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Statistical relative AA-—summation process for sequences of monotone
and sublinear operators on modular spaces

Selin Cinar?

?Department of Mathematics, Sinop University, Sinop, Turkey

Abstract. In this paper, we prove Korovkin theorems via statistical relative A— summation process for
monotone and sublinear operators in the setting of modular spaces, which includes, in particular cases, L?,
Orlicz, and Musielak-Orlicz spaces. Furthermore, we introduce a new, more general version with results

that bring a new perspective. Finally, we present an important example that satisfies our main theorem and
shows that it is strong.

1. Introduction

Korovkin's theorem is of significant importance in the literature ([29], [30] ). The power and applicability
of this theorem is fundamentally linked to their role in approximating real-valued functions via positive
linear operators. Moreover, this theorem has been studied in different convergence methods in different
function spaces and many extensions have been obtained. In certain Korovkin theorem, when there is a lack
of convergence, summation methods can be quite effective. The concept of the A—summation process was
introduced and analyzed by Nishishishiraho on a compact Hausdorff space ([37],[38]). Additionally, the
A-summation process has been studied in several function spaces and with different types of convergence
([11, [11], [15], [17], [42]). One of these is modular spaces, which are an important class of function spaces
for our study ([3], [10], [12], [14], [19], [26], [27], [28], [33], [34], [35], [36], [39], [43]).

Recently, studies have been carried out on the concept of positivity and linearity, which are the properties
of the operator. In the research, it has been seen that the positivity property cannot be dropped; however,
the linearity property can be improved. In this framework, Gal-Niculescu extended Korovkin’s theorem
to monotone and sublinear sequences of operators, contributing significant results to the literature and has
attracted considerable interest in the field ([16], [22],[23], [24],[25]).

The motivation of this study is to present a new proof of Korovkin’s theorem via the statistical relative
A- summation of monotone and sublinear operators on modular spaces while also providing a more
general version of the theorem that brings a new perspective. Additionally, important results of this new

approximation are expressed. Finally, a significant example is introduced that confirms our main theorem
and illustrates its effectiveness.
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2. Preliminaries

This section reviews some essential definitions and notations related to our study, particularly those as-
sociated with statistical convergence, summation process, monotone and sublinear operators, and modular
spaces, which will be used in the sequel.

2.1. Statistical convergence and summation process

Let K be a subset of IN, the set of natural numbers. Then the natural density of K, denoted by 6 (K), is
defined as

0 (K) := likm%|{n§k:nel<}|,

where the vertical bars denote the cardinality of the set.
The real number sequence x = (x,) is said to be statistically convergent to the number L if for each ¢ > 0,

likmil{n <k: |x,—Ll=¢}=0.

In this case, we write (st) — lim x,, = L ([20], [40]).

The concepts of statistical limit superior and limit inferior have been introduced by Fridy and Orhan
in [21]. Then, Demirci [13] has generalized these concepts to A—statistical limit superior and limit inferior.
The real number sequence x = (x,), the statistical superior limit of x is

T | supM;, if M} # @,
(st) —limsupx, = { “co, if M = o,

where M}, := {m* € R: 6(n : x, > m") # 0} and @ denotes the empty set. We note that by 6 (K) = 0 we mean
either 0 (K) > 0 or K fails to have the density. Similarly, the statistical inferior limit of x is

infN:, if N: # @,

(st) — liminfx, = { oo, i N: = o,

where N} :={n* e R:6(n: x, <n*) #0}.
Let’s recall some notations related to the summability theory.

Let A := (A(f)) = ((algi ))) be a sequence of infinite matrices with non-negative entries. For a sequence of
real numbers, x = (x,), the double sequence
Ax = {(Av)] : k,j € N]

defined by (Ax)i =Y algl )xn is called the A—transform of x whenever the series converges for all k and j. A
n=1

sequence x is said to be A—summable to L if
imY 10,
11kaakn X, =L
n=1

uniformly in j ([8], [41]). If A() = A for a fixed matrix A, then A-summability is the ordinary matrix

summability by A. If algi) = % for j<n<j+k (j=1,2,..)and a(

reduces to almost convergence ([32]).

ki ) _ 0 otherwise, then A-summability
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2.2. Monoton and sublinear operators
¥ (I) will be denoted as the vector lattice of all real-valued functions defined on I and equipped with
point ordering, where I be a Hausdorff topological space. Let the following be the vector sublattices of
FU):
c
Gy (D)

{feF(): f continuous},
{feF): f continuous and bounded},

and

LP(I)={feF(): f is Borel measurable and Lebesgue integrable}

for 1 < p < 0. On C,(I), we consider the uniform norm ||f|| = sup |f(x) ,whileon P (), 1 < p < oo,
xel

1

’
we consider the usual p—norm || f “p = [ f ( f (x)|p dx| . Assume that I and I, are two Hausdorff topological
1

spaces and E and F two respectively ordered vector subspaces (or the positive cones) of C (I) and C (Ip) that
contain the unity.

An operator L : E — F is called a weakly nonlinear operator (respectively a weakly nonlinear functional
when F = R) if it satisfies the following two conditions:

1. (sublinearity) L is positively homogeneous and subadditive, that is

L(af)=aL(f) and fe Eand L(f +g) <L(f)+L(g)

forall f,ge Eand a >0,
2. ( translatability) L (f + @.1)< L(f) + aL (1) for all f € E and for all & > 0, where that is the function

1(x) = 1 for every x.

Also, in this article we are interested in the operator satisfying the conditions:

(monotonicity) f < gin E implies L(f) < L(g),

(subunital property) L(1) < 1.

If E and F are closed vector sublattices of the Banach lattices C (I) and C (Iy), respectively, then every
monotone and subadditive operator (functional when F = R) L : E — F satisfies the inequality

IL(f)-L(g)| <L(|f - g]) forall £,g.

If an operator (functional when F = R) L is monotone and positively homogeneous, then we necessarily
have L(0) = 0.

2.3. Modular spaces

Assume that I will be considered as a locally compact Hausdorff topological space. We will denote
by H (I) the space of all real-valued, measurable functions on I which are provided with equality almost
everywhere. Also, C. (I) be the subspace of C; (I) of all functions with compact support on I.

The functional p :H (I) — [0, co] is said to be modular if it satisfies the following conditions:

@) p(f)=0iff f=0ae. I,

(i) p(=f) = p(f) for every f eH (I),

(iti) p(af + Bg) < p(f) + p(g) for every f,g € H (I) and for every a, > O witha + f = 1.

Recall that, a modular p is N—quasi convex if there is constant N > 1 such that p (af + fg) < Nap (Nf) +
NBp (Ng) forevery f,ge H(),a,p 20, a+p = 1. We say p is convex if N = 1. In addition, a modular p is
N-quasi semi-convex if there exists a constant N > 1 such that p (af) < Nap (Nf) holds for every f € H (I)
and a € (0,1].
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Now let us recall I,, which is a vector subspace of H (I), constructed with the modular p,

I, = {fe?—((l)  lim p (Af) =o}.

Also, the space of finite elements of the I, is as follows,

Ii={fel,:p(Af) <coforallA>0}.

Modular functionals and modular spaces are discussed in detail in [4], [5], [6], [7], [33], [34], [35]. Now
let us be given the following concepts recently expressed by Demirci and Kolay ([14]).

Let (f,) be a function sequence whose terms belong to I,,. Then, (f;) is said to be statistically modularly
convergent relatively to a scale function o, if there exists a function o (x), called a scale function ¢ € H (I),
lo (x)| # 0 such that

(st) — lim p (Ao (£5£)) = 0 for some A > 0 ([14]).

Also, (f,) is statistically relatively F-norm convergent (or relatively strongly convergent) to f if

(st)—limp (/\ (f”T_f)) =0 for every A > 0 ([14]).

The two notations of convergence are equivalent if and only if the modular satisfies a A,—condition, i.e.
there exists a constant M > 0 such that p (2f) < Mp (f) for every f € H (I) ([35]).

It will be observed that statistical modular convergence is the special case of statistical relative modular
convergence in which the scale function is a non-zero constant.

Let us note the following properties about the modular concept that are necessary for this study:

p is monotone, i.e. for all f, g € H (I) and |f| < |g| then p(f) < p(g).

p is finite, i.e. xp € I, where xp denotes the characteristic function of the set B.

p is absolutely finite, i.e. p is finite and for every ¢ > 0, A > 0 there is 6 > 0 such that p (Axp,) < ¢ for any
measurable subset B, C I with u (B.) < .

p is strongly finite, i.e. xp € I;.

p is absolutely continuous, i.e. there exists @ > 0 such that for every f € H (I), with p(Af) < +oo, the
following condition is satisfied: for every ¢ > 0 there is 6 > 0 such that p (afxs.) <e, for every measurable
subset B, c [ with u (B.) < 6.

If a modular p is monotone and finite, then C(I) C I,.. If p is monotone and strongly finite, then C(I) C I},.

Also, if p monotone, strongly finite and absolutely continuous, then C. (I) = I, with respect to the modular
convergence in ordinary sense ([31, 33, 36]).

Now let us express the statistical relative A—summation process for monotone and sublinear operators
on modular spaces.

A sequence L = (L,) of monotone and sublinear operators from E into H (I) with C, (I) € E c H (I)
is called a statistical relative A—summation process on E if (L, (f)) is relatively A—summable to f (with
respect to modular p) for every f € E, ie,,

Lol ()1

(st) - likmp A = 0 uniformly in j, for some A > 0, (1)

where forallk,n, j € N, f € E and it assume that the series in (1) is absolutely convergent almost everywhere
with respect to Lebesgue measure.
Let (L,) be a sequence of monotone and sublinear operators such that for each k, j € N

Y L, (1)) < eo. @)
n=1
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Foreachk,je Nand f e ENCy(I),

iag)Ln (f;x),

n=1

which is well defined by (2).
Also, if each operator L, is monotone, sublinear and translatable,then

ZaiL)Ln (f;x),
n=1
is also monotone, sublinear and translatable for each k and j, respectively.

3. Main results

Recently, considering statistical convergence, Gal and Iancu ([25]) have studied some Korovkin Type
results for a sequence of monotone and sublinear operators. By this motivation, using A-summation
process in statistical relative modular sense, we present new and expanded version the Korovkin theorems
for monotone and sublinear operators.

Let L = (L,) be a sequence of monotone and sublinear operators from E into H (I) with C,(I) C E C
I,. Let p be a monotone and finite modular on # (I). Assume further that the sequence L, together with
modular p, satisfies the following property:

there exists a subsets X; € E NI, with G, (I) C X; and 0 € H (I) is an unbounded function satisfies
o (x) # 0 such that the inequality

i": ﬂ;gi)Ln (f;x)

(st) = limsupp| A < Pp(Af), uniformly in j, 3)
k

o(x)

holds for every f € X;, A > 0 and for an absolute positive constant P.
Throughout the paper assume that I is a bounded, locally compact subsets of R and E is a vector subset
of F(I) containing the test function f; fori =0,1,2,3 defined by fo(x) =1, fi(x) = x, fo (x) = —x, f3(x) = X2,

Theorem 3.1. Let A = (agl )) be a sequence of infinite matrices with non-negative real entries and let p be a monotone,

strongly finite, absolutely continuous and N—quasi semi-convex modular on H (I). Let L = (L,) be a sequence of
monotone, subunital and sublinear operators from E into H (I) satisfying (3). Moreover, suppose that ¢ and o; are
unbounded function satisfying |o (x)| 2 b > 0and |o;(x)| 2 b; >0 (i =0,1,2,3). If

%L, (F2) - £ ()

n=1

(st) - 1ikmp A =0, uniformly in j, 4)

0; (x)
forevery A >0,i=0,1,2,3in I, then for every f € E N Cy (I) such that f — g € Xy for every g € Cc (I)

fu,f,?Ln (fix)=f()

n=

(st) ~limp | A =0, uniformly in j, ®)

o (x)
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for some Ag > 0 in 1, and E, X, are before. Moreover, if L, is translatable, then for all f € E N Cy(I), we have

a0, (fi0) - F )

o (x)

n_

(st) — hinp Ao

=0, uniformly in j, for some Ag > 0.

Proof. We first claim that

¥ a1, (g% - 9 ()

o (x)

(st) - hkmp n "_ =0, uniformly in j, (6)

for every g € ENCy (I) and 71 > 0 where o (x) = max{|o; (x)|; i = 0,1,2,3} . To see this assume that g belong
to EN Cp (I) and 1 > 0 is any positive number. Then for ¢ > 0 arbitrary fixed, there is a 6 > 0 such that

|g - g(x)| < ¢ forevery x € [ with |t — x| < 0.

If |t — x| = 6, then

() -9 @)] < ”g I
so that
() -9 @) < ”_l]“ x> forall x € I. @)

Letting M := max {x, 0} . We can write (7) as

2l
62

lg(-gw) < [ +24(M = x) + 2M(=1) + ]

Using this an the fact that the operators L, are monotone, subunital and sublinear, we conclude that

Za,g,i)Ln (7;x) =g ()| <
n=1

(]

Y L -9); x)+g<x>2‘f (13%) -

n=1

(])L (1;x) -

=1

Z (J)L (-9

< .y 2||9”Z (])L |2 + 2t (M = x) + 2M (1) + |x*;
n=1

;x)+g<x>

where K = max {g (x) + ZM”g ”, Zl(lf ”, %} Now, we multiply the both sides of the above inequality by

m and in view of the fact that for any n > 0, we have

nz{l}E?Ln (_17, X) -g (X) ne nijdlalgi)l-‘ﬂ (f3; X) _ f3 (X)

o(x) Ia (x)I 03 (x)
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» a,E,?Ln (frx) — fa(x) v a,E,?Ln (f;x) - fi (x)
4 n=1 i n=1
02 (x) 01 (x)

ia,ﬂ,?u (fos %) = fo (%)

o (x)

Applying the modular p on both sides of the above inequality, since p is monotone, we get

noZ;)‘llZIEZI)Ln (_l], X) -9 (X) ne ni:‘lalgi)L” (fS; x) _ f3 (x)
"l o (x) =P15® K 03 (x)
o L () = /o) L o)Ly (i)~ fi )
+nK| = e +nK|~ s

éa,ﬁj?Ln (for ) = fo (%)

ik e

Therefore, we may write that

")L (F)-

03

ia,f,?u () - f2 Zﬂ(])L () - A

+p|4nK | — o + p|4nK o

(f)L ) - fo

0o

+p 4r]K

Since p is N—quasi semi-convex and strongly finite. We have, assuming 0 < ¢ <1,

Lo)Lule) -9 . Lol (f)- f
PIN—— SNSp(T)+p 4nK on
LaL. (h) - f YalLy (f)- i
+p|4nK| = +p|4nK "_

02 01

7327
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L, (f) - fo

n=1

+p|4nK o0

For a given r > 0, choose on ¢ € (0, 1] such that Nep (4'7N) < r. Now we define the following sets:

L, () - g
G, = k:qu >ry,

Eafl L= F)| o nep (i)

I .
Gn,i = k: PN o > 1 ,1=0,1,2,3.

3 3
Then it is easy to see that G, C .UOG'M" So we can write 6 (Gn) < Yo (G,],l-). Then using (4), we obtain that
i= i=0

0 (G,]) = 0. We get

YL, () - g

(st) - likm pln % = 0, uniformly in j,

which proves our claim (6).

Observe that (6) also holds for every g € C.(I). Now let f € E N C; (I) satistying f — g € X; for every
g € C.(I). Since p is strongly finite and absolutely continuous, we can see that p is also absolutely finite
on H (I) (see for details, [3]). It is known from ([4, 33]) that there exists a sequence (g,) € C.(I) such

that limp (3/\6 (90— f)) = 0 for some Aj > 0. This means that, for every ¢ > 0, there is a positive number
n

ng = ng (¢) with
p (3)\6 (gn — f)) < ¢ for every n > ny. 8)

On the other hand, monotone and sublinear of the operators L,, we may write that

Z (])Ln (f = Jnp; %)

[ee]

1YL, () - F @

n=1

<A

+ A

a]((i)L,, (gno;x) = G, () o (%) — f(x)|

n=1

+A;

holds for every x € I and j € IN.
Now, applying modular p in the last mequality and using the monotonicity of p and moreover multi-
plying both sides of the above inequality by we get

o(x)’

v a0, () - f %L, (f = gu)

* l’l— < * Vl—
PlAV | = |[|=r|3N S 9)
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?Ln (gﬂo) ~ Ing
+p|345 ni +p (3)\5 (Gny — f))

o

Then using the (8) in (9), we have

L, (f) - f % a0, (f - gu)

n— nl
* < *
plAg B — €+ p|34; 5

ﬂ;gi)Ln (gno) ~ Gno

n=

+p|34; S

By property (3) and also using the facts that g,,, € C. (I) and f — g € X}, we obtain

2L, (f) - f

(st) — lim supp A % <e+Rp (3/\6 (f - g”o))

(j)L (g"o) Gno

o

+lim supp | 345 | -
k

(])L (g"o) Gng
+lim supp | 317 | -
k U

r a;E,?Ln (Gne) = Gno

n=

< e(1+R)+limsupp|3A;
k

o
By (6), since
L)Ln (g‘flo) =~ Ing
(st) —hmp 314 n_ S =0,
we get
(])L (gnu) Gno
lim supp 3A4 ”_ =0.

o

7329

(10)

(11)
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Combining (10) and (11), we conclude that

%L, (f) - f

(st)—hmsupp A % <eR+1).

Since ¢ > 0 was arbitrary, we find

LaL.(f) - f
(st) —lim supp A % =0.
¥ oL (f)-f .
Furthermore, since p| A7 ”T is non-negative for all k, j € IN, we can easily show that

YL, () - f
(st) — hmp A nf =0, uniformly in j.

Now suppose that in addition that L, is translatable for #n € IN. Since f + H f ” > 0, in view of (5), we get, for
some Ay > 0,

%.a0L, (£ + 1) - (£ + 1A

o

n_

(st) - likmp Ao =0, uniformly in j,

and since L, is also translatable, we can write

L (£ + A1) = Lo () + A1 L0 ) = Lu () + A Lo (o)
Thanks to our hypotheses (4), we get f € EN Cy, (I), for some Ay > 0,

a0, (fi0) - F )

o (x)

l’l_

(st) - likmp Ao =0, uniformly in j.

O

Remark 3.2. Note that, in Theorem 3.1, in general it is not possible to obtain statistical relative F—norm
convergence unless the modular p satisfies A,—condition.

If one replaces the scale function by non-zero constant, then the condition (3) reduces to

(st) — lim supp [/\ (2 (])L (f; x)]] < Pp(Af), uniformly in j, (12)
k =1

for every f € X;, A > 0 and for an absolute positive constant P. In this case, the next result immediately
follows from our Theorem 3.1.
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Corollary 3.3. Let A = ( U )) be a sequence of infinite matrices with non-negative real entries and let p be a

monotone, strongly finite, absolutely continuous and N—quasi semi-convex modular on H (I) . Assume that L = (L,)
be a sequence of monotone, subunital and sublinear operators from E into H (I) satisfying (12). If

(st) — likmp [A [HZ:;”/EQLH (fi;x) - fi (x)]] =0, uniformly in j,

forevery A >0,i=0,1,2,3in I, then for every f € E N Cy (I) such that f — g € X for every g € Cc (I)

n=1

(st) — likmp [Ao [Z”IS?L” (f;x) - f(x)]] =0, uniformly in j,
for some Ag > 0 in I, where E, X1 are before.

If one replaces the matrices A := (A(f)) by the identity matrix and take the scale function as a non-zero
constant, then the condition (3) reduces to

(st) = limsupp (A (L, (f;x))) < Pp(Af) (13)

for every f € X;, A > 0 and for an absolute positive constant P. In this case, the following result immediately
follows from our Theorem 3.1.

Corollary 3.4. Let p be a monotone, strongly finite, absolutely continuous and N—quasi semi-convex modular on
H(I). Let L = (L) be a sequence of monotone, subunital and sublinear operators from E into H (I) satisfying (13).
If (L. (f)) is statistically F-norm convergent to f; for i = 0,1,2,3 in I, then (L, (f)) is statistically modularly
convergent to f in I, provided that f is any function belonging to I, such that f — g € Xy for every g € Cc(I).

4. Application

In this section we will present an example that proves our main theorem. Firstly, we will calculate the
Bernstein-Kantorovich-Choquet operator necessary for our example. Before calculating this operator, let
us recall some notations:

Suppose that (I, A) is a measurable space with I # @ and A is a c—algebra of subsets of I. The function
m : A — [0,+00] is said to be a capacity (or monotone set function) iff m (@) = 0 and m (E) < m (F) for all
E,F € Awith E C F (monotonicity). A capacity m is submodular if

m(EVUF)+m(ENFE) <m(E)+m(F), forall E,F € A.

If m (I) = 1, then a capacity m is said to be normailzed. The capacities provide a non additive generalization
of probability measures, that is, of capacities m having the property of c—additivity,

m [OE”] = i m (E,)
n=1 n=1

for every sequence (E,) of disjoint sets with |JE, € A.
n=1
Let m be normailzed capacity on A. If f : I — R is A—measurable, then for any E € A, the Choquet
integral is given by

ffdm f (F,(HNE dy+f[m (Fy () NE)—m(E)]dy,
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where F, (f) = {xel: f(x) > y}. If (C) f fdm € R, then f is called Choquet integrable on E. Note that if
E

0
f =0, then f . = 0. Also, if m is 0—additive measure, then the Choquet integral coincides with Lebesgue

integral. We_;:ow conclude by mentioning the following assumptions concerning Choquet integrals:
- if f >0, then (C) [ fdm > 0,
- f < gimplies (C)Iffdm < (C) [gdm,
- forallc >0, we hlave (C)fcfc;m = c(C)ffdm,
- (O) [1dm = m(I), I I
I

-+ if m is submodular, then (C) [ (f + g)dm < (C) [ fdm + (C) [ gdm.
I I I
For some other notions about capacity and Choquet integral, we refer the readers to [2, 9, 18, 44, 45]
(see also [23] and [25], as well as the references there in).

Let us consider Bernstein-Kantorovich-Choquet operators. Then, ch (f;x): C([0,1]) = C ([0, 1]) by

n,m

k+1
n+1

©) [ f®Hdm()

C,(}fn (f;x) = Z(Z)xk (1-x)"* W
=) P e

n+1’ n+l

where m := V£ with Lebesgue measure £. It is known from ([24]) that the operators monotone, translatable

and sublinear.

k1
n+l

Clearly, C,(},)ﬂ (fo;x) = fo (x). In order to find C,(}?ﬂ (fi;x), we will first calculate the integrals (C) f tdm (t).
k

n+l

We get

k1
n+l

(C) | tdm (¢)

n+1

jm t€> k k+1—-t> d
(n+1"n+1| =V
0
k
= m te— k k+1-'t> d
a neln+1| =Y
! | |
+ | m|{te L k+—1 it> d
n+1'n+1|" =V)er
1 (& +f ket
Vn+1\n+1 n+1 7Y
1

1 3k+2
)*f%d‘”: v—n+1(3<n+1>)'
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Using the above equation in C,(},)ﬂ (f1;x), we have

2
+1 3(n+1)'

(1) —
Cnm (fllx) n

K+l
n+1

In order to find C,(}?n (f2; x), we will first calculate the integrals (C) f (—t)dm (t). We get

n+l

k+1
n+l 0

© [ oama = | {m({te

k —00
n+l

Lk-i__l > — 1 d
n+ln+1| 77 Vi+1 4

0

-l e

n+1

€ _k_ K+l <=yl - ! d
n+ln+l| =77 Vii+1 4

n+l

_ 1 (k). __kd_l(l)
C Vnri1\ n+1 YT a1 Virl\n+1
k+1
T nel

B 1 (_ k
Vn+1\ n+

which gives

1 1 —3k-1
dw — =
1)+[\/5w \/n+1(”+1) 3Vn+1(n+1)

1

W ey ML
Com (fa5%) = 277 (=) 3+ 1)
k+1
n+l

Finally, in order to find Cﬁ,lzn (f3;x), we will first calculate the integrals (C) f t2dm () . We get

n+l

k+1

@ femo = Julfili it o2 )
ko 0
(=) k+1
- f ({ n+1 n+1] t>\/)7})dy
0

k)2
n+1

kK k+1
()’




k+1

)2 j‘ k+1
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rz+1)
(i)’

1 (
n +
n+l

1 ( 2 k+1
+2 Vo|— - wl|dw
V n+1) f (n+1 )
n+1 0

1 1 (2 4 4)
= K+=-k+1)-<
Vi +1(n+1) 3D 3
which gives
S () = TR s Tt
(n+1)7° 3(n+1) 15(n+1)

Let us consider I = [0, 1] and let ¢ : [0, 00) — [0, o) be a continuous function with ¢ is convex function,
@ (0) =0, ¢ (u) >0 forany u > 0 and lim ¢ ()= co. Then, the functional defined by

1

o (1= [o(lf@l)ax, or e (14)

0

is a convex modular on H (I) and
Lo ={f e H(I) : p* (Af) < oo for some A > 0}

is the Orlicz space generated by ¢. Using the Bernstein-Kantorovich-Choquet operators that we have shown
and calculated with the C = (Cillzn) we have previously expressed, we define the sequence of monotone,
translatable and sublinear L := (L, ) on I,¢ as follows:

Ly (f;x) = (1 + g (1)) C1(111)’n (f;x) for f € Ipe,
and x €I, n € N and m := VL with Lebesgue measure £, where

1, n==K,
gn (x) =4 n’x, O<x<i;n#k?
0, szor%stl;nikz.

If o (x) =x" for 1 <p < oo,x > 0thenly =L, (I) and we have f € I,¢, p? (f) = ||f||p . Let us choose p = 1.
It is clear that

(%)

B /\0, n= k2
(yo
where g =0and o (x) = { i 0 i ; g 17 then (g,) converges to statistical relative modular to g = 0. That
is, =
(st) - lim Ao(g”a_g) =0 (15)
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However, since (st) — limp (Ag (g, — 9)) = (st) — lim ”Ao (gn — g)”1 # 0, does not converge to g = 0 statistical

modular. Now, we choose o;(x) = 0(x) (i=0,1,2,3) where o(x) = { }’ *=0

1 0<x<1 on L (). Also,
x27 —

0 _ 1

assume that A := (A( )) ( U )) is a sequence of infinite non-negative real matrices defined by a,” = 5

if j<n<j+k (j=1,2,..)and a(]) = 0 otherwise. It can be seen that, for every f € L; (I), A > 0 and for
positive constant Py that

DL, (f)

o

n=

<Py

(st) —limsup ||A , uniformly in j.
k

1
Hence, we can see, for any A > 0, that

¥ a0, u(f) - £

n= 1

(st) — likm A =0, uniformly in j, (1=0,1,2,3) (16)

o

where 0;(x) =0 (x) fori=0,1,2,3.
Now, observe that the Bernstein-Kantorovich-Choquet operators we calculated

CO(for) = 1,

Wy - M 2
Cn,m(erx) n+1x+ 3(n+1)/
n 1
Comfsi®) = 177 0= 30y
nn-1 7 n 8
() = 2emDe 7

x° + X+ .
(n+1)> 3(m+1)* 15n+1)
So, we can see,

T a? (1 + g.) O, (o) - fo
A n=1
o
1
j+k .
Yag(l+gn)-1 L E g
- n= gn
= |1t o = k+ 12 ||/\ olh
n=j
1

As is known if a sequence is convergent then the arithemetic mean of the sequence converges to the same
value. Thus, by virtue of statistical convergence and from (15) it can easily seen that

(st)—likm sup[ 12” P ]J= (17)
Loy L) = f

so we get
(st) — likm Al — > = 0, uniformly in j,

1



S. Cinar / Filomat 39:21 (2025), 7321-7338 7336

which guarantees that (16) holds true for i = 0. In addition, we have

(]’ D1+ g D) - A
NE=
o

1

&1 (1+g) f

_ L 1) ~(1) _Ja

- A ,]-k+ 1 o Cn,m(fl) g
n= 1

IA

+

j+k
/\2
* k+1Z3(n+1

{]n nx
k+1 (” on+1|| ’ )
1 n ; 1 &2 ,
mZm—l 2]}, + m;m (=5 A
+2—ZH 23,

]+k j+k
Since (st) — likm sup k+1 Z m - 1]] 0, (st) - hm (sup (k+1 Y == 3(n+1 D = 0 and from (17) we have,
j

j+k
A [k+1Zn+1 1]

1

(’)anm) - f

(st) —hkm sup ||A 5 =0

1

= 0, uniformly in j. So (16) holds true for i = 1.

which gives (st) — liin =

Za anfl fl
A ”’—

1
For the case i = 2, the following result is obtained by applying the similar technique with i =1

()an(fZ) f2
(st) — lim |[A ”‘1 -

=0, uniformly in j.

So (16) holds true for i = 2.
Finally, since

ia,fi? (1+9:) () — fo

o

1

j* 1 .
= | Z%( = cf},?n<f3>—§]
n=j

1
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n(n=1) &
[k+1Z(n+1) e {k+1z‘(n+1)]

1

j+k j+k _ >
N Z N 1 (Ag_nn(n 1)2x
k+1 15(n+1) ) k+1n=]. o (n+1) |,
+l| (g" il PGl
015(n+1)

[mzi‘zn it g
e R N I

j+k j+k

Since (st)— hm (sup [k+1 y ”::rl;z) ]] =0, (st)—likm (sup (ﬁ Zj(le)z]J 0, (st)— hm (sup [k+1 > 15(n+1) ]] 0
j i n=

and from (17) we have,

Wumw>fg

t)—1li A =
(st) im sgp - 0

1

i‘j‘lalg’) an (f3 )*fS

which gives (st)—liin A = = 0, uniformly in j. So, our claim (16) holds true foreachi = 0, 1, 2, 3.

1
So, our new operator L = (L) satisfies all conditions of Theorem 3.1 and therefore we obtain

%L (F) -

n= 1
o

(st) — likm Ao =0, uniformly in j,

1

for some Ay > 0, for any f € Ly (I). However, (L, x(fo)) is neither statistical modular A-summable nor
statistical modularly convegent to fy. Thus (L, ) does not fulfil the Corollary 3.3 and Corollary 3.4.

5. Concluding remark

In this study, we investigated the approximation properties of monotone and sublinear operators in
modular spaces using the statistical relative A— summation method. This approach enabled us to obtain
new and significant results concerning such operators within the modular framework. Compared to
classical approximation techniques, our method proved to be more effective in terms of convergence
behavior and applicability. The theoretical contributions were further supported by a concrete example,
emphasizing the practical relevance and strength of the proposed approach.

It is well known that if ¢ (x) = x” for 1 < p < o0, x > 0 then I,» = L, (I) and we have f € Iy, p? (f) = ”f”p .

Therefore, in Theorem 3.1, if the identity matrix is taken instead of A := (A(f)) and the scale function, o, is
chosen to be a non-zero constant, Theorem 3 given by Sorin and Iancu in [25] is obtained.

Future research may extend this framework to explore other types of convergence, specific selections
of the matrix sequence A, and more extensive families of function spaces, potentially leading to enhanced
comprehension and more general results.
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