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About G-topological groups
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Abstract. In this paper, we define a G-topological group on a group endowed with a method G, which
generalises the notion of first countable topological groups in which any convergent sequence has a unique
limit, give some counter-examples of G-topological groups and then extend the usual properties of topo-
logical groups to G-topological groups in this sense.

1. Introduction

Using the convergent sequences with unique limits in a topological space X one can define a function
from convergent sequences to limits. Then sequential versions of some topological concepts can be stated
in term of convergent sequences. If X is also first countable space, then sequential versions and standard
forms agree.

Motivated by this, recently many mathematicians have been in afford to define some topological def-
initions associated with different convergences. Replacing the limit function defined by the convergent
sequences with a function G is called a G-method [6]. As a result of this replacement some authors have
been recently studied G-continuity [8] (see also [12] and [9] for other continuities), G-compactness [7] and
the G-connectedness in [10] (see also [11]), G-open subsets and G-neighbourhoods [17].

G-methods have been extended to arbitrary sets not only to topological spaces and G-hulls, G-closures,
G-kernels and G-interiors have been introduced [13] .

Recently, G-connectedness [18] and G-compactness [19] for the topological groups with operations
extending the idea of topological groups [3] have been developed. We refer the readers to [20] some counter
examples of G-methods and [2] for a variety of G-convergence. These ideas have been into account in
neutrosophic topological spaces. [1]. The statistical convergence, statistically sequential spaces, statistically
Frechet spaces with some applications in selection principles theory, function spaces and hyperspaces have

been given in [16].

The notion of G-topological group on a group with operations which has a topology is defined in [21,
Definition 5.4] and then some properties are given in [5]. In this paper we redefine G-topological group

not on a topology but also on a set and characterise some properties of these setting together with some
counter examples.

2020 Mathematics Subject Classification. Primary 40J05; Secondary 54A05, 22A05.
Keywords. Sequences, G-convegence, G-continuity, G-topological group.
Received: 29 January 2025; Revised: 19 April 2025; Accepted: 21 April 2025
Communicated by Ljubi$a D. R. Ko¢inac

Email address: mucuk@erciyes.edu. tr (Osman Mucuk)

ORCID iD: https://orcid.org/0000-0001-7411-2871 (Osman Mucuk)



O. Mucuk / Filomat 39:21 (2025), 7339-7346 7340
2. Preliminaries

We use the symbols a, b, ... for the indications of the sequences (a,), (b,), ... in a set or topological space
X; and s(X) and ¢(X) respectively for the sets of all sequences and convergent sequences in X.

The convergent sequences with unique limits in a topological space X define a function lim: ¢(X) — X
which assigns each convergent sequence to its limit. Motivated by this idea a G-method depending on
sequential convergence in X is defined to be a map from a subset cc(X) of s(X) to X. We shortly write
(X, G) for such a method. A sequence a = (a,,) is G-convergent to £ provided that a € cg(X) and G(a) = ¢. In
particular lim function from ¢(X) to X yields a G-method.

If in a topological space X any convergent sequence x = (x,) is in the domain c;(X) of the method G
and lim x = G(x), then the method is said to be regular. The regularity condition defined in a topological
space is weakened and replaced with the following pointwise method in a set [14, p.279]: A method G in
a set X is called pointwise method if for any x € X, one has x € [{x}]°. which means the constant sequence
x = (x,x,x,--+) is G-convergent to x.

Let X be a set, A C X and ¢ € X. Then ¢ is said to be in G-hull of A denoted by [A]® whenever there
exists a sequence a = (a,) in A with G(a) = ¢ and A is G-closed whenever [A]® C A. Hence A is not G-closed
whenever there exists a sequence a = (a,,) in A which is not G-convergent to a point in A. Eventually a
subset A with [A]® = 0 is G-closed.

Whenever a method G is regular, then A C [A]C and therefore A is G-closed if and only if [A]¢ = A. Even
if a method G is regular, G-closure [A]° is not necessarily G-closed. The intersection of G-closed subsets is
also G-closed but the union of G-closed subsets is not necessarily G-closed.

A subset A with G-closed complement X \ A is called G-open. Eventually unlike the intersection, the
union of G-open subsets of X is G-open. We refer to [2] and [20] for various examples of G-methods,
G-closed and G-open subsets; and some other evaluations.

We can define (G, H)-continuity of a function between two methods as follows.

Definition 2.1. Let (X, G) and (Y, H) be twomethodsand f: (X, G) — (Y, H) be amap between these methods.
We call f, (G, H)-continuous if whenever a = (a,,) € ¢g(X), then b = (f(a,)) € cu(Y) and f(G(a)) = H(b).

3. G-topological groups

This section is assigned to the definition of G-topological groups, some examples, and some standard
properties motivated by topological groups.

For the methods (X, G) and (Y, H) we have a product method G X H on X X Y defined by (G x H)(a,b) =
(G(a), H(b)) where a = (a,) € c¢(X) and b = (b,) € cc(X). G X H-open subsets are the subsets A X B whenever
A is G-open in X and B is G-open in X. If the methods G and H are regular, so is G X H.

Extending the definition of topological groups to the G-method setting, we define a G-topological group
as follows. This definition is given in [21, Definition 5.4] on a group with operations and a topology, but
our definition is stated only on a group with a G-method. As a convention, we use multiplication notation
for groups, and it can be modified to the additive case when the group is commutative.

Definition 3.1. Let (X, G) be a method in which X is a group. Then X is called a G-topological group subject
to that the multiplication map m and the inverse map # are G-continuous.

In this definition, when X is a first countable space in which any convergent sequence has a unique limit
and G is the method lim, then a G-topological group X agrees with a standard topological group.

Theorem 3.2. For a group X with a method G we have the following.

(1) The multiplicative map m is G-continuous iff for the sequences a = (a,) and b = (b,) in cg(X), one has that
ab = (a,b,) € cg(X) and G(ab) = G(a)G(b).

(2) The inverse map n is G-continuous iff for any sequence a = (a,) in cg(X) we have that a™* = (a,') € c(X) and
G()™! =G@™).
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Proof. (1) If m is G-continuous; and a = (a,) and b = (b,) are the sequence in c¢(X), then G-continuity of m
implies that ab € cg(X) and G(m(a,, b)) = m(G(a), G(b)) which means that G(ab) = G(a)G(b).

Whenever for all the sequences a and b in c¢(X) one has ab € c¢(X) and the condition G(ab) = G(a)G(b)
is satisfied, then G(m(a,, b)) = m(G(a), G(b)) which implies that m is G-continuous.

(2) If the inverse map 7 is G-continuous, for any sequence a = (4,) in ¢g(X) we have that a™! =€ ¢ and
n(G(a)) = G(n(a)) which means G(a)™! = G(a™).

Whenever for any sequence a € ¢g(X), one has a™' € ¢(X) and the equality G(a)™! = G(a™!), then by
n(G(a)) = G(n(a)), the G-continuity of n follows. [

Theorem 3.3. For a group X imposed with a pointwise method G, G-continuities of the multiplicative map m and
the inverse map n are equivalent to G-continuity of the difference map 0.

Proof. G-continuity of the map 1 gives G-continuity of the map g: XxX — X x X defined by (x, y) - (x,y!)
and G-continuity of 6 as a composite m o g = 6 of G-continuous maps follows.

Assuming G-continuity of the difference map 0 we first prove G-continuity of f: X = X x X, x = (e, x).
Since G is a pointwise method for the constant sequence e = (e, ¢,...) we have G(e) = ¢ and therefore a
sequence a = (a,,) in c¢(X) with G(a) = x implies

f(G(@) = (¢,G(a)) = (G(e), G(a)) = G(e, a) = G(f(a))

and therefore f is G-continuous. Hence n becomes G-continuous as a composite n = 6 o f of G-continuous
maps.
We next prove that the map g: X X X — X x X defined by (x,y) — (x,y™') is G-continuous. If a = (a,)
and b = (b,) are the sequences in c(X), then we have
9G(a,b) = 9(G(a), G(b))
= (G(a), G(b)™)
= (G(a),G(d™)) (by G-continuity of n)
=G(a,b™})
= G(g(a b))

Hence, the map g is G-continuous. Then, the multiplicative map m becomes G-continuous as the
composite of G-continuous mapsm =060g. O

Hence, we can give the following corollary by Theorem 3.3.

Corollary 3.4. A group X together with a pointwise method G is a G-topological group if and only if for the sequences
a = (a,) and b = b, in cg(X), one has that ab™! = (a,b;!) € cc(X) and G(ab™!) = G(a)G(b)™.

Proof. The proof is a consequence that, the difference map 6 is G-continuous if and only if for the sequences
a = (a,) and b = b, in cg(X) one has ab™! € ¢5(X) and G(6(ay, b)) = 5(G((a), G(b)) and the equivalently
G(ab™) = G(a)G(b)™. O

Below, we give an example that is not a topological group but is a G-topological group.

Example 3.5. Additive group (IR, +) with co-countable topology is not a topological group. For example,
R\ Z is an open subset of R but 6 }(R \ Z) is not open in R? concerning the product of co-countable
topologies: Let I, denote the set of the points (a,b)’s on the line y = x — n for each nn € Z. Then

5 YR\ Z) = 5-1(U(n,n +1)) = U 5 Ymn+1) =R\ (U 1)
nez nez nez.

For a point (,b) € 67}(IR \ Z) there are no co-countable subsets U and V such that (2,b) € UXV C 6" (R\ Z)
since for such co-countable subsets U and V the product U x V includes some points on the lines [,,’s. Hence
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the difference map 6: R? — R,d(x, y) = x — y is not continuous and therefore (R, +) is not a topological
group.

However, with co-countable topology, the terms of a sequence a = (1,) converging to a are almost a, and
the sequence has only one limit. Therefore, the function lim: ¢(R) — R defines a G-method. Then (R, +) is
a G-topological group with the method G = lim. For if a = (1,) and b = (b,) are the sequences converging
to x and y respectively, then the terms of the sequence 6(a,, b,) = (a, — b,,) are almost x — iy and converges to
x — y which implies that the difference map 6 is G-continuous.

We now give a few more examples of G-topological groups.

Example 3.6. If X is a group with a G-method defined by G(x) = x; for the sequences in X, which is a
not a pointwise method, then for all sequences a = (a,) and b = (b,) in X it follows that G(ab) = a1b;
and G(a)G(b) = a1b;. Hence it follows that G(ab) = G(a)G(b) and therefore the multiplicative map is
G-continuous. Moreover for any sequence a = (a,) in X one has G(a)~! = G(a™!) and therefore the inverse
map 7 is continuous. Hence, X is a G-topological group.

Example 3.7. If the method G on the additive group (R, +) is defined by G(x) = lim % which is

regular and is not the same as the lim method. For example if A = {0, 1}, then [A]® = {0, %, 1} and therefore

A is not G-closed, but A is a closed subset. For the sequences a = (a,) and b = (b,) in c(R) one has
(6(an, by)) = a—b € cg(X); and

ay — bn + Aps1 — bn+1

G(a—-b) = lim 5

and

p + Ant1 li bn + bn+1
2
Ay — by + a1 — by
2

Hence, by the equability G(a — b) = G(a) — G(b), G-continuity of the difference map 0 follows and therefore
(R, +) becomes a G-topological group according to this method G.

G@) -GMb) = lim

= lim

Example 3.8. For a group X and a constant xy € X; and the G-method defined by G(a) = xg € X with domain
all sequences, any sequences a = (a,) and b = (b,) in X yields G(ab) = xp and G(a)G(b)) = xé. Hence, if
Xo = e is identity, then X becomes a G-topological group, and if x; # ¢, then X is not a G-topological group.

Theorem 3.9. In a G-topological group X with a pointwise method G, the right and left translations are:
(1) G-continuous
(2) G-closed
(3) G-open.

Proof. The proof for a right translation R,: X — X defined by R,(x) = xa is sufficient since the proof for left
translations is similar.

(1) Since the method G is pointwise by the G-continuity of the multiplicative map in the G-topological
group X, for a sequence x with G-convergence to x and constant sequence a = (4,4, ...,), the sequence xa
has G-convergence to xa. Hence we have

G(Ry(x)) = G(xa) = G(x)G(a) = xa = Ra(x) = Rs(G(x))
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and therefore the right translation map R,: X — X is G-continuous.
(2) For a G-closed subset F, if xa = xa is a sequence in Fa with G-convergence to xa then x is G-convergent
to x. Since F is G-closed we have x € F and xa is G-convergent to xa € Fa which means R,(F) = Fa is G-closed.
(3) Since the right translation R,-1 is G-continuous, if U is G-open, then the inverse image (R,+) ™ (U) =
R,(U) = Ua is G-open which proves that the map R, is G-open. [

Theorem 3.10. If X is a G-topological group and Y a H-topological group, then the product X X Y is a (G, H)-
topological group.

Proof. Let X and Y be respectively G and H-topological groups with the multiplicative operations. We prove
that the multiplicative map m: (X X Y) X (X X Y) — X X Y defined by m((x, y), (x’, y')) = (xx’, yy’) is (G, H)-
continuous. Let the sequences a = (a,) and a’ = (4;,) be in ¢5(X); and b = (b,) and b’ = (b;) in cy(Y). By the
G-continuity of the multiplicative map in X we have G(a)G(a’) = G(aa’) and similarly H(b)H(b’) = H(bb").
Then by Theorem 3.2 and the following evaluation, (G, H)-continuity of the multiplicative map m follows:
(G, H)((a,b)@,b")) = (G, H)(aa', bb")

= (G(aa), H(bb"))

= (G(a)G(a’), H(b)G(b")) (by G and H-continuities of m)

= (G(a), H(b))(G(a"), H(b"))

= (G, H)(a,b)(G, H)@', b)

By the G-continuity of the inverse map we have G(a™') = G(a)~! and similarly H(b™") = H(b)~'. Hence
we have
(G, H)((a,b)™) = (G H)@",b™)
= (G@a™),Hb™))
= (G(a)™,H(b)™) (by G and H-continuities of n)
= (G(a), H(b))™"
= (G, H)(a, b))

which proves (G, H)-continuity of the inverse map for X X Y. Hence by Theorem 3.2, X X Y is a (G, H)-
topological group. O

Theorem 3.11. Ina G-topological group X for the subsets A, B C X, we have [AI[BIS ™ C [AB~IS and [AIS[BIC C
[ABI]C .

Proof. Let X be a G-topological group and A, B € X. Then [A]® X [B]® = [A X B]® and the G-continuity of
the difference map 6 mean that

S([A]° x [BI°) = 6(IA x BI°) C [6(A x B)I®

and therefore [A]S[B]S ™" = 6([A]° x [BI®) C [6(A x B)]S = [AB1]¢ O

The proof of [A]°[B]° C [AB]® can be similarly performed by replacing the difference map 6 with the
multiplicative m.
Subgroup and normal subgroup are rephrased as follows, and it is helpful for the proof of Theorem 3.13

Proposition 3.12. Let X be a group, Y C X a subset and 0 the difference map. Then the following hold:
(1) Y is asubgroup of X if and only if 5(Y X Y) C Y.
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(2) The subgroup Y is normal if for any a € X and the map f,: X — X defined by x — axa™' we have f,(Y) C Y.

Theorem 3.13. The following hold for a G-topological group X such that G is a pointwise method.
(1) IfY is a subgroup of X, then so also is [Y]C.
(2) IfY is normal in X, then so also is [Y]°.

Proof. (1) Y is a subgroup of X, then by Proposition 3.12 (1) it is sufficient to prove that 5([Y]° X [Y]¢) € [Y]C.
Here [Y]¢ X [Y]® = [Y X Y]° and by the G-continuity of 6 we have 5([Y x Y]®) C [6(Y X Y)]° and as Y is a
subgroup we have 5(Y X Y) C Y which implies that [6(Y X Y)]® C [Y]°. Assembling these, we conclude that

(YT x [YT®) = o([Y x Y1) € [6(Y X V)I° € [Y]°

which means [Y]€ is a subgroup of X.

(2) If Y is a normal subgroup of X, then by (1), [Y]C is also a subgroup, and therefore, we need to prove
that [Y]® isnormal. By the normality of Y, forany a € X and themap f,: X = X, x — axa ! wehave f,(Y) C Y
which implies that [£,(Y)]® € [Y]® and since by Theorem 3.9 the translation maps L,: X — X, x > ax and
R,1: X = X, x > xa~! are G-continuous, as a composite of G-continuous maps f, = L,0R,-1 is G-continuous.
Hence f,([Y]®) € [£(Y)]° € [Y]® and therefore [Y]® is a normal subgroup. [

We define G-topological subgroups as follows:

Theorem 3.14. If X is a G-topological group and Y a subgroup of X, then Y becomes a G-topological group with the
method Gy defined by Gy(a) = G(a) on the domain

cc(Y) = fa = (an) € co(X) Ns(Y): G(a) € Y}
whenever it is non-empty.

Proof. Let a = (a,) € cg(Y) and b = (b,) € cg(Y). Since Y is a subgroup ab € s(Y) and by G-continuity of
the multiplicative map m in the G-topological group X, we have ab € ¢¢(Y) and Gy(ab) = Gy(a)Gy(b); and
Gy(a™') = Gy(a)™". Hence, by Theorem 3.2, Y becomes a G-topological group. [

Theorem [17, Theorem 27] can be revised for G-topological groups as follows.

Theorem 3.15. Let X be a G-topological group and Y an H-topological group provided that the methods G and H are
pointwise methods. Then a map f: (X, G) — (Y, H) is (G, H)-continuous if and only if f is so at the identity e € X.

Proof. If the map f: (X,G) — (Y,H) is (G, H)-continuous at the identity ¢ € X, then f(x) € cy(Y) and
H(f(x)) = e whenever x € cg(X) and G(x) = e. Hence for a sequence x in ¢¢(X) with G(x) = a and
the constant sequence a = (4,4,...), we have G(xa™!) = G(x)G(a)™ = e since G is a pointwise method
and X is a G-topological group. By assumption H(f(xa™!)) = e and by the multiplicative of f and H
we have H(f(x))H(f (@) = e, where H is pointwise method which implies H(f(a)) = f(a) and therefore
H(f(x)) = f(a) = f(G(x)). Hence the (G, H)-continuity of f at any pointa € X follows. [

Theorem 3.16. For a G-topological group X provided with a pointwise method G, G-openness of one of the sets A
and B implies that of the product AB.

Proof. By Theorem 3.9 (3) G-openness of A means that Ab for b € B is G-open. Then, as the union of G-open
subsets

AB=UAb

beB

becomes G-open. [
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4. G-topological quotient groups

It is well known that the quotient group of a topological group is also a topological group. Below, we
prove a similar result for G-topological groups.

Theorem 4.1. For a G-topological group X and a normal subgroup N of X, which is G-closed, there exists a method
denoted by Gy on the quotient group X/N such that X/N is a Gy-topological group and the quotient mapp: X — X/N
is (G, Gy)-continuous.

Proof. When X is a G-topological group and N a normal subgroup N, we define a method on the quotient
group X/N by

Gn: cc(X/N) = X/N, Gy(aN) = G(a)N

where the domain ¢ (X/N) of the method Gy is the set of the sequences aN = (a,N) in X/N for the sequences
a = (a,) € cg(X). Prove that the method Gy is well defined. If a,b € ¢(X) and aN = bN, then a,b,~! € N for
any nn € N which means ab™! is a sequence in N and by the G-continuity of the difference map XxX — X with
(x,y) = xy~! we have ab™" € ¢5(X) and G(ab™!) = G(a)G(b)". Since N is G-closed one has G(a)G(b)™! € N
which means G(a)N = G(b)N. Hence, the method Gy is well-defined.
Now, prove that for the sequences aN, bN € ¢;(X/N) we have
G(aNbN) = G(aN)G(aN) = G(a)G(b)N
Let aN,bN € c¢(X/N). Hence a = (a,) € ¢g(X) and b = (b,) € cg(X) ; and the G-continuity of the
multiplicative map m: X X X — X, (x,y) — xy implies that ab € c¢(X) and G(ab) = G(a)G(b). Since N
is a normal subgroup a,Nb, 'N = (a,b, )N which implies that aNbN = (ab)N. Hence, by the following
evaluation, we have Gy-continuity of the multiplicative map for X/N
Gn(aN)Gn(bN) = G(a)NG(b)N
= (G(a)G(b))N
= G(ab)N
= Gn(aNbN)
For a € cg(X/N), we have Gy(a™'N) = G(a~!)N and since X is a G-topological group G(a™') = G(a)™!; and
therefore we have Gy(a™'N) = (Gy(aN))™! which guarantees Gy continuity of the inverse map.
By Theorem 3.2, these complete the proof that the quotient group X/N is a Gy-topological group.

We now prove that the quotient map p: X — X/N is (G, Gy)-continuous. If a = (a,) is a sequence in
cg(X), then the sequence b = (p(a,)) = aN is in the domain cg(X/N) of Gy and

p(G(a)) = G(a)N = Gy(aN) = Gy(b)
which proves that the map p is G-continuous or equivalently (G, Gy)-continuous. [
Below, we give an isomorphism theorem for G-topological groupoids.

Theorem 4.2. Let X a G-topological group, N a G-closed normal subgroup and p: X — X/G the quotient map. Then
foranother H-topological group Y and a (G, H)-continuous group homomorphism f: (X, G) — (Y, H)with N € Kerf,
there exists a unique (G, H) homomorphism f: X/N — Y such that f op = f and f is (Gn, H)-continuous.

Proof. By the algebraic version of the theorem, we have the existence of the group homomorphism f~ X/N —

Y defined by f(xN) = f(x) for xN € X/N. Hence, we must prove that f is (Gy, H)-continuous. If aN = (a,N)
is a sequence with a = (a,) € c(X), then by (G, H)-continuity of f we have b = (f(a,)) € cu(Y) and
f(G(a)) = H(b); and then

F(Gn(aN)) = f(G@)N) = f(G(a)) = H(b) = H(f(aN))

and therefore f is (Gn, H)-continuous. [
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5. Conclusion

In this paper, we define G-topological group and give some characterisations of standard properties.
A groupoid is a category such that any morphism has an inverse and generalises a group (one can be
referred to [4] for more discussion about groupoids). That means a groupoid with one object is just a group;
equivalently, a group can be considered a groupoid with one object. A topological groupoid is a groupoid
with topologies on both the sets of morphisms and objects such that constructional maps are continuous. A
topological group is a particular topological groupoid with one object. The primary reference on topological
groupoids might be [15].

The paper’s results can be extended to the groupoid setting by defining G-topological groupoid and
giving some characterisations.
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