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Abstract. In 2014, Aktuglu [1] first introduced the notion of afB-statistical convergence which is more
general than the notion of statistical convergence and lacunary statistical convergence. In this paper, based
on this notion, we introduce the notion of af-statistical convergence and af-strongly summability for
multiset sequences which improves the results in [3, 7]. We investigated the relations between these two
notions and presented several examples corresponding to our results. We also introduce the notion of af
statistically limit superior and limit inferior for multiset sequences by using the notion of af density which
improves the results in [3].

1. Introduction

According to classical set theory, a setis a well defined collection of distinct elements, i.e, every element(s)
occur only once. But, in many situations multiple occurrence of a particular element plays an important
role in our daily life. For example, in case of a telephone number, one number can occur multiple times.
If instead of multiple times, if it occurs only one time then it becomes problematic. Similarly, in case of
binary representation of a particular number one number occurs in multiple times. In such cases, the
notion of multiset come into the picture. Let X be a non-empty set. A multiset M with elements from the
set X contain elements x € X with the multiplicity C(x) where C : X — Ny, where Ny = {0,1,2,...}. C(x)
represents the multiplicity of the element x. Consider the set {5,5,2,2,2,7}. This is an example of a multiset
as 5 occurs 2 times, 2 occurs 3 times and 7 occurs 1 time. In this case we represent this set as {5/2, 2|3, 7|1}.
Here, C(5) = 2,C(2) = 3,C(7) = 1. In 1980, Hickman [8] studied several notions and operations on multisets.
In 1981, Knuth studied multisets related to the computer programming [9]. Bender [2] investigated the
partitions of multisets. In 1976, Lake [10] discussed an axiomatization of the theory of multisets. In [11],
Majumdar considered the notion of soft multisets and distance, similarity between two soft multisets. For
detail study of multisets, interested readers can see the references [3, 12, 13] and the references therein. In
2021, Pachilangode and John [13] considered different notions of convergence, like, Wijsman convergence,
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Hausdorff convergence in case of multisets. As we already said if X is a non-empty set and M is a multiset
over X then there is a function C : X — INy. So, if (X, d) is a metric space then we cannot use the same metric
d for multiset M. In [13], Pachilangode and John considered the metric du(x, v) = d(x, y) + |C(x) — C(y)|. A
sequence where each term is a multiset is known as multiset sequence (see, [13] for details). For a sequence
{x,} € X, a multiset sequence is defined by M = {x,lc, : x, € X, ¢, € INp}. In the present work, we consider
the metric as dp(xylcp, Ynldn) = \/(xn — yn)? + (¢y — dy)? on the multiset M.

On the other hand, the idea of convergence of a real sequence has been extended to statistical convergence
by Fast [4] and Steinhaus [16] independently. Further it is re-introduced by Schoenberg [15] and it is based
on the notion of asymptotic density of the subset of natural numbers. Let K C IN. Then asymptotic

density of K is defined as d(K) = lim%l{k < n : k € K}| provided the limit exists. A real sequence

1
{x.} is said to be statistically convergent to x € R if for each ¢ > 0, lim ZHk <n:lg-—x=c¢| =0
n—o0o0

In 1980, Salat [14] considered the set of all statistically convergent sequences in I, over the sup norm
and showed that the set is dense in l.. Fridy [5] defined the notion of statistically Cauchy sequence and
investigated the relations between statistical convergence and statistically Cauchy sequence. In 1993, Fridy
and Orhan [6] defined the concept of lacunary sequence and defined the notion of Lacunary statistical
convergence for sequence of real numbers. A lacunary sequence {t,},»0 is an increasing integer sequence
with tp = 0and T, = (t, — t,.1) — o0 as r — oo. A real sequence {x,]} is said to be lacunary statistically

convergent to x € Rif foreach ¢ > 0, lim%l{k € (t-1, 4] : lxx— x| = €}| = 0. In 2021, Debnath and Debnath [3]

introduced the notion of statistical convergence for multiset sequences and investigated various properties
of this new convergence. They also defined the notion of statistically boundedness in case of multiset
sequences and presented the relation between statistically boundedness and statistical convergence of
multiset sequences. Also, very recently Gumus et al. [7] used the notion of lacunary sequence to introduce
the concept of lacunary statistical convergence for multiset sequences. Motivated by paper [3, 7], in
this present work, we introduce the notion of ap-statistical convergence and af-strongly summability
for multiset sequences and investigated the relations between these two concepts. Various examples are
presented to discuss the results. If we take a, = (t,-1 + 1) and B, = t,, then ap-statistical convergence
coincides with lacunary statistical convergence. As af-statistical convergence is more general than the
notion of statistical convergence, lacunary statistical convergence, so our results discussed in the paper
improve the results discussed in [3, 7].

2. Main results
Firstly, we recall the notion of af-statistical convergence from [1] as follows.

Definition 2.1. Let a = {a,},en and B = {B,},n be two sequences of positive numbers satisfying the
following conditions:

1. @ and p are both non-decreasing;
2. ppzayforalln € N;
3. (B —ay) > c0asn — oco.

This pair is denoted by («, ). A sequence {x,},cN is said to be af-statistically convergent to a point x € R
if for each € > 0,
im0 gy [k € [a, ful P — 21 > €} = 0.

In the above definition, if we take a, = 1 and 8, = n for all n € IN, then af-statistical convergence
coincides with the notion of statistical convergence. So, af-statistical convergence is more general than the
notion of statistical convergence.

Next, we introduce the notion of a-statistical convergence of real valued multiset sequence.
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Definition 2.2. Let H = {x,|c,} be a real valued multiset sequence. The sequence H is said to be ap-
statistically convergent to the multiset {x|c} if for every € > 0,

lim —— k€ [an, Bul - Vi =27+ (c -2 2 e} 1= 0.

n—c0 (,Bn —ay +1) |

The set of all multiset sequences which are af-statistically convergent is denoted by Sup:

Theorem 2.3. Let (a, B) be a pair of sequences of positive numbers satisfying the conditions of Definition 2.1. Let
H = {x,lc,} be a multiset sequence converging to a multiset {x|c}. Then the multiset H = {x,|c,} is ap-statistically
convergent to {x|c}.

Proof. Since the multiset sequence H = {x,|c,} is convergent to the multiset {x|c}, for ¢ > 0 there exists a
natural number 1y € IN such that dp(x,c, xc) < € for all n > ny. So, the cardinality |[{k € IN : dyp(xplcy, xlc) =
e}| = d, is finite. So,

1
(,Bn —a, +1)

e el = Vo= + =0 2 €1l = oy =0

as n — 0. So, the multiset sequence H = {x,|c,} is ap-statistically convergent to {x|c}. [

The converse of Theorem 2.3 is not true which follows from the next example.

Example 2.4. Let us define a multiset sequence H = {x,|c,} by

e _ 2 .
X, = n, 1fn—;? for some p € N; 1)
3, otherwise
and
4 i — 2 .
e, =% if n p for some p € N; 2
6, otherwise.

Now, Leta, =1 and B, = n2 for all n € N. Then,

m'{ke [ Bl = V0= 3F + (e = 6P > el < =5 = 0

as n — 0. S0, in this case, the multiset sequence H = {x,|c,} is af-statistically convergent to {3|6}.
Now, we introduce the notion of af-strongly summability for multiset sequences.

Definition 2.5. Let H = {x,|c,} be a real valued multiset sequence. The sequence H is said to be af-strongly
summable to the multiset {x|c} if

lim _ Z Ve = x)2 + (cx — ¢)? = 0.

n—oo (ﬁn — 0y + ].) kelay ﬁn]

The set of all multiset sequences which are af-strongly summable is denoted by Wi

Now, we present an example of a multiset sequence which is af-strongly summable to some multiset.
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Example 2.6. Let us define a multiset sequence H = {x,|c,} by

7, ifn =p? ;
x, =1 ifn p for some p € IN; 3)
3, otherwise
and
4 i — 2 .
e, =% ifn p for some p € N; )
6, otherwise.

Let @, = 1 and B, = n? for all n € IN. Now,

Z \/(xk—3)2+(ck—6)2=%\/2_0—>0

ke[anrﬁn]

1
(ﬁn -yt 1)

as n — 0. So, in this case the multiset sequence H is af-strongly summable to {3|6}.
Theorem 2.7. A multiset sequence H = {x,|c,} is ap-statistically convergent to a unique limit.

Proof. If possible, let the multiset sequence H = {x,|c,} be af-statistically convergent to multisets {x|c} and
{x'|c’} where x # x’. Let |[x — x’| = d > 0. Now,

Vi -x)2+ - = Vlx—x)+ -2 +{c—c) + (- )P

< V@ =22+ (= 0 + Vr = )2+ (- )

So,
< ml{k € [ Bul : =02+ (-0 > %lH
+m“k € [ Bl - VG ¥R+ (e 0P 2 21l
This shows that
Gl Lo Bl V=P =Pzl Dasn - e,

a contradiction. Now, we suppose the case where ¢ # ¢’. Let [c — ¢’| = d’ > 0. So,

m“k € [anrﬁn] : \/(X - X')z + (C — C/)Z > d/}l
<;|{k€[a Bl : \/(x —x2+(c _C)2>{}|
T Bu—an+1) ns Pl = VXK k 2
(L W PN e e
This shows that
ml{k € [anrﬁn] : \/(.X—x’)z + (C — C/)Z > d,}| 5 0asn — oo,

a contradiction. So, the limit is unique. O
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Theorem 2.8. Let {a,} and {B,} be two sequences satisfying three conditions in Definition 2.1. Let H = {x,|c,} be a
multiset sequence. If H € Wi then H € Sap:

Proof. Let the multiset sequence H = {x,|c,} be af-strongly summable to the multiset {x|c}. Then

1
lim ——— x_x2+C_C2=0.
n—oo (ﬁn_ n+1) kE[a;ﬁy,] \/( ¢ ) (k )

Now,

\%

Y Va-rr-op Y V=27 + (e — o
kelan ful kelan Bul, V-2 +(c—c)2ze
elk € [an, Bul + V(xk = X)2 + (ck — ©)? > &}

1 ) Z Vo —x)2 + (e — 02 >

= —
B —an+1), =)

v

m“k € [an, Bul : \/(xk —X)2 + (¢ — ¢)2 > ¢}
This shows that )
lim —— | {k € [an, Bu] : Ve —x)% + (cx — ¢)? = g} = 0.

n—oo (ﬁn —a,+1)
So,He Sl [

Corollary 2.9. Let {a,} and {B,} be two sequences satisfying three conditions in Definition 2.1. Let H = {x,|c,} be a
multiset sequence. If H € W;”ﬁ then the limit of H is unique.

Proof. Proof follows from Theorem 2.7 and Theorem 2.8. [J

Now, we demonstrate an example of a multiset sequence which is statistically convergent to some
multiset but is not ap-statistically convergent for some pair («, f).

Example 2.10. Let us define a multiset sequence H = {x;|c,} by

. 72, if j € [p!,p! + pl N N for some p € N; )
1713, otherwise
and
4, if j e [p!,p! + p] NN for some p € N;
i = . (6)
6, otherwise.

Leta, = n!and g, = (n!+n) for all n € IN. Then the sequences {a,,} and {f,} be two sequences satisfying three
conditions in Definition 2.1. Now, {k € IN : \/(xk -3+ (cx—6)> = ¢} = U,»1 Ay where A, = [n!,n! +n].
Also, the natural density of the set A = | J,,»; A, is zero since

< : < : e
n—o0 n n n—oo n'+n

So,

lim 1I{k <n: =32+ -622¢)=0.

n—ootl
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This shows that the multiset sequence is statistically convergent to {3|6}. But, for 0 < ¢ <1,

lggm | {k € [atn, Bu] : Vi =37+ (cx—6)2 2 ¢} =1 # 0.

So, H is not af-statistically convergent to the multiset {3|6} for a, = n! and g, = (n! + n).

We recall the notion of boundedness and statistical boundededness of a multiset sequence from [3] as
follows.

Definition 2.11. ([3]) A multiset sequence H = {x,|c,} is said to be bounded if there exists a non-negetive
number B such that /xi +(cx—1)2 < Bforallk € N.

Definition 2.12. ([3]) A multiset sequence H = {x,|c,} is said to be statistically bounded if there exists a
non-negetive number B such that

lim%l{k <n: ,/xi +(cx—1)2 =B} =0.

Theorem 2.13. Let {a,} and {B,} be two sequences satisfying three conditions in Definition 2.1. Let H = {x,|c,} be
a multiset sequence. If H is bounded and H € Syﬁ, then H € Wik

Proof. As the multiset sequence H = {x,|c,} is bounded so, there exists a non-negetive number M such that

A /xi +(ck—1)> < M for all k € IN. If M = 0 then all the terms of the multiset sequence will be 0|1 and in

this case, the sequence is ap-strongly summable to the multiset {0|1}. So, we assume that M > 0. Let ¢ > 0.
Suppose that the multiset sequence is af-statistically convergent to x|c. First of all let x > 0. Then we have

Ve =22 + (e — ) < ,/xg +(ck —1)2 <Mforall k e N.

Now,
e Y duGudeer) = Y du(xdenxo) )
Bu—an+1), o= B = an 1) e
PR S du(xelow, xlc).
B =@+ D) |, o dutiien s
So,
Frar D L s, ) < el € e, ) duden ) 2 1+ 5.

ke[anrﬁn]

Now, as H € 5, so, the first sequence on the right hand side goes to zero as 7 — oo and this implies that

He W;”ﬁ as
1
im ———— dp(xxlek, xlc) = 0.
n—o0 (ﬁ” — dy + ].) kE[a;ﬁy,]

Now, if x = -] where I > 0 then we have /(xy — x)2 + (cx — €)2 = (xx + )2 + (ck —¢)> < /xf + (k=12 +1<

(M +1) for all k € N. So, from equation 7, we have

(M +1)

mHk € [an, Bl = dm(xkler, xlc) > SH + g

T X e o) <

Bn—an+1), = |
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Similarly, as above we can show that

1
im ——— dp(xilex, xlc) = 0.
n—o0 (ﬁn — dy + 1) ke[a;ﬁy,] M

This shows that H € Was O
Now, we introduce the notion of af-statistical boundedness of a multiset sequence as follows.

Definition 2.14. Let (a, §) be a pair of sequences satisfying three conditions in Definition 2.1 and H = {x;c;}
be a multiset sequence. Then H is said to be af-statistically bounded if there exists a non-negetive number

M such that 1
lim ————|{k € [a, Bu] : f%% + (e — 1)2 > M}| = 0.

From Definition 2.14, it is clear that af-statistical boundedness is more general than the statistical
boundedness introduced in [3].

Example 2.15. Let us define a multiset sequence H = {x;|c,} by

_J3 ifjelp,pt+plNN for somep € N; ®)
/ 3, otherwise
and
4, if j € [p!,p! + p] for some p € N;
cj= . )
6, otherwise.

Leta, =nland B, =n! +nforalln € N.
In this case, for some ¢ > 0,

lim muk € [ Bul s AJ2+(—12 2 el =1#0.

If we choose M = 4 then

lim m“k € [an, Bul -\ + (e~ 12 = M| = 0,

So, the multiset sequence H is af-statistically bounded with M > 0.

Theorem 2.16. Let («, B) and (o, p’) be two pairs of sequences satisfying the conditions in Definition 2.1. Let

. L 1
an < ay, < B < Bu forall n € N and there exists a sequence {6,} of positive numbers such that lim — is non-zero

n—oo
finite and (B, — aj, + 1)6,, > (B — an + 1) for all n. Let H = {x,|c,} be a multiset sequence. If H € Szg, then H € Sg,ﬁ,.

Proof. Since [a,, B;] C [, Bul, sO,

Itk € [ovn, Bul = V(e — 02+ (ck — )2 = e}l = [tk € [a, 8]+ V(xx — %)% + (cx — ©)2 > el

1

= Gk lan bl V-0t + (o - of 2 ell 2
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m“k e [}, 8] : Voo —xP + (=07 = el
= (B — clvn + 1)|{k € [ Bul : Vo =22 + (xR z ¢l =
1

ml{k e [a), Bl Vo —x)2 + (ck — 0)? = €}l.

Now, taking the limit both sides, we have H € 57 O

/Ig/

In our next result, we investigate the relation between af-statistical convergence and statistical conver-
gence of sequence of multisets.

Theorem 2.17. Let (a, f) be a pair of sequences satisfying three conditions in Definition 2.1 and H = {x,lc,} be
a multiset sequence. Let liminf i— >1.IfH € S™, then H € Sy Here S™ denotes the collection of all multiset
sequences which are statistically convergent.

Proof. Let liminf == B~ ¢>1and ¢ > 0 such that (c — ¢’) > 1. So, there exists ny € IN such that ﬁ z
(c—¢) forall n > no Let us choose n € IN with n > ng. let H = {x,|c,} is statistically convergent to the
multiset {x|c}. Let t, = (8, — a, + 1). Now,

1 1
ﬁ < Bu s dm(xeler, xle) = €}l = ﬁ_| {k € [y, Bl : dm(xiler, xlc) = e}
tn
= Itk € [atn, Bu] = dum(xiler, xle) > e}l
,Bntn
o
> Ik € Lo, Bul = dm(xiler, xic) > el
where 6 = <221 > 0. Now taking the limits at both sides as n — o we have,

i e € il Vi G 2 el =0

So,He ™. O

Note 2.18. In Example 2.4, we see that the multiset sequence H is af-statistically convergent to the multiset
{316} for a, = 1 and g, = n? for all n € IN. Also, this multiset sequence H is statistically convergent to the

multiset {3|6}. In this case lim inf i—j‘l > 1.
Theorem 2.19. Let (a, f) be a pair of sequences satisfying three conditions in Definition 2.1 and H = {x,|c,} be a

multiset sequence. Let lim inf i—: >1.IfH € W", then H € Wi Here W™ denotes the collection of all multiset
sequences which are strongly Cesdro summable.

Proof. Since, lim inf g— > 1, so, for each 6 > 0 there exists ny € IN such that 5— > (1 +0) for all n > ny. Let
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H € W™ and the multiset sequence H is strongly Cesaro summable to x|c. Now,

ﬁni‘\/(xz—x)“(a‘c) S ey
_ (ﬁnﬁ—nan) ! 1 )[Z;; Vi =202+ (i - c)?
2 B e, PR
1-(26'([3 “”+1)ze[aznlﬁn V(xi = x)2 + (ci — o).

Since H € W™, so, % ﬁ ﬁ" \/(xz —x)? +(ci —)> > 0asn — oo. Wehave, m Liclan Bnl \/(xz —x)?+(ci—c)? —
0 asn — oo. This shows that H € W"’ O

Open problem: Under what conditions, a sequence of multisets which is ap-statistically convergent to
a multiset, is statistically convergent?
We recall from [3], the definition of the set mR as

mR = {x|c: x € Rand c € N}.

mIR is a multi-subset of the set of all real numbers R. On the other hand, if K C IN, then, the af density of K
is defined as (see [1])
0ap(K) = lim ;l{k € [ay, Bul s k € K}
n—oo (ﬁ — )
If we take &, = 1 and 8, = n for all n € IN then 6,4(K) coincides with the natural density of K.

Let H = {x,|c,} be amultiset sequence. Let us introduce two sets corresponding to the sequences o = (a,,)
and $ = (B,) as follows.

Bagri = (xlc € mR : 5pp({k € N /27 + (cx — 1)2 > Va2 + (c = 1)?}) # 0}.
Augrr = (xlc € mR : 0,p({k € N =[x + (cx — 1) < Vx2 + (c = 1)2}) # 0},

We define the supremum of the set Bygy as x|c where c is the largest multiplicity in B, p satisfying the
condition ¢ < max{c’ : ¢’ € H} and x is the supremum of different sets of real numbers having multiplicity c.
Similarly, we define the infimum of the set A, i as x|c where c is the smallest multiplicity in A,y satisfying
the condition ¢ > max{c’ : ¢’ € H} and x is the infimum of different sets of real numbers having multiplicity
c.

Definition 2.20. Let H = {x,[c,} be a multiset sequence and a = (@), = (8,) be two sequences satisfying
the conditions in Definition 2.1. Then we define,

s _|sup Ba[i,H if Baﬁ,H *0;
ap — st = limsupH = {_Oo if Bugyi = 0 (10)
and
. inf Agg g if Agpr # 0;
_st—] H= F b 11
ap — st — liminf. {oo if Aus s = 0. (11)



S. Som, H. K. Nashine / Filomat 39:21 (2025), 7307-7319 7316

In our next example, we use the notation (g, b)|c to denote that for every real number p € (a,b), the
multiplicity of p is c.

Example 2.21. Let us define a multiset sequence H = {x,|c,} by

7, ifn =p? ;
x, =17 ifn p for some p € IN; (12)
3, otherwise
and
4, if n = p? ;
¢, = 1% ifn p for some p € IN; (13)
6, otherwise.

Leta, = 1and B, = n? for all n € N. For this sequence, firstly we calculate the set B,gy. Let x|c € Bugn.

So, dap(tk € IN = \Jx7 + (cx = 1)> > x>+ (c—1)?}) # 0}. Here, in this case {k € N : \/x} + (cx —1)> >
VX2 +(c—1)2} # {k € N : k = p? for some p} because in that case the ap-density of the set become zero.

So, k # p?* for any p € IN. In this case, y/x2 + (c— 1)2 < |, a2 + (cx — 1)? will imply /x% + (¢ - 1)? < V/34. So,
x> < 17 or (c — 1)?> < 17. In the first case if x> < 17 and (c — 1)> > 17 then x € (-4.12,4.12) and ¢ > 5.12.
Also, as c is the multiplicity so, ¢ cannot be negetive and in this case ¢ cannot be greater than 6. In this case
{x|c} = (-4.12,4.12)|6. In the second case, suppose x*> < 17 and (c — 1)? < 17. In this case, x € (—4.12,4.12) and
1 < ¢ < 5. In the third case, let x> > 17 and (c — 1)2 < 17. So, 1 < ¢ < 5. Also, in this case, x € [4.12,5.83) or
x < —4.12. Now, we can see that

Bugh = ((—4.12,4.12)[1, (—4.12,4.12)12, ..., (—4.12,4.12)l6,

[4.12,5.83)[1, ..., [4.12,5.83)[5, (o0, ~4.12][1, (00, =4.12]12, . .., (=00, —4.12]|5}.
So, af — st — limsupH = 4.12|6.
Now, if the set {k € N : \/xf + (cx —1)> < V2 +(c-1)*} ={ke N:k # p? for some p}, we consider the

relation, /32 + (c — 1)2 > V34 for the set Aug . So, x> > 17 or (¢ — 1)? > 17. In our first case, let x> > 17 and
(c —1)* > 17. In this case, x > 4.12 or x < —4.12 and ¢ > 5.12. Here we ignore the case where c is negetive. In
our second case, let 2 > 17 and (c — 1)*> < 17.So, x > 4.12 or x < —4.12 and 1 < ¢ < 5. In our third case, let
x> <17 and (c — 1)> > 17. So, in this case, x € [-4.12,4.12] and ¢ > 6. So,

Agpi = 1412, 00)[1, (412, 00)12, ..., (—00, =4.12)[1, (—00, 4.12)[2, ...,

[-4.12,4.12]6, ... }.

In this case 6 is the smallest such that 6 > max{c’ : ¢’ € H}. Also, the infimum is —oo of all real numbers
having multiplicity 6 So, af — st — liminfH = —oco.

On the other hand, if the set {k € IN : /xi + (cx — 1)2 < /22 + (c — 1)?} contains natural numbers k = p* as

well as k # p2 then we consider the relation, /x2 + (c — 1) > /58 for the set Aqp,y- Similarly, as above we
can see that in this case

Agpii = 1(5.39,00)[1, (5.39, )12, ..., (5.39, 00)I5, (5.39, 0)|7, ... .,

(—00, =5.39)|1, (=00, =5.39)[2, ... ., (—00, =5.39)|5, (o0, =5.39)|7, . . ., [-5.39,5.39]|7, ... }.

In this case, af — st — liminfH = —co.
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Lemma 2.22. Let H = {xylc,} be a multiset sequence and a = (a,),p = (Bn) be two sequences satisfying the
conditions in Definition 2.1. If x|c = af — st — limsupH then for all € > 0,

Sap(tk € Nt (2 + (e =12 > J(x =€) + (= 12}) £ 0
Sap(fk €N : ,/xi + (o —12> Jx+e)?+(c-1)2) =0.

Proof. Let ¢ > 0. So, there exists x* € R such that x — ¢ < x* and x*|c € Byg p. Since x*|c € Bag 1, 50,

Sap({k € N': /22 + (cr — 1)2 > V()2 + (c = 1)2}) # 0.
Since {k € N : \Jx? + (e — 12> /()2 + (c— DA C ke N: (22 + (cr — 1)2 > /(x — ) + (c — 1)2}, s0,
Sap(fk € N+ (22 + (cx = 12> V(x = )2 + (c = 1)2)) # 0.

The other part is straightforward as x is the supremum of different sets of real numbers having the multi-
plicity c. So for any positive ¢, (x + €)lc ¢ Bagy. O

and

Lemma 2.23. Let H = {x,lc,} be a multiset sequence and a = (a,),p = (Bn) be two sequences satisfying the
conditions in Definition 2.1. If x|c = aff — st — limin fH then for all ¢ > 0,

Sap(fk € N : ,/x}% Fa-12< Jx+e2+(c-12)#0
Sap(fk € N+ (22 + (cr = 12 < Vx — )2 + (c - 1)2}) = 0.

Proof. Proof is straightforward, so omitted. [J

and

For, x1]c1, x2|c2 € mR by x1]c1 < x2|c; will mean /x2 + (c1 — 1)2 < /x% + (c; — 1)2. In our next results we
y 1 2

mention a = (a,), f = (B,) be two sequences to denote the sequences satisfying the conditions in Definition
2.1.

Theorem 2.24. Let H = {x,|c,} be a multiset sequence and o = (), f = (Bu) be two sequences. Then af — st —
liminfH < af — st — limsupH.

Proof. If af — st — limsupH = oo then there is nothing to prove. Suppose aff — st — limsupH = —oco. Then
Bagn = 0. So, for all x|c € mR we have

dap(fk € N = \[x2 + (ck — 12> Y22+ (c - 1)2)) =0,
= Oap(fk € N : ,/xi +(r—12< Yx2+(c—-12) =1.

This shows that for all x|c € mR we have x|c € Aysn. So, aff — st — liminfH = —co. Now, we assume that
af — st — limsupH = x|c and af — st — liminfH = x’|c’. We have for any ¢ > 0,

Sap(lk € N : ,/x; + (e —12> Jx+e)?+(c-1)?2) =0,
= Sap(lk €N (2 + (=12 < V(x + 2+ (c - 12) = 0.

So, x'|c’ < x + ¢lc. This implies yx2 + (¢’ = 1)2 < +/(x + €)% + (c — 1)2. Since this is true for any ¢ > 0, we
have, yx2 + (¢’ = 1)2 < y/x2 + (c — 1)2. So, af — st — liminfH < af — st — limsupH. [
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Theorem 2.25. Let H = {x,lc,} be a multiset sequence and o = (), = (Bn) be two sequences. Then H is
ap-statistically convergent if and only if af — st — limin fH = af — st — limsupH.

Proof. Let af — st — limsupH = li|c; and aff — st — liminfH = l|c,. First of all, let the multisequence H be
ap-statistically convergent to x|c. Then for each ¢ > 0,

lim k € [an, Bul = V(e — %)% + (e — 0)> > E} |=0;

;l{
n—eo (B, —ay + 1)
= Oap(fk e N: g —x[ < &)l —cl < e}) = 1;
= Oap(tk € N : |xx — x[ > &, cx — | > €}) =0;
= 0p(lke Ny >x+¢,(r—1)>c-1+¢}) =0;

= Sap(lk €N : ,/x§+(ck—1)2> Vi + e+ (c+e-1)2)) =0.

So, x + ¢€lc + € ¢ Bugy. We have,
B+ —12 < fx+ e +(c+e— 12

Since this is true for all ¢ > 0, so, aff — st — limsupH < x|c. Similarly, we can show that x — ¢lc — ¢ € A,py and

this will imply
Vi —eR+(c—e—12 < B+ (- 12

So, xlc < af — st — limin fH. From Theorem 2.24, we have af — st — liminfH = af — st — limsupH. Now, on the
other hand, let af — st — limin fH = af — st — limsupH = x|c. Let ¢ > 0. So, from Lemma 2.22 and Lemma 2.23

we have,
Sap(tk €Nt \Jx2 + (e —1)2 > x+ &2+ (c—1)2}) =0
Sap(fk € N = (22 + (cx = 12 < V(x = )> + (c = 1)) = 0.

Now, {(x+e2+(c—12 < a2+ (c—1)2+eand J(x—e?2+(c-12 > x2+(c-12-¢.So, {k € N :

1/xi+(ck—1)2 > J2+(c-12+¢ C {ke N : 1/xf+(ck—1)2 > yJ(x+e2+(c—1)2 and {k € N :
VEF@—12< Y2+ (-1 —e) ke N: (Jxl + (- 1)2 < V(x — €)2 + (c — 1)2}. This implies that
dap({k € N : 1/xi+(ck—1)2 > A2+ (c-1)2+¢e})=0

Sap(tk €N : 2+ (=12 < Va2 + (€~ 12 —¢}) = 0.

Sap(fk € Nt y/(xx — %)% + (ck — €)> > €}) = 0.

So, the multiset sequence is af-statistically convergent to xlc. [

and

and

So,

Theorem 2.26. H = {x,lc,} be a multiset sequence which is ap-statistically convergent to a multiset {x|c}. Then the
multiset H is ap-statistically bounded.

Proof. Let the multiset sequence H = {x,|c,} be af-statistically convergent to a multiset {x|c}. Then from
Theorem 2.25, we have af — st — limin fH = af — st — limsupH = x]c. So, for ¢ > 0, we have from Lemma 2.22,

Sap(tk € N : in + (e —12> Jx+e?+(c-1)2) =0.

So, the sequence H is af-statistically bounded with M = /(x + €)2 + (c - 1)2. O
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3. Conclusion

In the present paper, we introduce on the notion of af-statistical convergence for multiset sequences
and discussed the relation between af-statistical convergence and af-strongly summability for multiset
sequences. We present several examples to discuss our results. Also, we have defined the concept of
af — st = liminf and af — st — limsup for a multiset sequences and present some results on this concept.
We pose an open problem in our article for finding conditions under which af-statistical convergence (for
given two sequences « and f) implies statistical convergence for multiset sequence.
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