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Abstract. In this paper, we define a G-topological group on a group endowed with a method G, which
generalises the notion of first countable topological groups in which any convergent sequence has a unique
limit, give some counter-examples of G-topological groups and then extend the usual properties of topo-
logical groups to G-topological groups in this sense.

1. Introduction

Using the convergent sequences with unique limits in a topological space X one can define a function
from convergent sequences to limits. Then sequential versions of some topological concepts can be stated
in term of convergent sequences. If X is also first countable space, then sequential versions and standard
forms agree.

Motivated by this, recently many mathematicians have been in afford to define some topological def-
initions associated with different convergences. Replacing the limit function defined by the convergent
sequences with a function G is called a G-method [6]. As a result of this replacement some authors have
been recently studied G-continuity [8] (see also [12] and [9] for other continuities), G-compactness [7] and
the G-connectedness in [10] (see also [11]), G-open subsets and G-neighbourhoods [17].

G-methods have been extended to arbitrary sets not only to topological spaces and G-hulls, G-closures,
G-kernels and G-interiors have been introduced [13] .

Recently, G-connectedness [18] and G-compactness [19] for the topological groups with operations
extending the idea of topological groups [3] have been developed. We refer the readers to [20] some counter
examples of G-methods and [2] for a variety of G-convergence. These ideas have been into account in
neutrosophic topological spaces. [1]. The statistical convergence, statistically sequential spaces, statistically
Frechet spaces with some applications in selection principles theory, function spaces and hyperspaces have
been given in [16].

The notion of G-topological group on a group with operations which has a topology is defined in [21,
Definition 5.4] and then some properties are given in [5]. In this paper we redefine G-topological group
not on a topology but also on a set and characterise some properties of these setting together with some
counter examples.
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2. Preliminaries

We use the symbols a, b, ... for the indications of the sequences (an), (bn), ... in a set or topological space
X; and s(X) and c(X) respectively for the sets of all sequences and convergent sequences in X.

The convergent sequences with unique limits in a topological space X define a function lim: c(X) → X
which assigns each convergent sequence to its limit. Motivated by this idea a G-method depending on
sequential convergence in X is defined to be a map from a subset cG(X) of s(X) to X. We shortly write
(X,G) for such a method. A sequence a = (an) is G-convergent to ℓ provided that a ∈ cG(X) and G(a) = ℓ. In
particular lim function from c(X) to X yields a G-method.

If in a topological space X any convergent sequence x = (xn) is in the domain cG(X) of the method G
and lim x = G(x), then the method is said to be regular. The regularity condition defined in a topological
space is weakened and replaced with the following pointwise method in a set [14, p.279]: A method G in
a set X is called pointwise method if for any x ∈ X, one has x ∈ [{x}]G. which means the constant sequence
x = (x, x, x, · · · ) is G-convergent to x.

Let X be a set, A ⊆ X and ℓ ∈ X. Then ℓ is said to be in G-hull of A denoted by [A]G whenever there
exists a sequence a = (an) in A with G(a) = ℓ and A is G-closed whenever [A]G

⊆ A. Hence A is not G-closed
whenever there exists a sequence a = (an) in A which is not G-convergent to a point in A. Eventually a
subset A with [A]G = ∅ is G-closed.

Whenever a method G is regular, then A ⊆ [A]G and therefore A is G-closed if and only if [A]G = A. Even
if a method G is regular, G-closure [A]G is not necessarily G-closed. The intersection of G-closed subsets is
also G-closed but the union of G-closed subsets is not necessarily G-closed.

A subset A with G-closed complement X \ A is called G-open. Eventually unlike the intersection, the
union of G-open subsets of X is G-open. We refer to [2] and [20] for various examples of G-methods,
G-closed and G-open subsets; and some other evaluations.

We can define (G,H)-continuity of a function between two methods as follows.

Definition 2.1. Let (X,G) and (Y,H) be two methods and f : (X,G)→ (Y,H) be a map between these methods.
We call f , (G,H)-continuous if whenever a = (an) ∈ cG(X), then b = ( f (an)) ∈ cH(Y) and f (G(a)) = H(b).

3. G-topological groups

This section is assigned to the definition of G-topological groups, some examples, and some standard
properties motivated by topological groups.

For the methods (X,G) and (Y,H) we have a product method G ×H on X × Y defined by (G ×H)(a,b) =
(G(a),H(b)) where a = (an) ∈ cG(X) and b = (bn) ∈ cG(X). G×H-open subsets are the subsets A×B whenever
A is G-open in X and B is G-open in X. If the methods G and H are regular, so is G ×H.

Extending the definition of topological groups to the G-method setting, we define a G-topological group
as follows. This definition is given in [21, Definition 5.4] on a group with operations and a topology, but
our definition is stated only on a group with a G-method. As a convention, we use multiplication notation
for groups, and it can be modified to the additive case when the group is commutative.

Definition 3.1. Let (X,G) be a method in which X is a group. Then X is called a G-topological group subject
to that the multiplication map m and the inverse map n are G-continuous.

In this definition, when X is a first countable space in which any convergent sequence has a unique limit
and G is the method lim, then a G-topological group X agrees with a standard topological group.

Theorem 3.2. For a group X with a method G we have the following.

(1) The multiplicative map m is G-continuous iff for the sequences a = (an) and b = (bn) in cG(X), one has that
ab = (anbn) ∈ cG(X) and G(ab) = G(a)G(b).

(2) The inverse map n is G-continuous iff for any sequence a = (an) in cG(X) we have that a−1 = (a−1
n ) ∈ cG(X) and

G(a)−1 = G(a−1).
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Proof. (1) If m is G-continuous; and a = (an) and b = (bn) are the sequence in cG(X), then G-continuity of m
implies that ab ∈ cG(X) and G(m(an, bn)) = m(G(a),G(b)) which means that G(ab) = G(a)G(b).

Whenever for all the sequences a and b in cG(X) one has ab ∈ cG(X) and the condition G(ab) = G(a)G(b)
is satisfied, then G(m(an, bn)) = m(G(a),G(b)) which implies that m is G-continuous.

(2) If the inverse map n is G-continuous, for any sequence a = (an) in cG(X) we have that a−1 =∈ cG and
n(G(a)) = G(n(a)) which means G(a)−1 = G(a−1).

Whenever for any sequence a ∈ cG(X), one has a−1
∈ cG(X) and the equality G(a)−1 = G(a−1), then by

n(G(a)) = G(n(a)), the G-continuity of n follows.

Theorem 3.3. For a group X imposed with a pointwise method G, G-continuities of the multiplicative map m and
the inverse map n are equivalent to G-continuity of the difference map δ.

Proof. G-continuity of the map n gives G-continuity of the map 1 : X×X→ X×X defined by (x, y) 7→ (x, y−1)
and G-continuity of δ as a composite m ◦ 1 = δ of G-continuous maps follows.

Assuming G-continuity of the difference map δ we first prove G-continuity of f : X→ X × X, x 7→ (e, x).
Since G is a pointwise method for the constant sequence e = (e, e, . . . ) we have G(e) = e and therefore a
sequence a = (an) in cG(X) with G(a) = x implies

f (G(a)) = (e,G(a)) = (G(e),G(a)) = G(e, a) = G( f (a))

and therefore f is G-continuous. Hence n becomes G-continuous as a composite n = δ ◦ f of G-continuous
maps.

We next prove that the map 1 : X × X → X × X defined by (x, y) → (x, y−1) is G-continuous. If a = (an)
and b = (bn) are the sequences in cG(X), then we have

1G(a,b) = 1(G(a),G(b))

= (G(a),G(b)−1)

= (G(a),G(b−1)) (by G-continuity of n)

= G(a,b−1)
= G(1(a,b))

Hence, the map 1 is G-continuous. Then, the multiplicative map m becomes G-continuous as the
composite of G-continuous maps m = δ ◦ 1.

Hence, we can give the following corollary by Theorem 3.3.

Corollary 3.4. A group X together with a pointwise method G is a G-topological group if and only if for the sequences
a = (an) and b = bn in cG(X), one has that ab−1 = (anb−1

n ) ∈ cG(X) and G(ab−1) = G(a)G(b)−1.

Proof. The proof is a consequence that, the difference map δ is G-continuous if and only if for the sequences
a = (an) and b = bn in cG(X) one has ab−1

∈ cG(X) and G(δ(an, bn)) = δ(G((a),G(b)) and the equivalently
G(ab−1) = G(a)G(b)−1.

Below, we give an example that is not a topological group but is a G-topological group.

Example 3.5. Additive group (R,+) with co-countable topology is not a topological group. For example,
R \ Z is an open subset of R but δ−1(R \ Z) is not open in R2 concerning the product of co-countable
topologies: Let ln denote the set of the points (a, b)’s on the line y = x − n for each n ∈ Z. Then

δ−1(R \Z) = δ−1(
⋃
n∈Z

(n,n + 1)) =
⋃
n∈Z

δ−1(n,n + 1) = R2
\ (
⋃
n∈Z

ln)

For a point (a, b) ∈ δ−1(R \Z) there are no co-countable subsets U and V such that (a, b) ∈ U×V ⊆ δ−1(R \Z)
since for such co-countable subsets U and V the product U×V includes some points on the lines ln’s. Hence
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the difference map δ : R2
→ R, δ(x, y) = x − y is not continuous and therefore (R,+) is not a topological

group.
However, with co-countable topology, the terms of a sequence a = (an) converging to a are almost a, and

the sequence has only one limit. Therefore, the function lim: c(R)→ R defines a G-method. Then (R,+) is
a G-topological group with the method G = lim. For if a = (an) and b = (bn) are the sequences converging
to x and y respectively, then the terms of the sequence δ(an, bn) = (an − bn) are almost x− y and converges to
x − y which implies that the difference map δ is G-continuous.

We now give a few more examples of G-topological groups.

Example 3.6. If X is a group with a G-method defined by G(x) = x1 for the sequences in X, which is a
not a pointwise method, then for all sequences a = (an) and b = (bn) in X it follows that G(ab) = a1b1
and G(a)G(b) = a1b1. Hence it follows that G(ab) = G(a)G(b) and therefore the multiplicative map is
G-continuous. Moreover for any sequence a = (an) in X one has G(a)−1 = G(a−1) and therefore the inverse
map n is continuous. Hence, X is a G-topological group.

Example 3.7. If the method G on the additive group (R,+) is defined by G(x) = lim
xn + xn+1

2
which is

regular and is not the same as the lim method. For example if A = {0, 1}, then [A]G = {0,
1
2
, 1} and therefore

A is not G-closed, but A is a closed subset. For the sequences a = (an) and b = (bn) in cG(R) one has
(δ(an, bn)) = a − b ∈ cG(X); and

G(a − b) = lim
an − bn + an+1 − bn+1

2
.

and

G(a) − G(b) = lim
an + an+1

2
− lim

bn + bn+1

2

= lim
an − bn + an+1 − bn+1

2

Hence, by the equability G(a − b) = G(a) −G(b), G-continuity of the difference map δ follows and therefore
(R,+) becomes a G-topological group according to this method G.

Example 3.8. For a group X and a constant x0 ∈ X; and the G-method defined by G(a) = x0 ∈ X with domain
all sequences, any sequences a = (an) and b = (bn) in X yields G(ab) = x0 and G(a)G(b)) = x2

0. Hence, if
x0 = e is identity, then X becomes a G-topological group, and if x0 , e, then X is not a G-topological group.

Theorem 3.9. In a G-topological group X with a pointwise method G, the right and left translations are:

(1) G-continuous

(2) G-closed

(3) G-open.

Proof. The proof for a right translation Ra : X→ X defined by Ra(x) = xa is sufficient since the proof for left
translations is similar.

(1) Since the method G is pointwise by the G-continuity of the multiplicative map in the G-topological
group X, for a sequence x with G-convergence to x and constant sequence a = (a, a, . . . , ), the sequence xa
has G-convergence to xa. Hence we have

G(Ra(x)) = G(xa) = G(x)G(a) = xa = Ra(x) = Ra(G(x))
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and therefore the right translation map Ra : X→ X is G-continuous.
(2) For a G-closed subset F, if xa = xa is a sequence in Fa with G-convergence to xa then x is G-convergent

to x. Since F is G-closed we have x ∈ F and xa is G-convergent to xa ∈ Fa which means Ra(F) = Fa is G-closed.
(3) Since the right translation Ra−1 is G-continuous, if U is G-open, then the inverse image (Ra−1 )−1(U) =

Ra(U) = Ua is G-open which proves that the map Ra is G-open.

Theorem 3.10. If X is a G-topological group and Y a H-topological group, then the product X × Y is a (G,H)-
topological group.

Proof. Let X and Y be respectively G and H-topological groups with the multiplicative operations. We prove
that the multiplicative map m : (X × Y) × (X × Y)→ X × Y defined by m((x, y), (x′, y′)) = (xx′, yy′) is (G,H)-
continuous. Let the sequences a = (an) and a′ = (a′n) be in cG(X); and b = (bn) and b′ = (b′n) in cH(Y). By the
G-continuity of the multiplicative map in X we have G(a)G(a′) = G(aa′) and similarly H(b)H(b′) = H(bb′).
Then by Theorem 3.2 and the following evaluation, (G,H)-continuity of the multiplicative map m follows:

(G,H)((a,b)(a′,b′)) = (G,H)(aa′,bb′)
= (G(aa′),H(bb′))
= (G(a)G(a′),H(b)G(b′)) (by G and H-continuities of m)
= (G(a),H(b))(G(a′),H(b′))
= (G,H)(a,b)(G,H)(a′,b′)

By the G-continuity of the inverse map we have G(a−1) = G(a)−1 and similarly H(b−1) = H(b)−1. Hence
we have

(G,H)((a,b)−1) = (G,H)(a−1,b−1)

= (G(a−1),H(b−1))

= (G(a)−1,H(b)−1) (by G and H-continuities of n)

= (G(a),H(b))−1

= (G,H)(a,b))−1

which proves (G,H)-continuity of the inverse map for X × Y. Hence by Theorem 3.2, X × Y is a (G,H)-
topological group.

Theorem 3.11. In a G-topological group X for the subsets A,B ⊆ X, we have [A]G[B]G−1
⊆ [AB−1]G and [A]G[B]G

⊆

[AB]G .

Proof. Let X be a G-topological group and A,B ⊆ X. Then [A]G
× [B]G = [A × B]G and the G-continuity of

the difference map δmean that

δ([A]G
× [B]G) = δ([A × B]G) ⊆ [δ(A × B)]G

and therefore [A]G[B]G−1
= δ([A]G

× [B]G) ⊆ [δ(A × B)]G = [AB−1]G

The proof of [A]G[B]G
⊆ [AB]G can be similarly performed by replacing the difference map δ with the

multiplicative m.
Subgroup and normal subgroup are rephrased as follows, and it is helpful for the proof of Theorem 3.13

Proposition 3.12. Let X be a group, Y ⊆ X a subset and δ the difference map. Then the following hold:

(1) Y is a subgroup of X if and only if δ(Y × Y) ⊆ Y.
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(2) The subgroup Y is normal if for any a ∈ X and the map fa : X→ X defined by x 7→ axa−1 we have fa(Y) ⊆ Y.

Theorem 3.13. The following hold for a G-topological group X such that G is a pointwise method.

(1) If Y is a subgroup of X, then so also is [Y]G.

(2) If Y is normal in X, then so also is [Y]G.

Proof. (1) Y is a subgroup of X, then by Proposition 3.12 (1) it is sufficient to prove that δ([Y]G
× [Y]G) ⊆ [Y]G.

Here [Y]G
× [Y]G = [Y × Y]G and by the G-continuity of δ we have δ([Y × Y]G) ⊆ [δ(Y × Y)]G and as Y is a

subgroup we have δ(Y×Y) ⊆ Y which implies that [δ(Y×Y)]G
⊆ [Y]G. Assembling these, we conclude that

δ([Y]G
× [Y]G) = δ([Y × Y]G) ⊆ [δ(Y × Y)]G

⊆ [Y]G

which means [Y]G is a subgroup of X.
(2) If Y is a normal subgroup of X, then by (1), [Y]G is also a subgroup, and therefore, we need to prove

that [Y]G is normal. By the normality of Y, for any a ∈ X and the map fa : X→ X, x 7→ axa−1 we have fa(Y) ⊆ Y
which implies that [ fa(Y)]G

⊆ [Y]G and since by Theorem 3.9 the translation maps La : X → X, x 7→ ax and
Ra−1 : X→ X, x 7→ xa−1 are G-continuous, as a composite of G-continuous maps fa = La◦Ra−1 is G-continuous.
Hence fa([Y]G) ⊆ [ fa(Y)]G

⊆ [Y]G and therefore [Y]G is a normal subgroup.

We define G-topological subgroups as follows:

Theorem 3.14. If X is a G-topological group and Y a subgroup of X, then Y becomes a G-topological group with the
method GY defined by GY(a) = G(a) on the domain

cG(Y) = {a = (an) ∈ cG(X) ∩ s(Y) : G(a) ∈ Y}

whenever it is non-empty.

Proof. Let a = (an) ∈ cG(Y) and b = (bn) ∈ cG(Y). Since Y is a subgroup ab ∈ s(Y) and by G-continuity of
the multiplicative map m in the G-topological group X, we have ab ∈ cG(Y) and GY(ab) = GY(a)GY(b); and
GY(a−1) = GY(a)−1. Hence, by Theorem 3.2, Y becomes a G-topological group.

Theorem [17, Theorem 27] can be revised for G-topological groups as follows.

Theorem 3.15. Let X be a G-topological group and Y an H-topological group provided that the methods G and H are
pointwise methods. Then a map f : (X,G)→ (Y,H) is (G,H)-continuous if and only if f is so at the identity e ∈ X.

Proof. If the map f : (X,G) → (Y,H) is (G,H)-continuous at the identity e ∈ X, then f (x) ∈ cH(Y) and
H( f (x)) = e whenever x ∈ cG(X) and G(x) = e. Hence for a sequence x in cG(X) with G(x) = a and
the constant sequence a = (a, a, . . . ), we have G(xa−1) = G(x)G(a)−1 = e since G is a pointwise method
and X is a G-topological group. By assumption H( f (xa−1)) = e and by the multiplicative of f and H
we have H( f (x))H( f (a))−1 = e, where H is pointwise method which implies H( f (a)) = f (a) and therefore
H( f (x)) = f (a) = f (G(x)). Hence the (G,H)-continuity of f at any point a ∈ X follows.

Theorem 3.16. For a G-topological group X provided with a pointwise method G, G-openness of one of the sets A
and B implies that of the product AB.

Proof. By Theorem 3.9 (3) G-openness of A means that Ab for b ∈ B is G-open. Then, as the union of G-open
subsets

AB =
⋃
b∈B

Ab

becomes G-open.
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4. G-topological quotient groups

It is well known that the quotient group of a topological group is also a topological group. Below, we
prove a similar result for G-topological groups.

Theorem 4.1. For a G-topological group X and a normal subgroup N of X, which is G-closed, there exists a method
denoted by GN on the quotient group X/N such that X/N is a GN-topological group and the quotient map p : X→ X/N
is (G,GN)-continuous.

Proof. When X is a G-topological group and N a normal subgroup N, we define a method on the quotient
group X/N by

GN : cG(X/N)→ X/N,GN(aN) = G(a)N

where the domain cG(X/N) of the method GN is the set of the sequences aN = (anN) in X/N for the sequences
a = (an) ∈ cG(X). Prove that the method GN is well defined. If a,b ∈ cG(X) and aN = bN, then anbn

−1
∈ N for

any n ∈Nwhich means ab−1 is a sequence in N and by the G-continuity of the difference map X×X→ X with
(x, y)→ xy−1 we have ab−1

∈ cG(X) and G(ab−1) = G(a)G(b)−1. Since N is G-closed one has G(a)G(b)−1
∈ N

which means G(a)N = G(b)N. Hence, the method GN is well-defined.
Now, prove that for the sequences aN,bN ∈ cG(X/N) we have

G(aNbN) = G(aN)G(aN) = G(a)G(b)N

Let aN,bN ∈ cG(X/N). Hence a = (an) ∈ cG(X) and b = (bn) ∈ cG(X) ; and the G-continuity of the
multiplicative map m : X × X → X, (x, y) 7→ xy implies that ab ∈ cG(X) and G(ab) = G(a)G(b). Since N
is a normal subgroup anNbn

−1N = (anbn
−1)N which implies that aNbN = (ab)N. Hence, by the following

evaluation, we have GN-continuity of the multiplicative map for X/N

GN(aN)GN(bN) = G(a)NG(b)N
= (G(a)G(b))N
= G(ab)N
= GN(aNbN)

For a ∈ cG(X/N), we have GN(a−1N) = G(a−1)N and since X is a G-topological group G(a−1) = G(a)−1; and
therefore we have GN(a−1N) = (GN(aN))−1 which guarantees GN continuity of the inverse map.

By Theorem 3.2, these complete the proof that the quotient group X/N is a GN-topological group.
We now prove that the quotient map p : X → X/N is (G,GN)-continuous. If a = (an) is a sequence in

cG(X), then the sequence b = (p(an)) = aN is in the domain cG(X/N) of GN and

p(G(a)) = G(a)N = GN(aN) = GN(b)

which proves that the map p is G-continuous or equivalently (G,GN)-continuous.

Below, we give an isomorphism theorem for G-topological groupoids.

Theorem 4.2. Let X a G-topological group, N a G-closed normal subgroup and p : X→ X/G the quotient map. Then
for another H-topological group Y and a (G,H)-continuous group homomorphism f : (X,G)→ (Y,H) with N ⊆ Ker f ,
there exists a unique (GN,H) homomorphism f̃ : X/N→ Y such that f̃ ◦ p = f and f̃ is (GN,H)-continuous.

Proof. By the algebraic version of the theorem, we have the existence of the group homomorphism f̃ : X/N→
Y defined by f̃ (xN) = f (x) for xN ∈ X/N. Hence, we must prove that f̃ is (GN,H)-continuous. If aN = (anN)
is a sequence with a = (an) ∈ cG(X), then by (G,H)-continuity of f we have b = ( f (an)) ∈ cH(Y) and
f (G(a)) = H(b); and then

f̃ (GN(aN)) = f̃ (G(a)N) = f (G(a)) = H(b) = H( f̃ (aN))

and therefore f̃ is (GN,H)-continuous.
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5. Conclusion

In this paper, we define G-topological group and give some characterisations of standard properties.
A groupoid is a category such that any morphism has an inverse and generalises a group (one can be
referred to [4] for more discussion about groupoids). That means a groupoid with one object is just a group;
equivalently, a group can be considered a groupoid with one object. A topological groupoid is a groupoid
with topologies on both the sets of morphisms and objects such that constructional maps are continuous. A
topological group is a particular topological groupoid with one object. The primary reference on topological
groupoids might be [15].

The paper’s results can be extended to the groupoid setting by defining G-topological groupoid and
giving some characterisations.
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