deg( f2(x)), it follows that deg(1(x) − 1′(x)) < deg( f2(x)). This leads to a contradiction
because deg(1(x) − 1′(x)) should not be less than deg( f2(x)).

Therefore, we must have 1(x) = 1′(x). This completes the proof.

We explicitly present all possible types of generator polynomials of left ideals of R2.

Theorem 4.6. All possible left ideals of the quotient ring R2 have generator polynomials of the following forms:

• Type 1: Trivial ideals: R2(0) and R2(1).

• Type 2: Principal left ideal generated by a non-monic skew polynomial: R2

(
u f2(x)

)
, where f2(x) ∈ B and

0 ≤ deg( f2(x)) ≤ 2(ps
− 1).

• Type 3: Principal left ideal generated by a monic skew polynomial: R2

(
f1(x) + u1(x)

)
, where f1(x) ∈ B,

2 ≤ deg( f1(x)) ≤ 2(ps
− 1), and deg( f1(x)) > deg(1(x)).

• Type 4: Non-principal left ideal: R2(u f2(x)) + R2

(
f1(x) + u1(x)

)
, where f1(x), f2(x) ∈ B, 2 ≤ deg( f1(x)) ≤

2(ps
− 1), f2(x) |r f1(x), and deg(1(x)) < deg( f2(x)).

Proof. From Theorem 4.5, let I be any left ideal of R2. Then

I = R2

(
f1(x) + u1(x)

)
+ R2(u f2(x)),

where f1(x) and f2(x) are either 0 or elements of B, 1(x) ∈ R′1, f2(x) |r f1(x), and deg
(

f2(x)
)
> deg

(
1(x)

)
.

Now, consider the following cases:

• Type 1: There are two cases for the trivial left ideal.

Case 1. If f1(x) = f2(x) = 1(x) = 0, then I is the trivial left ideal R2(0).
Case 2. If f1(x) and f2(x) are constant skew polynomials, then 1(x) = 0 and I is the trivial left ideal R2(1).

• Type 2: If deg( f1(x)) = 2ps and f2(x) , 0, then 1(x) ∈ Tor(I) and I = R2

(
u f2(x)

)
.

• Type 3: If 2 ≤ deg( f1(x)) ≤ 2(ps
− 1) and deg( f2(x)) = deg( f1(x)), then

I = R2

(
f1(x) + u1(x)

)
.

• Type 4: If 2 ≤ deg( f1(x)) ≤ 2(ps
− 1) and deg(1(x)) < deg( f2(x)) < deg( f1(x)), then

I = R2

(
f1(x) + u1(x)

)
+ R2

(
u f2(x)

)
.

Example 4.7. Consider the ringR = F33 +uF33 with u2 = 0, the quotient ring R2 =
R[x;Π]
⟨(x2+1)3⟩

, and the automorphism
Π ∈ Aut(R) defined byΠ(a) = a3 for any a ∈ R. Then ord(Π) = 3. Let w be a (33

−1)-primitive root of an irreducible
polynomial of degree 3 in F3[x].

The factorization of x6 + 1 in R[x;Π] is given by

x6 + 1 = (x2 + w2x + w2)(x2 + x + 2w2 + 2w + 1)
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× (x2 + (2w2 + w + 1)x + 1).

Consider C = R2

(
f (x) + u1(x)

)
, where 1(x) = (x2 + w2x + w2) and

f (x) = (x2 + x + 2w2 + 2w + 1)(x2 + (2w2 + w + 1)x + 1)

=⇒ f (x) = x4 + (2w2 + 2w + 2)x3 + (w2 + 2w + 1)x2

+ (w2 + 2w + 2)x + 2w2 + 2w + 1.

Therefore, C has a generator matrix G, with its rows given as follows:

• First row: 2w2 + 2w + 1 + uw2,w2 + 2w + 2 + uw2,w2 + 2w + 1 + u, 2w2 + 2w + 2, 1, 0.

• Second row: 0, 2w6 + 2w3 + 1 + uw6,w6 + 2w3 + 2 + uw6,w2 + 2w3 + 1 + u, 2w6 + 2w3 + 2, 1.

The generator matrix of ϕ(C) is

ϕ(C) =
(
ϕ(G)
ϕ(uG)

)
,

and all four rows of the matrix ϕ(C) can be obtained similarly as given in Example 4.3. Hence, using the MAGMA
algebra system [11], we find that ϕ(C) is a near-MDS code with parameters [12, 4, 8].

Theorem 4.8. Let I be any left ideal of R2. ThenA(I)∗ has generator polynomials of the following forms:

• Type 1: If I is a trivial ideal, R2(0) or R2(1), thenA(I)∗ = R2(1) or R2(0), respectively.

• Type 2: If I = R2(u f2(x)), then

A(I)∗ = R2

(
f̃ ∗2 (x)

)
+ R2(u).

• Type 3: If I = R2(p(x)), where p(x) = f1(x) + u1(x), then

A(I)∗ = R2

(
p̃∗(x)

)
.

• Type 4: If I = R2

(
f1(x) + u1(x)

)
+ R2(u f2(x)), then

A(I)∗ = R2

(
( f̃2(x) − uk(x))∗

)
+ R2

(
u( f̃1(x))∗

)
,

where k(x) ∈ R′1 with f̃1(x)1(x) = k(x) f2(x) and ã(x) = (x2+1)ps

a(x) .

Proof. The proof directly follows from [25, Theorem 3.3].

By using a similar approach as in [23, Lemma 6.1], we can express any polynomial Q(x) ∈ R2 in the
following form:

Q(x) =
ps
−1∑

i=0

(a0ix + b0i)(x2 + 1)i + u
ps
−1∑

i=0

(a1ix + b1i)(x2 + 1)i,

where a ji, b ji ∈ Fpm for j = 0, 1.
We now have a different polynomial form in R2. Therefore, Theorem 4.6 can be rewritten as follows:

Theorem 4.9. Let I be a left ideal of the quotient ring R2. Then, I has the following forms of generator polynomials
based on the above assumptions:
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• Type 1: Trivial ideals: R2(0) and R2(1).

• Type 2: Principal left ideal generated by a non-monic skew polynomial: R2

(
u(x2 + 1)i

)
, where 0 ≤ i ≤ ps

− 1.

• Type 3: Principal left ideal generated by a monic skew polynomial:

R2

(
(x2 + 1)i + uh(x)(x2 + 1)t

)
,

where 1 ≤ i ≤ ps
− 1, 0 ≤ t ≤ i, and either h(x) = 0 or h(x) is a unit. Furthermore, h(x) can be expressed as

h(x) =
i−t−1∑

j=0

(h0 jx + h1 j)(x2 + 1) j,

where h0 j, h1 j ∈ Fpm , h00x + h10 , 0, and deg(h(x)) ≤ 2(T − t) − 1, with T being the smallest positive integer
such that u(x2 + 1)T

∈ I.

• Type 4: Non-principal left ideal:

R2

(
(x2 + 1)i + uh(x)(x2 + 1)t

)
+ R2(u(x2 + 1)w),

where 1 ≤ i ≤ ps
− 1, 0 ≤ t ≤ i, w < T, and h(x) and T are as described in Type 3, with deg(h(x)) ≤ w − t − 1.

5. FpmR-additive skew negacyclic codes

In this section, we discuss the algebraic structure ofFpmR-additive skew negacyclic codes of block length
(ps, 2ps). Moreover, we characterize all possible forms of generators of FpmR-additive skew negacyclic codes
of block length (ps, 2ps). Subsequently, we study the separable FpmR-additive skew negacyclic codes.

Consider the set

FpmR = {(a, b) | a ∈ Fpm , b ∈ R}.

We can easily see that the set FpmR is not a R-module under usual ring multiplication. With the help of
the ring epimorphism µ, we define a R-scalar multiplication “ ∗ ” on FpmR as r ∗ (a, b) = (µ(r)a, b). Under this
scalar multiplication and usual addition, the set FpmR forms a left R-module.

Further, we can define the R-module structure on Fn1
pmR

n2 by considering the R-scalar multiplication as
follows:

r ∗ (a0, a1, . . . , an1−1, b0, . . . , bn2−1) = (µ(r)a0, µ(r)a1, . . . , µ(r)an1−1, b0, b1, . . . , bn2−1),

where r ∈ R and (a0, a1, . . . , an1−1, b0, . . . , bn2−1) ∈ Fn1
pmR

n2 . From now on, we consider n1 = ps and n2 = 2ps.

We have a natural bijection between Fps

pmR
2ps

and R = R1 × R2, which is given by

(a0, a1, . . . , aps−1, b0, b1, . . . , b2ps−1) 7→
(
a0 + a1x + · · · + aps−1xps

−1, b0 + b1 + · · · + b2ps−1x2ps
−1

)
.

Furthermore, the scalar multiplication ∗ induces a scalar multiplication on R as follows:

r(x) ∗ ( f (x), 1(x)) =
(
µ(r(x)) f (x), r(x)1(x)

)
,

where r(x) ∈ R[x;Π] and ( f (x), 1(x)) ∈ R. Under this ∗ operation, R forms a left R[x;Π]-module.

Let C be a non-empty subset of Fps

pmR
2ps

. If C forms a subgroup of Fps

pmR
2ps

, then C is called an FpmR-
additive code of block length (ps, 2ps). For any FpmR-additive code C, it is called an FpmR-additive linear
code of block length (ps, 2ps) if and only if C forms an R-submodule of Fps

pmR
2ps

.
Any FpmR-additive linear code is called an FpmR-additive skew negacyclic code if, for any vector

(a0, a1, . . . , aps−1, b0, b1, . . . , b2ps−1) ∈ C, the vector
(
−π(aps−1), π(a0), . . . , π(aps−2),−Π(b2ps−1),Π(b0), . . . ,Π(b2ps−2)

)
also belongs to C.
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Proposition 5.1. A code C is an FpmR-additive skew negacyclic code of block length (ps, 2ps) if and only if C is a left
R[x;Π]-submodule of R.

Proof. We only prove the implication part, as the converse follows a similar argument. Let C be an FpmR-
additive skew negacyclic code of block length (ps, 2ps), and let c = (a,b) ∈ C, where a = (a0, a1, . . . , aps−1) ∈ Fps

pm

and b = (b0, b1, . . . , b2ps−1) ∈ R2ps
.

Since there is a bijection between Fps

pmR
2ps

and R = R1 × R2, we have c(x) = (a(x), b(x)) ∈ R. Consider the
action of x on c(x):

x ∗ c(x) =
(
xa0 + xa1x + · · · + xaps−2xps

−2 + xaps−1xps
−1, xb0 + xb1x + · · · + xb2ps−2x2ps

−2 + xb2ps−1x2ps
−1

)
=

(
−π(aps−1) + π(a0)x + · · · + π(aps−2)xps

−1,−Π(b2ps−1) +Π(b0)x +Π(b1)x2 + · · · +Π(b2ps−2)x2ps
−1

)
.

This expression is the skew negacyclic shift of c. Hence, x ∗ c(x) ∈ C. Since C is linear, for any f (x) ∈ R[x;Π],
f (x) ∗ c(x) ∈ C. Therefore, C is a left R[x;Π]-submodule of R.

In Section 2, we defined a Gray map ϕ from R to F2
pm , and subsequently extended this Gray map ϕ from

Rn to F2n
pm . In this section, we further extend this Gray map from mixed alphabets Fps

pmR
2ps

to F5ps

pm as follows:

Φ : Fps

pmR
2ps
−→ F

5ps

pm ,

Φ((a0, a1, . . . , aps−1, b0, b1, . . . , b2ps−1)) = (a0, a1, . . . , aps−1, ϕ(b0), ϕ(b1), . . . , ϕ(b2ps−1)).

Since the map ϕ is distance-preserving, Φ is also a distance-preserving map, converting Lee distance
to Hamming distance. Moreover, Φ is a bijective map, which implies that if C is an FpmR-additive skew
negacyclic code of block length (ps, 2ps), then Φ(C) is a linear code of length 5ps over Fpm .

Now, we present the key theorem of this section, which determines the generator polynomials of
FpmR-additive skew negacyclic codes of block length (ps, 2ps) in the next result.

Theorem 5.2. All possible FpmR-additive skew negacyclic codes of block length (ps, 2ps) are of the following types:

• Type 1: (0), R.

• Type 2: R2 ((a(x), 0)), where 0 ≤ deg(a(x)) ≤ ps
− 1.

• Type 3: R2
(
(k1(x), f1(x) + u1(x))

)
, where 2 ≤ deg( f1(x)) ≤ 2(ps

− 1) and deg( f1(x)) > deg(1(x)).

• Type 4: R2
(
(k2(x),u f2(x))

)
, where 0 ≤ deg( f2(x)) ≤ 2(ps

− 1).

• Type 5: R2 ((a(x), 0)) + R2
(
(k1(x), f1(x) + u1(x))

)
, where 0 ≤ deg(a(x)) ≤ ps

− 1, 2 ≤ deg( f1(x)) ≤ 2(ps
− 1),

and deg( f1(x)) > deg(1(x)).

• Type 6: R2 ((a(x), 0)) + R2
(
(k2(x),u f2(x))

)
, where 0 ≤ deg(a(x)) ≤ ps

− 1 and 0 ≤ deg( f2(x)) ≤ 2(ps
− 1).

• Type 7: R2
(
(k1(x), f1(x) + u1(x))

)
+ R2

(
(k2(x),u f2(x))

)
, where 0 ≤ deg( f2(x)) ≤ 2(ps

− 1), 2 ≤ deg( f1(x)) ≤
2(ps
− 1), f2(x) |r f1(x), and deg( f2(x)) > deg(1(x)).

• Type 8: R2 ((a(x), 0)) + R2
(
(k1(x), f1(x) + u1(x))

)
+ R2

(
(k2(x),u f2(x))

)
,

where deg( f2(x)) > deg(1(x)), f2(x) |r f1(x), 0 ≤ deg(a(x)) ≤ ps
− 1, 0 ≤ deg( f2(x)) ≤ 2(ps

− 1), 2 ≤
deg( f1(x)) ≤ 2(ps

− 1), and max{deg(k1(x)),deg(k2(x))} < deg(a(x)).

Moreover, in all these types, a(x) ∈ B, f1(x), f2(x) ∈ B, k1(x), k2(x) ∈ R1, 1(x) ∈ R′1, and the polynomial 1(x) is
unique under the conditions mentioned. Here, B is the set of all monic factors of (x + 1)ps over Fpm [x;π].
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Proof. Let Θ be the canonical projection on the R[x;Π]-module defined by

Θ : C → R2,(
a(x), b(x)

)
7→ b(x).

The kernel of Θ is given by

Ker(Θ) = {(v(x), 0) ∈ C | v(x) ∈ R1}.

Thus, J = {v(x) ∈ R1 | (v(x), 0) ∈ Ker(Θ)} is a left ideal of R1. By [25, Proposition 3.1], there exists a(x) ∈ B
such that J = R1(a(x)). Therefore, Ker(Θ) is a left R[x;Π]-submodule of C generated by a single element of
the form (a(x), 0), i.e.,

Ker(Θ) = R2(a(x), 0).

By the first isomorphism theorem, we have

C

Ker(Θ)
� Θ(C),

which is a left ideal of R2. From Theorem 4.5, we get

C

Ker(Θ)
� Θ(C) = R2

(
f1(x) + u1(x)

)
+ R2

(
u f2(x)

)
,

where f1(x), f2(x) ∈ B, 1(x) ∈ R′1, f2(x) |r f1(x), and deg( f2(x)) > deg(1(x)). This implies thatΘ(C) is generated
by f1(x)+u1(x) and u f2(x). For k1(x), k2(x) ∈ R1, there exist two elements (k1(x), f1(x)+u1(x)) and (k2(x),u f2(x))
such that

Θ((k1(x), f1(x) + u1(x))) = f1(x) + u1(x),
Θ((k2(x),u f2(x))) = u f2(x).

Hence,

Θ
(
R2(k1(x), f1(x) + u1(x)) + R2(k2(x),u f2(x))

)
= R2

(
f1(x) + u1(x)

)
+ R2

(
u f2(x)

)
.

Thus, any codeword of C is generated by these three elements, namely, (a(x), 0), (k1(x), f1(x) + u1(x)), and
(k2(x),u f2(x)). Therefore,

C = R2(a(x), 0) + R2(k1(x), f1(x) + u1(x)) + R2(k2(x),u f2(x)).

We then have the following cases:

• Type 1: We have two cases for the trivial left ideal.

1. Case 1. If deg(a(x)) = deg( f1(x)) = deg( f2(x)) = 0, then k1(x) = k2(x) = 1(x) = 0 and C = R(1).
2. Case 2. If deg(a(x)) = ps, deg( f1(x)) = deg( f2(x)) = 2ps, and k1(x) = k2(x) = 1(x) = 0, then C = R(0).

• Type 2: If deg( f1(x)) = deg( f2(x)) = 2ps, 0 ≤ deg(a(x)) ≤ ps
− 1, and k1(x) = k2(x) = 1(x) = 0, then

C = R2 (a(x), 0).

• Type 3: If deg(a(x)) = ps, 0 ≤ deg(k1(x)) ≤ ps
− 1, f1(x) ∈ B, 2 ≤ deg( f1(x)) ≤ 2(ps

− 1), deg( f2(x)) =
deg( f1(x)), deg( f1(x)) > deg(1(x)), and k2(x) = 0, then C = R2

(
k1(x), f1(x) + u1(x)

)
.

• Type 4: If deg(a(x)) = ps, deg( f1(x)) = 2ps, 0 ≤ deg(k2(x)) ≤ ps
− 1, f2(x) ∈ B, 0 ≤ deg( f2(x)) ≤ 2(ps

− 1),
deg( f2(x)) > deg(1(x)), and k1(x) = 0, then C = R2

(
k2(x),u f2(x)

)
.
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• Type 5: If 0 ≤ deg(a(x)) ≤ ps
−1, 0 ≤ deg(k1(x)) ≤ ps

−1, f1(x) ∈ B, 2 ≤ deg( f1(x)) ≤ 2(ps
−1), deg( f2(x)) =

deg( f1(x)), deg( f1(x)) > deg(1(x)), and k2(x) = 0, then C = R2(a(x), 0) + R2
(
k1(x), f1(x) + u1(x)

)
.

• Type 6: If deg( f1(x)) = 2ps, 0 ≤ deg(a(x)) ≤ ps
− 1, 0 ≤ deg(k2(x)) ≤ ps

− 1, f2(x) ∈ B, 0 ≤ deg( f2(x)) ≤
2(ps
− 1), deg( f2(x)) > deg(1(x)), and k1(x) = 0, then C = R2 (a(x), 0) + R2

(
k2(x),u f2(x)

)
.

• Type 7: If deg(a(x)) = ps, 0 ≤ deg(k1(x)) ≤ ps
− 1, 0 ≤ deg(k2(x)) ≤ ps

− 1, f1(x), f2(x) ∈ B, 0 ≤
deg( f2(x)) ≤ 2(ps

− 1), 2 ≤ deg( f1(x)) ≤ 2(ps
− 1), f2(x) |r f1(x), and deg( f2(x)) > deg(1(x)), then

C = R2
(
k1(x), f1(x) + u1(x)

)
+ R2

(
k2(x),u f2(x)

)
.

• Type 8: If 0 ≤ deg(a(x)) ≤ ps
− 1, 0 ≤ deg(k1(x)) ≤ ps

− 1, 0 ≤ deg(k2(x)) ≤ ps
− 1, f1(x), f2(x) ∈ B,

0 ≤ deg( f2(x)) ≤ 2(ps
− 1), 2 ≤ deg( f1(x)) ≤ 2(ps

− 1), f2(x) |r f1(x), and deg( f2(x)) > deg(1(x)), then
C = R2 (a(x), 0) + R2

(
k1(x), f1(x) + u1(x)

)
+ R2

(
k2(x),u f2(x)

)
.

By considering our above discussion, we present the algebraic structure of separable FpmR-additive
skew negacyclic codes. A FpmR-additive skew negacyclic code C is called a separable FpmR-additive skew
negacyclic code if it can be written as C = C1 ⊗ C2, where C1 and C2 are the canonical projections of C on
the first ps and the last 2ps coordinates, respectively.

Theorem 5.3. Let C = C1 ⊗ C2 be a separable FpmR-additive linear code of block length (ps, 2ps), where C1 and C2
are linear codes of length ps and 2ps over Fpm and R, respectively. Then C is an FpmR-additive skew negacyclic code
if and only if C1 and C2 are skew negacyclic codes of length ps and 2ps over Fpm and R, respectively.

Proof. Let C be an FpmR-additive skew negacyclic code and (a0, a1, . . . , aps−1, b0, . . . , b2ps−1) ∈ C such that
(a0, a1, . . . , aps−1) ∈ C1 and (b0, b1, . . . , b2ps−1) ∈ C2. Since C is closed under a skew negacyclic shift, we get(

− π(aps−1), π(a0), π(a1), . . . , π(aps−2),−Π(b2ps−1),Π(b0),Π(b1), . . . ,Π(b2ps−2)
)
∈ C,

which implies that(
− π(aps−1), π(a0), . . . , π(aps−2)

)
∈ C1 and

(
−Π(b2ps−1),Π(b0), . . . ,Π(b2ps−2)

)
∈ C2.

Therefore, C1 is a skew negacyclic code of length ps over Fpm and C2 is a skew negacyclic code of length 2ps

over R.
Conversely, let C1 and C2 be skew negacyclic codes of length ps and 2ps over Fpm and R, respectively,

and let
(
a0, a1, . . . , aps−1, b0, b1, . . . , b2ps−1

)
∈ C. Then we have

(
− π(aps−1), π(a0), . . . , π(aps−2)

)
∈ C1 and

(
−

Π(b2ps−1),Π(b0), . . . ,Π(b2ps−2)
)
∈ C2. Thus,(

− π(aps−1), π(a0), . . . , π(aps−2),−Π(b2ps−1),Π(b0), . . . ,Π(b2ps−2)
)
∈ C,

that is, C is closed under skew negacyclic shift. Hence, C is an FpmR-additive skew negacyclic code of block
length (ps, 2ps).

Theorem 5.3 states that any separable FpmR-additive skew negacyclic code of block length (ps, 2ps) is

precisely the direct product of left ideals of R1 =
Fpm [x;π]
⟨xps
+1⟩ and left ideals of R2 =

R[x;Π]
⟨x2ps

+1⟩ . In Section 3, we
discussed the complete structure of left ideals of R′1, and in Section 4, a similar study was conducted for the
left ideals of R2. We now present the generator polynomials of separable codes in the following result:

Theorem 5.4. Let C be a separable FpmR-additive skew negacyclic code of block length (ps, 2ps). Then the generator
polynomials of C are given as follows:

• Type 1: ⟨((x − 1)k, 0)⟩ and ⟨((x − 1)k, 1)⟩, where 0 ≤ k ≤ ps
− 1.

• Type 2: ⟨((x − 1)k, 0), (0,u(x2 + 1)i)⟩, where 0 ≤ k ≤ ps
− 1 and 0 ≤ i ≤ ps

− 1.
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• Type 3: ⟨((x − 1)k, 0), (0, (x2 + 1)i + uh(x)(x2 + 1)t)⟩, where 0 ≤ k ≤ ps
− 1, 1 ≤ i ≤ ps

− 1, 0 ≤ t ≤ i, and
either h(x) = 0 or h(x) is a unit. Furthermore, h(x) can be expressed as h(x) =

∑i−t−1
j=0 (h0 jx+ h1 j)(x2 + 1) j, where

h0 j, h1 j ∈ Fpm , h00x + h10 , 0, and deg(h(x)) ≤ 2(T − t) − 1, where T is the smallest positive integer such that
u(x2 + 1)T

∈ ⟨(x2 + 1)i + uh(x)(x2 + 1)t
⟩.

• Type 4: ⟨((x − 1)k, 0), (0, (x2 + 1)i + uh(x)(x2 + 1)t), (0,u(x2 + 1)w)⟩, where 0 ≤ k ≤ ps
− 1, 1 ≤ i ≤ ps

− 1,
0 ≤ t ≤ i, w < T, and h(x) and T are as in Type 3. Additionally, deg(h(x)) ≤ w − t − 1.

Proof. Let C = C1 ⊗ C2 be a separable FpmR-additive skew negacyclic code of block length (ps, 2ps). By
Theorem 5.3, C1 is a skew negacyclic code of length ps over Fpm . This implies that there exists a skew
polynomial a(x) such that C1 = ⟨a(x)⟩, where a(x) is a monic divisor of (x + 1)ps

. Similarly, C2 is a skew
negacyclic code of length 2ps over R. By Theorem 4.9, C2 = ⟨b(x)⟩, where b(x) is one of the 4 types of
polynomials. Therefore, by the definition of a separable code, C = ⟨(a(x), 0), (0, b(x))⟩.

Remark 5.5. The obtained additive skew negacyclic codes over FpmR contribute significantly to the literature by
offering a novel extension of the existing framework of skew constacyclic and negacyclic codes over finite chain rings
and mixed alphabets. These codes generalize the classical additive codes by incorporating both the algebraic structure
of finite fields and the underlying non-commutative nature of skew polynomial rings.

In the current literature, additive codes have been extensively studied over various algebraic structures, including
finite fields, finite chain rings, and mixed alphabets such as Z2Z4 and Z2Z2[u]. The present work builds upon these
foundations by introducing and classifying skew negacyclic codes over the mixed alphabetFpmR, whereR = Fpm+uFpm

with u2 = 0. This extension is motivated by the algebraic properties of the chain ringR, which allows the construction
of new classes of additive codes with potentially improved error-correcting capabilities.

A key contribution of this work is the explicit characterization of the algebraic structure of these codes through
their generator polynomials and separability conditions. The relationship between the obtained codes and classical
constacyclic codes is established via the decomposition of skew negacyclic codes into direct sums of skew constacyclic
codes of shorter lengths, as demonstrated in Theorem 3.2, Proposition 3.9, Theorems 4.2, 4.5, 5.2 and 5.3. This
decomposition not only provides insight into the structure of the codes but also facilitates the construction of Maximum
Distance Separable (MDS) and near-MDS codes, which are of great importance in coding theory.

Moreover, the separability property of the additive codes over FpmR plays a crucial role in linking these codes
to their torsion codes over Fpm , as shown through the Gray map and the annihilator structure of left ideals. This
connection establishes a bridge between additive codes over mixed alphabets and their classical counterparts, further
enriching the existing body of knowledge on skew cyclic and additive codes.

Example 5.6. Consider the ringR = F33 +uF33 with u2 = 0, the quotient ring R2 =
R[x;Π]
⟨(x2+1)3⟩

, and the automorphism
Π ∈ Aut(R) defined byΠ(a) = a3 for any a ∈ R. Then ord(Π) = 3. Let w be a (33

−1)-primitive root of an irreducible
polynomial of degree 3 in F3[x].

The factorization of x6 + 1 in R[x;Π] is given by

x6 + 1 = (x2 + (2w2 + 2)x + 1)(x2 + (2w2 + 2w)x + 2w2 + w + 1)(x2 + (2w2

+ w + 2)x + w2 + w + 1).

Consider C = R2

(
a(x), 0

)
+ R2

(
k2(x) + u f2(x)

)
, where a(x) = k2(x) = x3 + 1 and

f (x) = (x2 + (2w2 + 2w)x + 2w2 + w + 1)(x2 + (2w2 + w + 2)x + w2 + w + 1)

=⇒ f (x) = x4 + (w2 + w + 2)x3 + (w2 + w)x2 + (w2 + 1)x + 1.

Therefore, C has a generator matrix G, with its rows given as follows:

• First row: 0, 0, 0,u,u(w2 + 1),u(w2 + w),u(w2 + w + 2),u, 0.

• Second row: 0, 0, 0, 0,u,u(w6 + 1),u(w6 + w3),u(w6 + w3 + 2),u.
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The rows of the generator matrix Φ(C) are

• First row: 0, 0, 0, 1, 1,w2 + 1,w2 + 1,w2 + w,w2 + w,w2 + w + 2,w2 + w + 2, 1, 1, 0, 0.

• Second row: 0, 0, 0, 0, 0, 1, 1,w6 + 1,w6 + 1,w6 + w3,w6 + w3,w6 + w3 + 2,w6 + w3 + 2, 1, 1.

Hence, using the MAGMA algebra system [11], Φ(C) having parameters [15, 2, 10].

6. Conclusion

This study delves into the algebraic properties of skew negacyclic codes of length 2ps over Fpm and

R = Fpm + uFpm with u2 = 0 for an odd prime p. These codes can be represented as left ideals of
Fpm [x;π]
⟨x2ps

+1⟩ and
R[x;Π]
⟨x2ps

+1⟩ , respectively, where ord(π) and ord(Π) divide ps. We examine two cases based on p ≡ a (mod 4),
where a = 1 and 2. For each case, we analyze the algebraic structure and generator polynomials of these
skew negacyclic codes. Similarly, we study the structural properties and the generator polynomials of skew
negacyclic codes of length 2ps overR for both congruence cases. After establishing the code structures for a
single alphabet, we extend our investigation toFpmR-additive skew negacyclic codes of block length (ps, 2ps).
Moreover, we determine generator polynomials for FpmR-additive skew negacyclic codes and separable
skew negacyclic codes of block length (ps, 2ps). To illustrate our findings, we present some examples and
obtain MDS and near-MDS codes. Investigating skew negacyclic codes of block length (nps, kps) over the
mixed alphabets FpmR in the future might be an interesting field of investigation.
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