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Value-correlation controlled integer-valued autoregressive process in
random environment

Teodora D. Camagié?, Aleksandar S. Nasti¢**, Miodrag S. Dordevié?

Faculty of Sciences and Mathematics, University of Nis, Serbia

Abstract. The manuscript presents a new integer-valued first-order autoregressive process in a random
environment, which is governed by two control processes. The first process defines the marginal distribu-
tion, while the second regulates the correlation structure within the model. The properties of the proposed
model are examined in detail, providing insights into its theoretical foundations and practical implications.
Two methods for estimating the unknown parameters are introduced: the Yule-Walker estimator and the
conditional maximum likelihood estimator. A series of simulations assesses the efficiency of these esti-
mation techniques and demonstrates their performance across various scenarios. The effectiveness of the
introduced model is further evaluated through its application to real-life data.

1. Introduction

Due to the pervasive and frequent applications of counting processes in both natural and applied sci-
ences, as well as in social activities, they have become a highly active area of research for many statisticians.

In the mid-1980s, INAR (integer-valued autoregressive) models were developed based on the binomial
thinning operator introduced independently by McKenzie in [8], [9] and Al-Osh and Alzaid in [2]. These
models were suitable when describing data representing the counting of random events and elements of
a population that can only persist or disappear over time. Shortly thereafter, generalizations concerning
marginal distributions and thinning operators were made. Notable contributions in these areas can be
found in several sources, like [1], [3], [4] and [5]. Additionally, first discussions on higher-order INAR
models and those with random coefficients are present in [10], [14] and [15]. However, INAR models with
binomial thinning were not suitable for describing the population-related counts in situations where they
can change not only through the disappearance of elements but also due to interaction among existing
elements. A significant breakthrough was made by [13] by introducing the negative binomial thinning op-
erator and the new integer-valued process, now known as NGINAR time series, defined using a geometric
marginal distribution. All the advancements in developing these time series aimed to make the models
more adaptable to real-world data. Nevertheless, all of these models exhibited stationary characteristics.
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However, as almost everything of our observing interest is interconnected, specific non-stationary charac-
teristics often kept appearing in the graphs. Hence, a completely new concept of model construction in
[11], [12] and [7] by the RrINAR (random environment integer-valued autoregressive) models incorporated
a precisely defined influence of random environment conditions known as random states. It allowed the
marginal distribution parameter to vary over time so that its changes align with variations in environ-
ment conditions. Additionally, the random environment also influenced the distribution of the counting
sequence, generating a time-flexible thinning operator. The idea is to use the marginal distribution and
the distribution of the counting sequence with parameters that could take different values corresponding
to the states of a random environment. It was assumed that the number of environmental states is finite,
making the set of possible parameter values finite. Additionally, the processes of random environments are
constructed as first-order Markov chains, meaning their future states depend only on the present and not
on the past.

In the mentioned works on RrINAR models, clustering the process values and assigning the obtained
clusters to the corresponding values of Markov chains of controlling variables actually determined the
random environment process. However, besides the parameter values of the marginal distribution, this
procedure also set parameter a (and consequently the process correlation) as a counting sequence parameter,
which was not so intuitively clear. This limitation highlights the need for a more flexible modeling
framework, in which the dynamics of the mean and the correlation can be independently controlled. By
introducing two distinct control processes, each governed by its own Markov chain, the proposed model
enables a clear separation between the influence of the environment on the marginal distribution and its
effect on the autocorrelation structure. This structural distinction not only enhances the interpretability of
the model but also allows for more accurate modeling of real-world systems, where external conditions
may affect the mean level and temporal dependence of the data in different ways. Therefore, in this paper,
we introduce a new model with two control processes, in which a separate Markov process determines
its correlation structure. For example, consider the number of people waiting in line to buy ice cream on
the street over time. The number of people waiting in line is influenced, for instance, by the temperature.
If the temperature is exceptionally high, fewer people are likely to be walking on the street, resulting in
fewer people buying ice cream. Instead of using temperature values in exact degrees, we can simplify
the situation by introducing possible intervals of temperature values. So specifically, we can observe three
different temperature-based random states: high, optimal, and low. On the other hand, if there is a long line
or customers loudly comment on the ice cream’s quality, passersby may want to buy and join the line. In
this way, the quality of the ice cream, which can be either good or bad, affects the correlation of the number
of customers at successive time intervals. This leads to the concept of correlation control, which refers to
a mechanism by which the strength of dependence between consecutive observations is modulated by a
latent process. In our case, a separate Markov chain governs the values of the thinning parameter «, thus
dynamically adjusting the autocorrelation structure of the series in response to changes in the underlying
environment.

This paper focuses on developing and analyzing a new model, highlighting its construction, properties,
and practical applications. The first part of the study details the construction process for a model with
an arbitrary marginal distribution. In the second part of this section, the emphasis shifts to specifying
the geometric marginal distribution. The third section examines the fundamental properties of the defined
model, including its distributional characteristics, correlation structure, and conditional moment properties.
In the fourth section, we describe in detail the new concept of model control through two distinct random
environment processes. Then, in the next section we present the methods for estimating the model’s
unknown parameters and we also provide the simulation results that demonstrate the effectiveness of the
obtained parameter estimators. Finally, the sixth section discusses a potential application of the developed
model to real-life data, showcasing its practical value and potential uses in various fields. At the end some
concluding remarks ar given.
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2. Construction of the process

Definition 2.1. A sequence of random variables {Z,}, where n € Ny, is called a random environment process if it
forms a Markov chain with the state space E, = {1,2,...,r}, r € N.

We consider two independent sequences of random variables {Z,} and {V,}. Both sequences are Markov
chains with state spaces E,, = {1,2,...,r1} and E,, = {1,2,...,1,}, respectively. Using these sequences, we
will construct the following model.

Definition 2.2. A non-negative integer-valued sequence of random variables {X,,(Z,, V)}, n € Ny, is said to be the
value-correlation controlled integer-valued autoregressive process of order 1 (V-CCINAR(1)), with states r1 and ry if
it is given by

Xn—l(Zn—l/Vn—l)
XoZw Vi)=Y, Ui+ enZu1, Zo, Vo, Vi), neN,
i=1
where B
1 2
Xn(an Vn) = Z‘ Z X”(zr U)I|Zn=Z}I{Vn=U}’
z=1 v=1

5 1 2 2

5n(Zn—1/ Zn/ Vn—lr Vn) = Z Z‘ Z‘ Z 8,,(21, 22,01, 02)I{Z,,,l=21,Z,,=zz|I[V,,,1:v1,V,,=v2}/

Z1=1 Zz=1 ‘I)1=1 1)2=1

{Ui}, i € N, is a counting sequence of independent and identically distributed (i.i.d.) random variables generating a
thinning operator. Let {Z,} be a value controlling process (VC-process) and {V,} a correlation controlling process (CC-
process). These are random environment processes with state spaces E,, and E,,, respectively, as defined in Definition 1.
Here, Z,, determines the distribution of the random variable X,,, while the random variable V,, dictates the distribution
of the counting sequence {U;}. The corresponding sets of parameter values are given by M = {u1, o, ..., lir} and
A={o,a,...,0an}.

The sequences {Z,} and {V,} are mutually independent and consist of i.i.d. random variables that satisfy the
following conditions:
(1) {Z4}, {Vu}, for n € No and {e,(i,j,7,j’)}, ne€N, ijekE,, 7,j €kE,, are mutually independent for
n>0,
(2) Zy, and €,,(i, j, 7', j') are independent of X,,(I, k) for n <mand any l,i,j € E,, and k,7’, |’ € E,,.

Theorem 2.3. Time series {X,(Z,, V), Zy, V) given by Definitions 2.1 and 2.2 is a Markov chain of the first order.
Proor. To ease notation, let Y, = (X,,(Z,, V), Z,, V) and y,, = (X4, Z4, Uy). First, we see that it holds
Y. =y, © (Zn = 24, Vi = 0, Xu(20, 0n) = Xy).

Let A ={Y, = YS,O <s<n-1}, Pn-1n = P(Z, = zylZy-1 = z4-1) and P*n-1n = P(Vy =0,V = 041).
Now, let’s consider the conditional probability P,_1, = P(Y, =y,[Yu-1 = y,_;,A). Using the definition of
the process, we have that

Xn-1(Zn-1,Vn-1)
Y, = Y, < ( Ui+ enZn1,Zu, Va1, V) =x0 N Zy=2z, AN V,= vn)r
i=1
while it is
Yii1=y, 19 Zisi=2021 A Vyaa =00 A Xyo1(Zu-1,0p-1) = Xn—1) -

From there, we conclude that

Xn-1
Puan=P|)]
i=1

u; + Sn(zn—l/zn/ Un-1, vn) =Xp,Zn =2y, Vy = UnIB]/
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where we have denoted the event {Z,_1 = z,_1} N {Vy-1 = 021} N {Xn-1(24-1, Vn-1) = x4-1} N A by B. Due to
the independence of the corresponding random variables, the probability above is equal to the product of
the probabilities

Xn—-1
P[Z U; + €n(Zn-1,2n, Un-1,04) = xn|B] “P(Zy, = zy|B) - P(V), = vy|B).
i=1

Since Y. 7"7" Ui+ €4(2n-1, Zn, Un-1, V) does not depend on the random variables that appear in B, the first factor
i=1

of the product is equal to P( fz”il Ui + €1(zn-1,2Zn, Un-1,0y) = x,,). Since {Z,} and {V,,} are first order Markov

chains, Z, and V,, depend only on Z,_; and V,_;, respectively, so the last two factors in the product are

equal to P(Z,, = zy|Z,-1 = zy-1) = pu-1,0» and P(V,, = v,|V},-1 = v,_1) = p #4-1,» . Finally, we have that

Pu1n = Pu-in - P *n-1 ‘P

Xn-1
Z ui + 511(2117]/ Zn, On-1, vn) = an- (1)

i=1

We will apply the procedure similarly to P(Y, =y, |Ys-1 = y,_;)- Again, we can express this probability
as the product of three probabilities. In the same manner as before, we conclude that.

P(Yn = yn|Yn—1 = yn_l) = Pn-1n P *n-1n -P

Xn—1
Z u; + gn(zn—lrznr Un-1, vn) = xn] . (2)

i=1
From (1) and (2), it follows that
POy =y, [Yu1 =y,.0) = P(Yn =y, Y1 =y, 4),

indicating that {X,,(Z,,, V), Z, V,,} forms a first-order Markov chain. O

2.1. Construction of the process with geometric marginal distribution and a negative binomial thinning operator

Let’s consider a model that is assumed to have a geometric marginal distribution due to the overdis-
persion observed in real-world data. Additionally, because of the dynamic nature of the systems being
observed, we assume that the model is based on a negative binomial thinning operator.

Definition 2.4. Let {z,,} and {v,} be realizations of the random environment processes {Z,} and {V,}, with r1 and r,
states, respectively.

We define the sequence {X,,(zy, vn)} for n € INg as a value-correlation controlled process with ry and r, states and
geometric marginal distribution, based on the negative binomial thinning operator (V-CCNGINAR(1)). The random
variable X,,(zy, vy) at time n is defined as follows:

Xn(znr Un) = Qy, * Xn—l(zn—ll vn—l) + En(zn—lr Zn, On-1, vn)/ n €N,

#Zn
144z,

where X,, ~ Geom( ), has a geometric distribution with expectation i, , that is

X
Haz,

P(X(zu,vn) = x) = m’

x € N,

with possible parameter values, u,, € {u1, Uz, ..., inl, 11 € N. Also, for a,, € (0,1), v, € {1,2,...,12}, counting
sequence {U;}, i € N, incorporated in cv,,* make a sequence of i.i.d. random variables with probability mass function
(pmf) given as

u
Un

P(Ui=u)=ml

ueNy, oy €la,az...,a,), 1 EN,
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where a,, = Y2 apl(V,, = v), namely

a1, with probability P(V, = 1),

ao, with probability P(V, = 2),
Ay, =19.

Oy, with probability P(V, = 17).
A random variable €,(zy-1,Zn, Un-1, Uy) is defined as outlined in Definition 2.2.

The previous definition clearly illustrates how the process {z,} influences the distribution of X,,. Con-
versely, the realized values of the process {V,} determine the distribution of the counting sequence, which
affects the correlation structure of the process.

This model is one of the many possible special cases of the model given by Definition 2.2 that can be
defined, which presents numerous opportunities for further research.

3. Properties of the process

In this section, we will derive several properties of the model described above. The next theorem
identifies the distribution of the innovation random variable. Many steps and derivations in the proofs
of the theorems in this section closely follow the techniques used in the corresponding results from [11].
However, since we are dealing here with two random states that control the processes, the proofs are
presented in detail.

Theorem 3.1. Let {X,(z,,vn)}, for n € Ny, be the time series model introduced by Definition 2.4. Assume that
p1>0,u2>0,..., 14, >0 If0< a,, < min{lfﬁ;k,l € E,,}, forany v, € E,,, then when z, = jand z,_ = i, with
i,j € E,, and v, = j and v, = 7', where j',i’ € E,,, the distributions of the innovation random variables can be

expressed as mixtures of two geometric distributions, i.e. as

i aj i
N Geom(rilj), wp. 1- !1//_7,
En(lr ] ) = G ajy aj i (3)
eom(1+a/-/ )’ w.p. pj—aj’

where the equality refers to equality in distribution.

Proor. The probability generating function is considered. Based on Definition 2.4 and the conditions z, = j,
Zy-1 = 1,0, = j',and v, =7, it follows that X,,(j, /') = aj * X,-1(i,7') + €4(i, , 7', j'). Therefore,

Dy, (i)(5) = E(SX,,(j,j’)) _ E(Sa]-/*XyH(i,i’)+s,,(i,j,i’,j’)).

Based on the independence of the random variables ¢,(3, j, 7', j) and X,,—1 (i, j), and considering the properties
of expectation, we can conclude that

E(sa//*X,H(i,i’)+e,,(i,j,i’,j’)) _ E(Saj,*xn,1 (z‘,i’))E(Ssn(i,j,i’,j’))_

Furthermore, utilizing the properties of the negative binomial thinning operator, we find that

E(s%m100) = E((Esthy*=101) = D, . Pu, (5))-
Thus, it follows that

D, (1)(5) = Px, 160 (P () Pe, i, 1)(5),
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or equivalently,

Dy, () (5)

— 4
Ox, 6P, (5))

D i i, (8) =

Given that the random variable X;(j, j) follows a geometric distribution with parameter yu;, we find that

1
D@, () () = 7 ®)
O Ty = s
which is derived from the properties of the geometric distribution. Similarly, we have
P60 = T ©
Xn-1(0,1") - 1+ [Jz _ ‘uls

Moreover, the random variable U; also has a geometric distribution with parameter a, thus

1

O} =
Ul(s) 1 +0é]‘f — Qs

From the fact that the random variable X,,_1(i,i") has a geometric distribution with expectation u;, we
conclude that

1 Xu-1(0,1")
q)anl(irf’)(q)Ul (S)) - E((l +ay - Oéj’s) )
1 B 1+ Oc]'/ — O(j/S
T+a;p(1+p)—ap(l+ ui)s’

1+y1'

~ iTra s
Now, replacing the previous equality and equations (5) and (6) into (4), we obtain:

1+ap(1+w)—ap(l+ py)s
q)e,,(i,j,i',j')(s) = ( ] i ] i

T+ap —aps)(1+ uj—pjs)
l+ap—aps+apu; +apus
1+ ap —aps)(1+uj—ujs)

_ 1 aj i Hj—Hjs—ay +ajs

T lvpimws ey (Lag —aps)(L+p—pgs)

_ 1 N aj ( 1 B 1
Vtpj—ps  pay \1+ay—aps 1+pj— s

(1_ aj'ui) 1 . aj i 1
pi—ap) T+pj—us  pi—ap l+ap—aps’

We find that the probability generating function of the random variable ¢,(i, j, 7', /) can be expressed in
the form of (3), given the condition that 0 < a; < %,V]" € E,,. This condition guarantees that the
corresponding probabilities in (3) are non-negative. Since, i,j € E,, and 7, j € E,, are arbitrary, it follows

that forany i,j € E,,0 < ay < %, Vj € E,,. This is achieved if a; satisfies

B ,
aje () [O,HW], Vi €E,,.

k,IeE,.1

In other words, we require that 0 < ay < min {ﬁ,k,l € E,l}, Vi’ €E,. O
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In the following theorem, we will provide the expectation and variance of the innovation process.

Theorem 3.2. Let z,-1 =i, z4 = j, 41 = ¥ and v, = j, where i,j € E,, and i',j € E,,. The expectation
and variance of the random variable €,(i, j, 1, j') are given by E(en(i, j, i’,j’)) = uj—aju; and D(en(i, B, j’)) =
[,lj(l + ‘Ll]) - aj/yi(l + 201]‘/ + aj/y,-).

Proor. Let @.(s) be the probability generating function of the random variable ¢,(i, j,i’, j). Then, we have
the expectation E(e,(i, j, 7/, j')) = ®,(1) and the variance is given by D(e,(i, j)) = /(1) + ®.(1)(1 - @}(1)).
Using the proof from the previous theorem, we can conclude that ®;(1) = y; — ayu; and ®7(1) = Z(yjz, -
aj il — ajz., 1) Thus, we have that

E(en(i, i, ) = = appi

and
D(enti, 7 1)) = 2015 = appitty = @) + (ot = @y )1 = iy + i)
— 2#? _ 201/#1#] — 2a]2,/‘ui + Wi — [J? + aplilhj — aj Ui + aj itk = 0{?,#12
= ‘1]2 tuj—apli— 20(?,[,!1‘ - a?'[“liz
= w1+ wj) — ap il +2a; + ajp ).
O

3.1. Correlation structure

The key feature of any autoregressive process is its covariance-correlation structure, which represents
the interconnection and dependence of individual elements. In our model, this structure is governed by
a Markov process that controls the value of a thinning parameter «a, allowing the strength of dependence
between observations to vary over time. This flexibility enables the model to capture realistic temporal
behavior in systems where external conditions-such as seasonality, demand cycles, or environmental fluc-
tuations - affect not only the marginal distribution, but also the persistence and variability of the process.
Analyzing these functions under such stochastic control is essential for understanding and applying the
model in non-stationary environments.

Theorem 3.3. Let {X,(zu, v4)}, where n € Ny, be the process given by Definition 2.4. Assume that 1 > 0, up >
0,...,ty, > 0. Then, we have the following:

(i) the covariance function between the random variables X,(zy, vn) and Xy_i(zn—k, Un—t), for k € {0,1,...,n} is
positive. It is given as
Y0 = Cov(Xon(zn, ), Xk ok Onoi)) = 0 - 1z (1 s, ),

(ii) the correlation function between the random variables X, (z,, vn) and X,_i(Zn—k, Un-k), for k € {1,2,...,n} is
positive, and always less than 1. It is given by

1+ )
(k) = Corr X” Zn, ’(]n /X}’l— Zn_ ,’(]n_ = ak . M
Pn (X )s Xn-k(Zn—k, Un-k)) = &, (T )

Proor. (i) Model {X,(z,,v,)}, with n € Ny, satisfies the equation X,(zn,vs) = o, * Xy-1(Zn-1,0n-1) +
E‘rl(znflrznr On-1, U‘rl)/ so we have that

V;k) = Cov(Xy(zn, Vn), Xn-k(Zn—t, Un-k))

= Cov(avﬂ * n—l(Zn—lr vn—l) + 5n(zn—1/ Zn, On-1, Un)/ Xn—k(zn—kr Un—k))-
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Due to the independence of random variables €,(z,-1,zy, Un-1, V») and X,_x(z,-k, v4—k) the expression

)/Ezk) = COU(OCUW * Xn—l (Zn—lr vn—l)r Xn—k(zn—kr vn—k))
is valid. For random variables X and Y that are independent of the counting sequence included in the
thinning operator, it holds that Cov(a * X, Y) = a - Cov(X, Y). Using this property, we have that

k k—
)/fq) =y, COU(Xn—l(Zn—l/ Un—l)/ Xn—k(zn—k/ Un—k)) = Qy, - ')/,(1_11)~

Applying this equation k — 1 times, we find that the covariance function between the random variables

Xu(zn, vn) and X,—(zy—k, Vu—k) is given by yqu) = a’;n . V;O—)k‘ Here, )/1(10_)]( represents the variance of the random

variable X,,_x(z,-k, Vn—r) Which follows a geometric distribution with mean parameter . _,. Thus we can

express the covariance as yﬁlk) =ak o (14 s, ).

(if) The correlation function between the random variables X, (z,, v,) and X,,_k(z,—, v4—k) can be expressed
in terms of the corresponding covariance function as follows:

k)
) _ 7/1(1

P [0
V'V ok

Now, using result (i), we obtain that the correlation function between the random variables X,,(z,, v,) and
Xy—k(Zu—k, Un—k) is given by

® _ k pz, (L + iz, )
N = an e |
P o e, (1 + iz,

It is still necessary to show that the correlations pg{) are always less than 1. Based on Theorem 3.1 and
Theorem 3.2, we can conclude that the expectation of the random variable ¢,(, j, ', j’) fori, j € E, ,i’, j’ € E,,
is positive. Specifically, from Theorem 3.1 is

os(x]-,smn{lfl# ikI1€E
k

Hj Hi, .,
) < Tom < E,v] €E,,. %

Now, from (7), fori = z,,_x, j = 24,7 = v,_x and | = v,,, we have that
] J

1+
ay, < luzn < luzn < Hzn ,
1 + [’lzn—k [’lzn—k yzn—k

which implies that
1+
by, < | L H) @)
luzn—k(l + ['lzu—k)
Since a,, < 1, then we have that oz’;” < @, so from (8) it finally follows that

Z, 1 + Zy—
p,(qk) < ay, - Hz (1 + 1z,,)
pz, (1 + piz,)

As expected, it is clear that both yqu) and pf,k) converge to 0, as k — oo.
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3.2. Conditional properties

Now, we will examine some regression properties of the process defined above, as illustrated by the
following theorem. These conditional properties-including the conditional expectation and variance-are
essential for understanding the short-term dynamics of the process. In particular, they reveal how the
current state of the environment and the recent history of the process jointly influence future outcomes.
This information is critical for forecasting and inference, especially in systems where external conditions
evolve over time and affect not only the mean level but also the uncertainty of future values.

Theorem 3.4. Let {X,,(z,, vn)}, where n € Ny, be the process defined by Definition 2.4. Assume that 1, o, ..., ty, >
0. Then, we have the following:
(a) The conditional expectation of the random variable X1 (Zy+k, Un+i) 01 Xy (25, ) is expressed as:

E<Xn+k(zn+k/ Un+k)|Xn(Zn/ Un)) = Ay, Koppg -+ - Aoy Xn(zn/ Un) + Uz = Qv Qv -+ - Koy Uz
(b) The conditional variance of the random variable X,k (Zu+k, Un+k) 0N Xn(2n, 0y) is expressed as:

k=2 1-2

D(Xn+k(zn+k/ Vi) X (20, Un)) = a Dtk pavmk,;(l + azz,,”H)
1=0 p=0

I\J

X [avu-v-k—l—l e avnnxﬂ(znl Un) + Hzypioir = Qopgprg - - - Aoy Hzn]
+ (1 + Xy 1)q0, - - Qv Xn(Zn, Un)

- avwrk(]‘ + aUnJrk)avmkq - Oy Pz,

+ avrﬁ-k(l + avwk)uzwk—l(l - a%w{ Mz (1 + |u2n+k-1))

+ ['lzywk(l + Hzmk)
k-1 1-1

+ 0( Untk—p Auzn+k 1 1 + !erw-k l)
1=1 p=0

~ Xy Auzn+k—1(1 + 200, + o,y HZer—I))'
Proor. (a) To simplify the notation, let
HUntkin = E(Xn+k(zn+kr Vpsic)| X (21, Un))

and
Ue, = E(gn(zn—lz Zn, On-1, Un))~

From the definition of time series model and the independence of the random variables &, (Zy-+k-1, Zn+k, Vntk—1, Un+k)
and X;;4k-1(Zn4k-1, Untk-1), we obtain

Hn+kin = E(avy,+k * Xn+k—1 (Zn+k—1/ Z]n+k—1) + 5n+k(zn+k—l/ Zn+kr On+k—1, vn+k)|Xn (Zn/ vn))
= E(ocv,Hk % Xk Gk, Ok Xn (2, On) ) + E(€n+k(zn+k_1,zn+k, Vnsk-1, Un+k))-

Since E(a+X|Y) = aE(X]Y) holds for random variables X and Y, which are independent of counting sequence
within the operator, we have that p,+q, = @, Unrk-1pn + Ue,..- By applying the last equation k — 1 times, we
can derive further results.

["l”+k|" = avl’+k (O(Uwrkfl !’l”+k_2|n + ”5n+k—1 ) + ["lfywkavn#{avrﬁkfl (avrwkfz (lln+k_3|n + [u5n+k—2) + avrﬁk Hfrwk—l + nywk

= O, Oy Qv Bnrk=3In T Qv Qo Heyain T Qo blenaoy 1 Hey

k-1 1
= 0, By« - Qv Bl + z ! | | Qv | Henakar

1=0 \ p=0
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Now, we substitute pi,, = X,,(z,, vs) and use the obtained result for expectation of random variable &,,,¢_;, I €
{0,1,...,k—1}. This leads to

k=1

1
Hntkin = Cv,,y Koypq - - avnﬂxn(zn’ Un) t Uz — Qv lzp + 2 H Q0 hy (lLlZn+k—I—1 - avnk—l—l luZVH-k—I—Z)
1=0 \ p=0

- avn+kav;1+k4 te avil+1 X” (ZVI’ vn) + [Jzn+k - avywk Hzn+k4 + avn+k”2n+k4 - avYH»ka'UYH»k*'l ”prkfz

k=1 1
+ Z H A0y (Au'zr1+k—1—1 T Qo “Zn+k—1—2)
I=1 \ p=0

= 00, Aoy -+ Aoy X‘Vl(z”” Un) + Hzpr = A0, Qvypy -+ - oy Mz, (9)

(b) Now, let us consider the conditional variance. As above, in order to ease the notation we introduce

031+k|n = D(Xn+k(zn+k/ Vi) X (Zn,s vn))

and

2
0;, = D(sn(zn_l,zn, Un—lrvn))-

Given the independence of the random variables €,,.4k(Zy+k-1, Zn+k, Vntk-1, Un+k) from X, (z,, v,,) and Xy 4k-1(Zn4k-1, Untk—1),
we conclude that

E(X2, et 0 Xz, 0n)) = E([00,00 * Xorskot Zrkot, Onske1) + EnekZnakots Znsks U1, Onst) 21X (2, 0)
= E([to,., * Xonek-1 ekt Onak-) 1Koz, 0u)) + 2E(0to, * Xkt (Zusko, Onrkr)
+ Enk(Znk-1, Znsks Ok, V)| X (2, O)
+ E(€2,, (Zuskot, Znsks Onsket, U1 Xin (2, On))
= E((%M % X k-1 (Znak-1, On k1)) 1 Xz, Un))
+ 2E(ato,., % Xkt Gnrkt, Ok Xn @, 0n)) + E(€nakZnnkt, Zusks Durk-1, Onek))

+ E(€i+k(zn+k—1/ Zy+ks On+k—=1, Z)n+k))'

Since E(@+X|Y) = aE(X|Y), E((@X)2IY) = ?EQCY)+a(+@)EXIY), 02, = ECC. vk 0nek)| Xz, 00)) -

n+kin
2 2 .
(EGKusk(Znsts 0 Xz, 02))) and 02 = E(e2,,[X,)) = (E(nsk|X,)) ", we obtain

Entk

szkln = azzjmkE(XiH(,l (Zn+k—1r Z)n+k—1)|Xn (an Un)) + (vak(l + va,ﬁk)E(Xn+k—1(Zn+k—1/ vn+k—1)|Xn (Zn/ vn))
+ 20y, E(Xak1(Znsk=1, Onsk=1)1 X (20, ) E(€ e (Zusk—1, Unk—1))

+ (&) (Zusk-1, Znsks Unsko1, Unsk)) = Hip i

— A2 2 2 2 2
- avr1+k an+k—1|n + tun+k—1\n) + avrﬁ-k(l + avn+k)“n+k_1|” + Zavrx+k#”+k_1|nyfrx+k + O-S,Hk + ME,Hk ~ Hn+kin

— A2 2 2 2 2
- av,,+ko_n+k71|n + av»r+k(1 + avwk)['l”"'k_l‘" + O-Emk + (avn+k[’1”+k_1‘” + H5n+k) 1un+k|n'

Since Upikin = Ay, Unsk-1n + He,.,, the following recurrence relation can be derived.

2 _ 2 2 2 2 2
6n+k|n - avn+kon+k—1|n + avwk(l + avmk)lu""'k—”” + 08n+k + lun+k\n |un+k|n
— A2 2 2
- avn+k0n+k—1|l’l + avwk(l + a”wk)l’l""'k‘l‘” + G€n+k'
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Applying the previous equation k — 1 times, we obtain

2 — A2 2 2 2 2
Onskin = 0,0\ Q0,1 O k2 + avn+k—1(]‘ + avrl+k—1)[l’ln+k_2 + Gey,+k_1) + avm—k(]' + “vn+k)#n+k—1ln + 0%,
— A2 2 2 2 2
- avmkavrwk—l av»1+k—20n+k73ln + avﬁkfz(l + av,,+k,2)[—ln+k—3|n + O-€n+k—2)
2 2 2 2
+ avn+kavn+k71 (1 + avn+k71)["ln+k_2|n + aanrkoé'nJrk,] + avn+k(1 + avmk)/‘lnﬂf—lln + GS,H;(
k=2 1-2
— A2 2 2 2 2
- avr1+kavrz+k—l e avnﬂ Unln + Z H a27”+k_pavn+k—1(1 + az’rwk—l)lun"'k_l_l‘n
1=0 p=0
k-1 1-1
2
+ avn+k(]‘ + avn+k)1u'n+k71|n + O-E,Hk + a Untk—p Ska 1°
=1 p=0

Given that afl =0, and using the variance result for the random variable ¢, I € {0, 1, where. .., k—1},
from equation (9), it follows that

k=2 1-2
2 _ 2
6n+k|n - avﬁk,pavwkfl(l + avmkfl)yn"'k_l_”” + avmk(l + avmk)yn‘*k—“” + lLlZYl+k(1 + Auzn+k)
1=0 p=0
k-1 1-1
- avrl+leerl+k—l (1 + 2avr1+k + avn+kuzn+k—1) + a Un+k—p 1uzn+k 1(1 + “Zn+k l)
=1 p=0

= Qo bz (1 + 200, + (o, Au'ZlHk—I—l))

= av,,+k_pa1’;1+k—1(1 + avn+k—l)[avn+k—l—l T avn+1X”(Zn/ vﬂ) + “Zn+k—1—1 - avn+k—l—1 s O,y lLlZn]

+ avr1+k(]‘ + avrz+k)|:avrx+k—l s Qo X"(Z"/ Z)n) + tu2n+k—1 - avn+k—1 s Qo luzn] + “Zn+k(1 + luZVH-k)

- avn+kluzw+k4 (1 + zavwrk + avnérk,’lzrwkfl)

k-1 1-1
+ ag,,Jrk,p (Auzn+k—l(1 + HZHH) - avn+k—l [JZkaI (1 + 2avn+k—l + avwrk—l ["lzn+k—l))
=1 p=0
k=2 1-2
= (X%ka avy,+k4(1 + avn+k—/)[avn+k—l—1 e aUVH—an (Zn/ Z)n) + #z,,wm T Qg s Bogg ‘uZn]
1=0 p=0

+ avn+k(]‘ + avn+k)avn+k4 e avnﬂ X"(znl U") - avn#((]‘ + avn+k)av;x+k—l e avnﬂ Auzn
+

2
avn+k(1 + avn+k)luzn+k—1 (1 - av,,+kHZ;z+k—1(1 + Uz, )) + !“lzn+k(1 + /“lzn+k)
k-1 I-

+

0( Untk—p Auzn+k 1(1 + F‘ZM 1) avmk l.uZka I(l + 20(7}n+k 1 + avrwk lf'lzmk I)) (10)

I}
f==}

=1 p

For all ;, it holds that |a;| < 1. Let o, = max{ay,,,, ..., &y,.,}. This implies that
0<ay,, .. .y, < (a,,)k -0, k- o,
Thus, for sufficiently large k, we have E(X,lX,) = Uz,,, = E(Xy4x). Finnaly, since p ., , = E(Xy4k-1) =

E(ay,., +Xyn + Ensk=1) = Qo Hzyurn T Heyoy» and by using recurrence relations based on (10), it follows that
D(Xn+k|Xn) ~ ,Uz,Hk(l + Hzn+k) = D(Xj4k)-
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4. Understanding model control through two distinct random environment processes

In introducing our model based on the RrNGINAR(1) framework presented by [11], we propose a
new random environmental process denoted as {V,,}. This process is independent of {Z,} and impacts the
thinning operator a, thereby illustrating the dependence among the elements of the process {X,}.

This modification of the RrtNGINAR(1) model enhances its adaptability to data, making it more ap-
plicable in real-world situations. Initially, it is crucial to determine the realizations {z,} and {v,}. For this
purpose, let’s consider a dataset x1,x, ..., xy that we aim to analyze using the introduced model. The first
question that arises is how to establish these realizations of the controlling processes based on this data.
Since the value of z, dictates the distribution of the random variable X, it is anticipated that values x;,
wherei € {1,2,..., N}, that are close to one another correspond to the same state z;. Accordingly, we cluster
the data x1, xy, . .., xn into r; different clusters, each corresponding to a specific state, as outlined in the work
of [11]. We use K-Means Clustering Algorithm, as it is explained in [6].

The values from the set E,, are crucial in linking X,,(z,, v,) to the corresponding distribution parameter
Uz, Consequently, the specific numbering of the clusters is irrelevant.

A new question emerges regarding how to determine the realizations {v,}. Our approach is to calculate
the corresponding autocorrelations p'), where i € {1,2,...,N — p}, for subsamples of size p derived from
the whole sample of size N. The subsamples are drawn in a sequential manner, starting with the first p
elements. The second subsample consists of elements 2,3, ...,p + 1, and this process continues accordingly.
Using this method, we have that

M _ 27:1 (xi — zp)(xi+1 - z10)
Zle(xi - yp)z
1 — —
p(z) _ 27:2 (xi = xp)(xi+1 - xp)
= T —
7:2 (xi = Xp)?
N-1 - -

N-1 —
Zi:N—p(xi -X)?

By using the clustering procedure, we consider the values p), p@, ..., pN=?) that are close to each other to
correspond to the same state, denoted as v;. Furthermore, these values can be approximated by a steady
curve, indicating that they are unlikely to be distributed in a ”chaotic” manner on the plot. This behavior
arises because we select subsamples successively, effectively “sliding” through the observed data step by
step. As aresult, every two consecutive subsamples contain the maximum possible number of overlapping
elements, specifically having p — 1 common elements. For instance, we might find that p) ~ p@, while it is
possible for pV and p®? to differ significantly. Now, we can group the obtained values p®, p@, ..., p™N=P)
into r, distinct clusters. Values belonging to the same cluster correspond to the same state. Importantly, the
specific numbering of the clusters is not significant in this context.

Now, the question arises of how to determine the value of p. Intuitively, it is evident that as p increases,
we have fewer disjoint subsamples and, consequently, fewer distinctly different values of p® for i €
{1,2,...,N = p}. Conversely, if p is small, we may have a larger number of different p) values. Therefore,
the sample size N influences the size of the subsample p, and it is clear that the number of states 7, depends
onp.

The size of the subsample p can be determined using the formula p = 5-log N. This approach is commonly
used in Sample Theory when working with large datasets to establish an appropriate subsample size for
further analysis and data processing. From the properties of the logarithmic function, it is clear that it
grows more rapidly when the values of N are small and then tapers off as N increases. Consequently, the
logarithmic function has the property of “compressing” large values of N into smaller values of p while
mapping smaller values of N onto larger values of p. This characteristic is useful for representing a wide
range of numbers.
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It should be noted that we will later derive the corresponding a” values fori € {1,2,...,N — p} based on
the second part of Theorem 3.3.

However, it is important to emphasize that due to the negative binomial thinning operator, the following
condition for a is mandatory:

1
+}lk’ Lke Eyl}, a€l{ay,ay,..., )

OSaSmin{

5. Parameter estimation

In this section, we will concentrate on estimating the model’s parameters, which is a crucial step in model
development. This process typically involves using mathematical and statistical methods to optimize and
estimate parameters, ensuring that the model aligns well with the data. Accurate parameter estimates
enable us to customize the model according to the data and draw meaningful conclusions.

In what follows, we explore two approaches to parameter estimation for the proposed model: the
Yule-Walker (YW) method and the Conditional Maximum Likelihood (CML) method. The YW method is
particularly well-suited for scenarios where rapid estimation is required and the underlying dependence
structure can be effectively captured through autocorrelations. It is computationally simple and performs
well when the latent environment remains relatively stable over time. However, its applicability may be
limited in more complex, non-stationary settings. On the other hand, the CML method is more flexible and
robust in the presence of time-varying dynamics and latent state processes, as it explicitly incorporates the
influence of the random environment. While CML is computationally more intensive, it often yields more
accurate and consistent parameter estimates in models with stochastic environmental control. In practice,
the choice between these two methods depends on the trade-off between computational efficiency and the
complexity of the data-generating process.

5.1. Yule-Walker estimation

Let’s examine a segment of the process where there is no change in state. For integers k, n € IN such that
Zk # 1, Zkel = Zks2 = -+ = 2 = i, and z,41 # 1, we can observe the subsample:

Xis1 (4, Oke1), Xiwa (i, Uks2), - -+, Xu(i, 04).

Since these elements all correspond to the same state i, this subsample can be considered a sample from the
NGINAR(1) process introduced in [13], with an expectation denoted as ;. Because the NGINAR(1) process
is stationary, the corresponding sample covariance is also strictly stationary, which allows for accurate
estimation. For further details, we refer to the work of [11], where estimators based on the subsample S
corresponding to k are defined. They are given by the following expressions:

—~ 1 A A —~@ 1 ‘ NP
= Y Xiko), 70 = - (Xilk o) — ),

i€l i€l

— 1 — —
7Y = — Y Kialk,oi) = Xk 0) = &),

1,i+1CI
where
Ik = {l S 1,2,...,N|Zi = k},
represent the index set of process elements corresponding to value k of VC-process. Also, we have that

n
k=12 N, ld=n, m+nm+-+n, =N,
k=1

Sk = (X (k, 0, ), X, 01,), . Xi, (6 0x,)), ki € ki < ki, Vi € (1,2, m = 1),
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In our discussion, let Sy represent the subsample derived from the initial sample. This subsample includes
all elements associated with a specific circumstance (a possible value of the random state) k and excludes
elements linked to any other circumstances.

In the work of [11], the strong consistency of the estimators was established (see Theorem 5). This
property is essential for ensuring the reliability of the estimators, which is particularly important when
making significant decisions and drawing conclusions.

In this section, we will focus on the parameters of the thinning operator. Therefore, employing the
estimating approach described in the previous section, we have

L _
LI X - X)X = X))
X - X

;5(])

where X, = ,l, Zi:r]j_l X;. For an arbitrary k € {1,2,..., 12}, let
Je=1{ie{1,2,...,N—-plo; =k},

denote the index set of all the process elements that are in the same state, i.e. which are controlled by the
same value of CC-process. It follows that

Ulk={1,2,-.-,N—p}, el =my, mqg+my+---+m, =N-p.

Next define
F = (a(kl)(k)/ a®(K),. .. ,a(knk)(k)),

where k; € Ji, ki < kis1,Vi € {1,2,...,m — 1}. Thus, Fy contains all &/ corresponding to state k and none
from other states, formed by the transformation of the correlations associated with the k-th cluster. It
can be noticed that F; consists of all maximal subsets of a') corresponding to state k. Let these subsets
be denoted as Fy1, Fio, ..., Fki, where i is the total number of such subsets. Furthermore, let Ji; = {i €
{1,2,...,N = plaD(v;) € Fi1}, |Jk)l = my) and note that myq + myn + - -+ + my;, = my. The estimates obtained

from Fy; are given by
1 .
= @
Y= a(k),
e ) k)

i€y

which are strongly consistent. Therefore, we have P(lim;, , e ay; = o) = 1. Thisimplies that, limy;, ;e ay) =
ay holds almost everywhere except on the set ();, where P(Q);) = 0. Consequently, we conclude that
a1 = o + o(my), my; — co almost everywhere except on the set Q.

The estimate based on the entire Fy is represented by the following expression.

_ 1 , 1 & ,
& o= — Z a®(k) = — 2 Z a® (k) (11)
ke, k3 i
ik ik
mi; 1 ; My
- Rl yaw-y 2,
= Mk T i = Mk
ik
Since Zl%km“ =1land foralll € {1,2,...,5%}, lim, e % < oo, it follows that @y — o and my; — oo for all

ie€{l,2,...,i} everywhere except on the set () = U;k: 1 %
Based on the inequality P(C)) = P(U;k= 1 Qk,l) < Z;kz , P(€;), and the property of non-negativity of
probability, we can conclude that P(€) = 0. Therefore, we have:

P(og — oy, my; = oo, ¥i€(1,2,...,0}) = 1.
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We need to demonstrate strong consistency as m approaches infinity, as strong consistency requires con-
vergence when the sample size tends to infinity. Accordingly, we will formulate the following theorem.

Theorem 5.1. The estimator . defined by (11) is strongly consistent.

Proor. We need to demonstrate that P(ay — ax, my — o) = 1. We have that my = myq +myo + - + ;. As
my approaches infinity, if all the sizes of the subsamples 11 ; were finite, then 7 would also be finite, which
leads to a contradiction. Therefore, for my to approach infinity, at least one of the m ; must also approach
infinity.

Let us assume that for some d € {1, 2, ..., k}, the following holds:

my; — 0o, Vi e {1,2,...,d},

12
m;—cj<oo, Vje{d+1,d+2,..., 0. "

If this is not the case, we can prenumerate them. Now,

i d
N M N M M)~
Qg = — Q) = — Q1 t

m my

=1 K =1 1=d+1

Based on (12), we have that limy,, %’ =0, forje{d+1,...,5). Therefore, it follows that

L~ . My, ~
lim a; = lim —=ag,
Mp—00 Mp—00 m

Here my is defined as my = myy + myp + -+ + my;, = Zj’:l M) + Zj.kzdﬂ my; — Zle My + Z}kde ¢j, when
my; — oo. Since the sum Z;kz 441 Cj 1s finite, it becomes negligible compared to my,, for I € {1,2,...,d}. This

allows us to simplify my to my = myq + - - - + myz when considering the limit as my — oo.
Based on (12), we find that

(m — 00) & (m; — oo, ¥l € (1,2,...,d}).

Thus we have, limy, o @k = 1My, oo vie(12,.4) &k = . Therefore, it follows that oy — a, m — o
everywhere, except on the set () = U;k: 1 Q. This can be expressed as P(ay — ay, mp — o) = 1, indicating
its strong consistency. O

5.2. Conditional Maximum Likelihood Estimation

Based on a random sample of size N from the V-CCNGINAR(1) process, denoted as X (z1, v1), Xa2(z2, v2),
..., Xn(zn,vN), we define a log-likelihood function that can be utilized for the parametric estimation of
unknown model parameters pq, to, ..., ty, ®1,Q2,...,a,. We assume that we have already obtained the
realized values xg, zp, and vy. These values will enhance the clarity of the joint density without affecting the
quality of the estimation procedure. Utilizing Theorem 2.3, we derive the joint log-likelihood function as
follows.

logL = logL(x1,z1,...,xn,2Nlp, - s 1, oo, Oy)

N
Z logP(Xi(zi, vi) = xilXi—1(zi=1, Vi-1) = Xic1)Pi=1,iP*i-1,is
P
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where pi_1; = P(Z; = zi|Zi-1 = zi-1) and p*i_1,; = P(V; = v;|Vi-1 = vi_1). Thus, we have

N
Zlogpz 1,ipP *i- 11P(X (zi, vi) = xilXi—1(zic1, 0ic1) = Xi- 1)

logL

N
= Z logpi-,ip *i-1,i P(ao, * Xiz1(zi-1, 0iz1)
i=2

+ei(zi1,2i,vim1, 01) = XilXi1(zio1, 0ic1) = Xio1)
Xi
= Z logpi—1,p *i-1,i { Z P(ary, * Xi—1(zi=1, vim1) = k)P(€i(zi-1, 2i, Vi1, Vi) = Xi = k) - Lix, 20}
i=2 k=0
+P(ei(zi-1, zi, Vie1, Vi) = Xi) - I{x,_1:0}}

Based on the distribution of the random variable ¢;(z;_1, z;, v;i_1, v;),
Aoz ) . [JZ Ao,z i a:;i
Hz — Qo; (1 + ,Uz,-)x” Hz; — Oy (1 + avi)x+1 '

P(ei(zi1,2i,vi,0) = %) = (1 -

it follows that

N Xi
logl. = Y logpiyipiai{ Y D1 = C)Clxs = k) + CiCxi = W)l 40
i=2 k=0
+[(1 - C)C(xi) + ciC<xi>1I{x,,1=ol},

i1+k— 1)
Xi-1=1 7 (1+ay, )k”r 17

Ci= Lt o(y) =

where we used the following notation D; = (* =

W :
Now, using numerical algorithms, as implemented in known statistical software packages, we can obtain
the conditional maximum likelihood estimations by maximizing this function.

5.3. Model simulations

We will now evaluate the quality of the Yule-Walker (YW) estimates and the conditional maximum
likelihood (CML) estimates, as defined in the previous subsections. Our goal is to demonstrate that the
estimates of the unknown parameters converge to their true values as the sample size increases. To
accomplish this, we simulated samples of various sizes from the processes under study and calculated
the resulting estimates for these samples. Specifically, we simulated a sample of size 10,000 across 100
replications simultaneously. To construct the observed model, we first simulated two random environment
processes and then used these to generate the corresponding INAR process. We have chosen what we believe
to be the most likely practical case for this analysis, assuming that the random environment processes {Z,}
and {V,} have state spaces E3 = {1,2,3} and E, = {1, 2}, respectively. To explore how the parameter values
influence the behavior of the estimates, we will consider the following cases.

In case (a), the true mean vector is given by u = (8,9,10)’. According to Theorem 3.1, the largest possible
value of the parameter a; for j € {1,2} is 0.73. Therefore, we have chosen a = (0.5,0.7)". We assume that the
choice of the initial random state is nearly fair, so we selected pZ,. = (0.35,0.35,0.3) and p),. = (0.45,0.55)’.
The transition probability matrices are highly significant as they determine the structure of the random
environment processes, which in turn affects the structure of the V-CCINAR(1) process. We define the
transition probability matrices as follows:

1 1

. [0%85 08 015|and . = oo 002

01 005 0.85
the probabilities of remaining in the same state. We observe that these values are significantly higher than

] In these matrices, the values on the diagonal represent
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the probabilities of transitioning to one of the other states in the first process, and to the second state in the
second process. The transition probability matrices set the dynamic nature of the process itself, influencing
how frequently it transitions between passive and active states. Notably, the main diagonal of the matrix
py. contains large values, while the off-diagonal elements are relatively small. It is important to note that
the process {V,,} controls the correlations. In cases where the INAR process is non-stationary, there can be
periods during which the correlation remains consistent over an extended time interval. When a regime
change occurs, the correlation shifts to a new level and stabilizes as long as that regime continues.

In scenario (b), we will use the same expectation vector u and the same a vector as in the previous case.
However, we will assume that at the initial moment, the second state of the process {Z,} is more likely than

05 04 0.1
the others, according to the vector p%, = (0.2,0.6,0.2)". The chosen transition matrixisp? , = 8? gi 8; .

In this case, the highest probabilities are associated with remaining in the same state, while the probabilities
of transitioning from the first state to the third state, or from the third state to the first state, are the lowest.
For the second control process {V,}, the initial vector and transition matrix remain the same as in the
previous case.

Table 1: YW estimates for case (a)

m Py e Py ayy e

100 7.832959  9.403668 10.254088 | 0.5096555 0.6825996
St. errors 3.192264 3.63779 2.853453 0.1201141 0.1140894
500 7.728912  9.129296  9.871219 | 0.4901601 0.7273919
St. errors 1.339548 1.588186 1.548956 0.06870043 0.05598686
1000 7.893795 9.128044  9.989333 0.497689  0.7191186
St. errors 0.9330041 1.1431919 1.0660006 0.05798667 0.03603559
5000 7.992915 9.072429 10.003724 | 0.4972187 0.7226275
St. errors 0.3682673 0.4248365 0.4607977 0.02133199 0.01441725
10000 7.995422  8.986868  9.997408 | 0.5012686 0.7272925
St. errors 0.3136503 0.2864798 0.3466683 0.01503872 0.01044569

Table 2: CML estimates for case (a)

o) iy [ By gy, .
100 7.444193 8.990206  10.333766 | 0.5024442 0.7024345
St. errors 1.75748 1.840264 1.64653 0.1252357 0.1134753
500 7.758841 9.099439 9.972805 | 0.5049372 0.7009727
St. errors 0.2992385 0.2773392 0.3179715 0.0221322 0.01317968
1000 7.854522 9.04394 9.997843 | 0.5000597 0.7009984
St. errors 0.1535008 0.1425151 0.1565295 0.009022036 0.006835159
5000 7.956966  9.013465 10.00108 0.503569  0.7006194
St. errors 0.02642322 0.01961257 0.02201731 0.001646149 0.00116224
10000 7.997491 9.004679 9.991952 | 0.5015705 0.6999096
St. errors 0.011842871 0.009217488 0.010822276 0.000710686 0.000656608
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Table 3: YW estimates for case (b)

m Byw i B Ay Ay
100 8.05715  9.158191  9.972508 | 0.5232052 0.6989305
St. errors 2.172533 2.167735 2.820093 0.1328363 0.1249328
500 8.154316  9.235489  10.235489 | 0.505303  0.7293339
St. errors 1.077184 1.114418 1.324761 0.08849577 0.05508949

1000 8.027569  9.015926  10.077965 | 0.4983323  0.724834
St. errors | 0.8090873  0.7161218 0.9964789 0.05778862  0.04084331

5000 8.014484  9.005021  10.013848 | 0.4986456 0.7238331
St.errors | 03477684  0.3192316 0.4098634 0.02230396  0.01492933

10000 8.010784  9.024727 10.017258 | 0.4996013  0.7234465
St.errors | 02560424  0.2465305 0.3204341 0.01527528  0.01118749

Table 4: CML estimates for case (b)

m Doy [ By Aty .
100 7596924  9.109163  10.197828 | 0.5077181 0.7138195
St. errors 1.133419 1.126538 1.196808 0.1387191 0.1154847
500 7901334  9.018258 10.10529 | 0.5112666 0.7034844
St. errors 0.1809004 0.1876676 0.1609393 0.02390348 0.01353522

1000 7959451  8.966761  10.054064 | 0.4995878 0.7018725
St.errors | 0.09340222  0.08344782  0.08557829 | 0.008417337  0.005909572

5000 7.99624 8986343  10.01677 | 0.5022544  0.6995132
St.errors | 0.01780595  0.01670531  0.01406533 | 0.001910923  0.00117593

10000 8.002048  8.999809  10.001591 | 0.5020619  0.6999207
St.errors | 0.008826434  0.008250537  0.007599185 | 0.000853276  0.000594153

In the previous two cases, we estimated the unknown parameters of the INAR model, specifically a
and p, using Yule-Walker and CML statistics. The parameter estimates were obtained for subsamples of
sizes 100, 500, 1000, 5000, and 10000. In this analysis, we utilized 100 realized simulated time series and
calculated the corresponding standard errors. As the sample size increases, all estimates converge, and
the standard errors decrease toward zero. These results are detailed in the previous tables. However,
we did not estimate the transition probabilities, as they are not parameters of the INAR process itself. In
the next section, which focuses on modeling a real-life counting process, we will attempt to estimate this
transition probability matrix as well, making en effort of capturing a real-time sequence of random counting
circumstances.

6. Real data application

To demonstrate the effectiveness and competitiveness of our model in representing real-life situations, we
utilized data from the database hosted on the Forecasting Principles website (www.forecastingprinciples.com).
The time series selected for analysis consisted of monthly fraud offense counts reported in the 12th police
car beat in Pittsburgh, covering the period from January 1990 to December 2001. Based on the autocorre-
lation and partial autocorrelation structures of the series, we determined that employing INAR(1) models
was appropriate. The trajectory of the time series is shown in Figure 1. A cluster analysis of the time
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series values revealed two distinct states, represented as black and white points in this figure. This finding
provided a solid foundation for comparing our model against the R-NGINAR(1) model, where r = 2, which
was introduced in [11] and served as the inspiration for our development in this article. Furthermore, the
cluster analysis of the sub-sample correlations confirmed the existence of two distinct states for our new
V-CCNGINAR(1) model. These two different states resulted in two noticeably different a parameters for
our model. We used the Maximum Likelihood Estimation method to estimate the unknown parameters for
both models. The estimation and prediction results are summarized in Table 6, indicating that our model
significantly outperformed the RZNGINAR(1) model in this case.

To further validate our new model, we applied it to a second dataset originally presented in the work of
[11], where the RrGINAR(1) model was first introduced. This dataset includes monthly drug offense counts
reported in the 27th police car beat in Pittsburgh, covering the same period from January 1990 to December
2001. As illustrated in Figure 2, the time series exhibits three distinct clusters. Both models produced
similar estimations of the value states, confirming their ability to identify the underlying structures. To
apply our model, we conducted a cluster analysis of sub-samples of realized correlations. The model
fitting results indicate that the two correlation parameters in our new model led to slightly better prediction
performance compared to the single correlation parameter in the RINGINAR(1) model, as measured by
RMSE statistics. The parameter estimation and forecasting results are summarized in Table 6. In this case,
there was no significant difference between the @ parameters in the V-CCNGINAR(1) model, similar to what
we observed with the fraud data analyzed earlier. This likely explains why our model did not outperform
the RANGINAR(1) model such significantly in this instance; the changes in correlation structure across
corresponding correlation random states over time in the drug data were not as pronounced as they were
in the first case.
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Figure 1: Monthly fraud offense counts reported in the 12th police car beat in Pittsburgh in a period from January 1990 to December
2001

Table 5: Model comparison

Model RrNGINAR(1) V-CCNGINAR(1)

Observation ~ Parameter MLE RMSE MLE RMSE
i 0.655 0.343
a2 3.973 10.016

FRAUDS a 0.1317  1.8503 0.01 0.9968
& 0.1224
[T 9.5906 9.4956
f2 0.821 0.8219

DRUGS {3 23249  1.6628  23.3993  1.6574
a1 0.028 0.0243
&y 0.0337
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Figure 2: Monthly drug offense counts reported in the 27th police car beat in Pittsburgh in a period from January 1990 to December
2001

7. Concluding remarks

In this manuscript, we introduced a new integer-valued first-order autoregressive model with two
independent Markov processes, one controlling the marginal distribution and the other controlling the
autocorrelation structure. This structure allows the model to better capture dynamic and non-stationary
environments. The fundamental theoretical properties were derived, and the parameters were estimated
using the Yule-Walker method and the Conditional Maximum Likelihood approach. The effectiveness of
the estimators was confirmed through simulation studies. The model was applied to real-world data and
demonstrated strong performance compared to existing approaches, confirming its practical value.
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