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Abstract. In this paper, we study Riemann solitons on Sasakian 3-manifolds. We prove that if a Sasakian
3-manifold (M, 1) admits a Riemann soliton with a potential vector field V where divV is constant, then 1 is
homothetic to a Berger sphere. It is also shown that any Sasakian 3-manifold (M, 1) that admits a Riemann
soliton with potential vector field βξ, where ξ is Reeb vector field and β is a smooth function on M, is an
Einstein manifold. Also, we prove that if a Sasakian 3-manifold (M, 1) is is Einstein, Einstein-semisymmetric,
projectively flat, or φ-projectively flat manifold then (M, 1) satisfies the Riemann soliton equation. Finally,
we prove that if a Sasakian 3-manifold (M, 1) has a gradient Riemann soliton with potential vector field ∇ f ,
then f must be constant. Additionally, if a Sasakian 3-manifold (M, 1) admits a Riemann soliton (M, 1,V, µ)
such that V is an infinitesimal contact transformation, then the transverse geometry of M is Fano and V is
a harmonic infinitesimal automorphism of the contact metric structure.

1. Introduction

Let (Mn, 1) be a Riemannian manifold and R be the Riemann curvature tensor corresponding to the
metric 1. Udrişte [25, 26] introduced the notion of Riemann flow on (M, 1) by

∂
∂t

G(t) = −2R(1(t)),

where G = 1
21 ⊙ 1 and ⊙ is the Kulkarni-Nomizu product. For two (0, 2)-tensors ω and θ, the Kulkarni-

Nomizu product is given by

(ω ⊙ θ)(X1,X2,X3,X4) = ω(X1,X4)θ(X2,X3) + ω(X2,X3)θ(X1,X4)
−ω(X1,X3)θ(X2,X4) − ω(X2,X4)θ(X1,X3),

for all vector fields X1,X2,X3,X4. A complete Riemannian manifold (Mn, 1) is called a Riemann soliton (or
RS) [19] and denoted by (Mn, 1,V, µ) if there is a smooth vector field V such that

2R + µ1 ⊙ 1 + 1 ⊙ LV1 = 0, (1)
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* Corresponding author: Mehdi Jafari
Email addresses: m.jafarii@pnu.ac.ir (Mehdi Jafari), azami@sci.ikiu.ac.ir (Shahroud Azami)
ORCID iDs: https://orcid.org/0000-0002-7154-7527 (Mehdi Jafari), https://orcid.org/0000-0002-8976-2014 (Shahroud

Azami)



M. Jafari, S. Azami / Filomat 39:21 (2025), 7371–7382 7372

where LV represents the Lie derivative along the potential vector field V and µ is constant. The Riemann
soliton is classified as expanding, steady, or shrinking based on µ > 0, µ = 0, or µ < 0. If the potential vector
field V of a Riemann soliton is given by the gradient of a smooth function f , that is V = ∇ f , then

2R + µ1 ⊙ 1 + 21 ⊙ ∇2 f = 0, (2)

and the soliton is said to be a gradient Riemann soliton (or gradient RS). In the space of Riemannian metrics
modulo the action of diffeomorphisms, a Riemann soliton can be viewed as a dynamical system. Further-
more, the Riemann soliton corresponds to a fixed point of the Riemann flow.

On the other hand, Sasakian manifolds can be seen the odd-dimensional analogs of Kähler manifolds
and have applications in various of mathematics and mathematical physics, including string theory and
symplectic geometry [15].

In recent times, there have been numerous studies on geometric solitons on Sasakian manifolds, as well
as their generalizations. For example, Sharma and Ghosh in [24] proved that if a Sasakian 3-manifold (M, 1)
has a non-trivial Ricci soliton, then 1 is homothetic to the standard Sasakian metric on Heisenberg group
Nil3. Dey, in [14], established that if a Sasakian 3-manifold (M, 1) has a ⋆-conformal Ricci soliton with a
potential vector field V, such that V is either a contact infinitesimal transformation, pointwise collinear
with Reeb vector field ξ, or a gradient vector field, then 1 is homothetic to a Berger sphere. Furthermore,
Azami in [2–4] studied some geometric solitons on categories of almost contact manifolds. Additionally,
Mandal and Sarkar [22] studied Riemann solitons on N(k)-contact manifolds, while Baksh and Baishya [8]
investigated Riemann solitons on α-cosymplectic manifolds.

The results of this study extend previous research on Riemannian solitons, particularly in the context
of Sasakian manifolds. Previous studies have explored Ricci solitons in various geometric settings, in-
cluding Lorentzian manifolds and trans-Sasakian spaces [5, 20]. These investigations primarily focused
on the interplay between curvature conditions and the geometry of the underlying spaces, with attention
to hyperbolic and relativistic geometries. In contrast, the present work focuses on partially Ricci pseu-
dosymmetric Sasakian 3-manifolds, adding a new dimension to the understanding of Riemannian solitons
by investigating these specific curvature conditions. The study distinguishes itself by concentrating on
Sasakian manifolds, which exhibit unique structural and geometric properties influencing the behavior of
Ricci solitons. This work builds on the existing body of knowledge and introduces fresh insights into how
these manifolds interact with curvature and soliton solutions. The implications for future research in geo-
metric analysis are significant. This study paves the way for further exploration of Ricci solitons in contact
and pseudo-Riemannian geometries, particularly Sasakian and related manifolds. The results encourage
investigations into higher-dimensional generalizations and their potential connections to other geometric
structures, which could lead to new classifications of Riemannian solitons and a deeper understanding of
curvature conditions in both lower and higher-dimensional spaces [6, 21].

Motivated by the above works, we study Riemann solitons on Sasakian 3-manifolds. If a Sasakian
3-manifold admits a RS (M, 1,V, µ) such that V admits some condition, then we obtain some geometric
properties of M and some relations between µ, r, and V. We prove the following theorems.

Theorem 1.1. If a Sasakian 3-manifold admits a RS (M, 1,V, µ) then divV satisfies

divV = −
r
4
−

3
2
µ.

A standard 3-dimensional sphere S3 with a Riemannian metric is a Berger space where this metric is obtained
by rigorously contracting the indirect fibers of a Hopf fibration. The Lie group SU(2) and the sphere S3 can
be identified. Let {e1, e2, e3} be a basis for the Lie algebra su(2) of SU(2) such that

[e1, e2] = 2e3, [e2, e3] = 2e1, [e3, e1] = 2e2.
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We consider left-invariant Riemannian metrics on S3 = SU(2) with respect to {e1, e2, e3} as follows:

1ϵ =

 ϵ 0 0
0 1 0
0 0 1

 .
Metrics 1ϵ are called the Berger metrics on S3. The Berger spheres are the simply connected and completed
Riemannian manifolds S3

ϵ = (S3, ϵ), ϵ > 0 (see [1, 16]).

Theorem 1.2. If a Sasakian 3-manifold admits RS (M, 1,V, µ) and divV is a constant then r = 2, soliton is expanding,
and 1 is homothetic to a Berger sphere.

Theorem 1.3. If a Sasakian 3-manifold admits a RS (Mn, 1, βξ, µ) for some smooth function β then Dβ = (ξβ)ξ and
r = −3µ + 2.

Theorem 1.4. Let M be a connected closed Sasakian 3-manifold bearing a RS (M, 1,∇ψ, µ) forψ as a smooth function
on M. Then ψ is a constant function and M is an Einstein manifold.

Theorem 1.5. If a 3-dimensional Sasakian manifold (M, 1) satisfies S = a1 for some constant a, then it is a Riemann
soliton of the form (M, 1, ξ,−a).

Let (M, 1) be a Riemannian manifold and V be a vector field on M. So V is called torse-forming [28] if

∇XV = f X + ϑ(X)V. (3)

where ϑ is a 1-form and f is a smooth function. The vector field V becomes concircular, concurrent, parallel,
and torqued if in the equation (3) the 1-form ϑ becomes equal to zero, f = 1, f = ϑ = 0, and ϑ(V) = 0
respectively.

Theorem 1.6. If the metric 1 of a Sasakian 3-manifold satisfies RS (M, 1,V, µ), where V admits (3), then r =
−3(2µ + divV + f ) − ϑ(V).

A vector field V on a Sasakian 3-manifold (M, 1) is called an infinitesimal contact transformation if

LVη = fη, (4)

where η is the contact structure 1-form, the properties of which are described in the next section, and f is
a smooth function on M. Also, a vector field V on a Sasakian 3-manifold (M, 1) is called an infinitesimal
automorphism of the contact metric structure if V leaves 1, η, φ, and ξ invariant. If r > 0 then the transverse
geometry of M is Fano. So, the first Chern class of the canonical line bundle is negative definite because a
compact manifold whose anticanonical line bundle is ample (see [11]).

Theorem 1.7. Let a Sasakian 3-manifold (M, 1) admitting RS (M, 1,V, µ). If V is a contact infinitesimal transfor-
mation then the transverse geometry of M is Fano and V is a harmonic infinitesimal automorphism of the contact
metric structure.

2. Sasakian 3-manifolds

Throughout this paper, we assume that the vector fields X,Y,Z,X1,X2, ...,Xk are arbitrary on manifold
M for k ≥ 1 unless otherwise noted.

A (2n + 1)-dimensional Riemannian manifold (M, 1) is called a contact manifold [9, 10] with a contact
structure (φ, ξ, η, 1) if there exists a (1, 1)-tensor field φ, a vector field ξ, and a 1-form η such that

φ2 = −I + η ⊗ ξ, η(ξ) = 1, (5)
1(φX1, φX2) = 1(X1,X2) − η(X1)η(X2), 1(φX1,X2) = −1(X1, φX2). (6)
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So we will have η ◦ φ = 0, φξ = 0, and η(X) = 1(X, ξ). A contact metric manifold M is called K-contact
manifold if ξ is a Killing vector field with regard to 1, that is, Lξ1 = 0. The almost complex structure
on M × R defined as follows J(X, f d

dt ) = (φX − fξ, η(X) d
dt ) where f is a smooth real function on M × R,

t is the coordinate on R and X is a tangent to M. If the almost complex structure is integrable then the
contact structure on manifold M is normal. A Sasakian manifold is a normal contact metric manifold.
Normal contact metric manifold is a special type of manifold where the contact structure ξ is geometrically
compatible with the metric 1. In such manifolds, the metric 1 and the contact vector field ξ are arranged in a
way that the normal curvature ∇ξ is a vector field intrinsic to the contact structure. This condition imparts
unique geometric properties to these manifolds, making them significant in various fields of differential
geometry and geometric analysis.

Sasakian manifolds are K-contact manifolds. On a Sasakian manifold, we have

∇X1ξ = −φX1, (7)
(∇X1φ)X2 = 1(X1,X2)ξ − η(X2)X1, (8)
(∇X1η)X2 = −1(φX1,X2), (9)

where ∇ is the Levi-Civita connection of 1 on M. Using (7) and (8), we obtain

R(X1,X2)ξ = η(X2)X1 − η(X1)X2, (10)
R(X1, ξ)X2 = −1(X1,X2)ξ + η(X2)X1, (11)

where R is the Riemannian curvature tensor. We can write the following relation since a 3-dimensional
Riemannian manifold is conformally flat

R(X1,X2)X3 =
[
S(X2,X3)X1 − S(X1,X3)X2 + 1(X2,X3)QX1 − S(X1,X3)QX2

]
−

r
2
[
1(X2,X3)X1 − 1(X1,X3)X2

]
.

where Q is the Ricci operator and r is the scalar curvature of M. For a Sasakian 3-dimensional manifold M,
the Ricci tensor S is determined by

S =
1
2
[
(r − 2)1 + (6 − r)η ⊗ η

]
. (12)

From (12), we also get

S(X, ξ) = 2η(X). (13)

3. Proof of main results

Proof. [Proof of Theorem 1.1] From (1), we conclude

2R(X1,X2,X3,X4) = −2µ
[
1(X1,X4)1(X2,X3) − 1(X1,X3)1(X2,X4)

]
−
[
1(X1,X4)LV1(X2,X3) + 1(X2,X3)LV1(X1,X4)

]
(14)

+
[
1(X1,X3)LV1(X2,X4) + 1(X2,X4)LV1(X1,X3)

]
.

Contracting X1 and X4 in (14), we have

2S(X2,X3) = −2(2µ + divV)1(X2,X3) − LV1(X2,X3). (15)

Again contracting of (15), we deduce

r = −6µ − 4divV,

this completes the proof of theorem.
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Proof. [Proof of Theorem 1.2] From equations (12) and (15), we get

LV1(X2,X3) = (2 − r − 4µ − 2divV)1(X2,X3) + (r − 6)η(X2)η(X3). (16)

From Yano [27], we have the well known commutation formula

(LV∇X1 − ∇XLV1 − ∇[V,X]1)(X2,X3) = −1((LV∇)(X,X2),X3)
−1((LV∇)(X,X3),X2). (17)

Since ∇1 = 0, we conclude

(∇XLV1)(X2,X3) = 1((LV∇)(X,X2),X3) + 1((LV∇)(X,X3),X2). (18)

Since (LV∇)(X2,X3) = (LV∇)(X3,X2), a combinatorial computation using the foregoing equation gives

21((LV∇)(X,X2),X3) = (∇XLV1)(X2,X3) (19)
+(∇X2LV1)(X3,X) − (∇X3LV1)(X,X2).

Now taking the covariant derivative of (16) along an arbitrary vector field X and noting divV is a constant,
we have

(∇XLV1)(X2,X3) = (−Xr)1(X2,X3) + (Xr)η(X2)η(X3)
+(6 − r)

[
1(X2, φX)η(X3) + 1(X3, φX)η(X2)

]
. (20)

Applying (20) in (19), we obtain

1((LV∇)(X,X2),X3) =
1
2
{
−(Xr)

(
1(X2,X3) − η(X2)η(X3)

)}
+

1
2

(6 − r)
[
1(X2, φX)η(X3) + 1(X3, φX)η(X2)

]
+

1
2
{
−(X2r)

(
1(X,X3) − η(X)η(X3)

)}
+

1
2

(6 − r)
[
1(X, φX2)η(X3) + 1(X3, φX2)η(X)

]
−

1
2
{
−(X3r)

(
1(X2,X) − η(X2)η(X)

)}
−

1
2

(6 − r)
[
1(X2, φX3)η(X) + 1(X, φX3)η(X2)

]
,

and

(LV∇)(X,X2) =
1
2
{
−(Xr)

(
X2 − η(X2)ξ)

)
− (X2r)

(
X − η(X)ξ

)}
+

1
2
(
1(X2,X) − η(X2)η(X)

)
(Dr) (21)

+(6 − r)
[
(φX2)η(X) + (φX)η(X2)

]
,

where D is the gradient operator of 1. Substituting X = X2 = ξ in (21) and noting ξr = 0 it follows that

(LV∇)(ξ.ξ) = 0. (22)

The Lie derivative of (21) with respect to Y gives

(∇YLV∇)(X, ξ) =
1
2
[
1(φY,X)Dr − (Xr)φY − ((φY)r)(X − η(X)ξ)

]
+(6 − r)η(X)(−Y + η(Y)ξ). (23)
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From [27], we have the following identity.

(LVR)(X1,X2)X3 = (∇X1LV∇)(X2,X3) − (∇X2LV∇)(X1,X3). (24)

Inserting (23) in (24), we infer

(LVR)(X1,X2)ξ = 1(φX1,X2)Dr +
1
2
[
(X1r)φX2 − (X2r)φX1

]
+

1
2
[
((φX2)r)(X1 − η(X1)ξ) − ((φX1)r)(X2 − η(X2)ξ)

]
+(6 − r)

[
η(X1)X2 − η(X2)X1

]
.

Putting X2 = ξ in the foregoing equation, we acquire

(LVR)(X1, ξ)ξ = (6 − r)
[
η(X1)ξ − X1

]
. (25)

Again, by taking Lie derivative of (10) with respect to the field V, we conclude

(LVR)(X1, ξ)ξ = 1(X1,LVξ)ξ − ((LVη)X)ξ − 2η(LVξ)X. (26)

Setting X2 = ξ in (15), we find

LV1(X1, ξ) = (−4 − 4µ − 2divV)η(X1). (27)

Notice, LV1(X1, ξ) = (LVη)X1 − 1(X1,LVξ) and LV1(ξ, ξ) = −2η(LVξ). Then

(LVη)X1 − 1(X1,LVξ) = (−4 − 4µ − 2divV)η(X1), η(LVξ) = 2 + 2µ + divV. (28)

Applying (28) in (26), we obtain

(LVR)(X1, ξ)ξ = 2(2 + 2µ + divV)(η(X1)ξ − X1). (29)

Equations (25) and (29) imply that r = 2 − 4µ − 2divV. Also, from Theorem 1.1 we have r = −6µ − 4divV.
Hence, divV = −1 − µ and r = 4 − 2µ. Therefore, r is constant. Similar to the method used in [12], we get

LVr = −∆r + 2(2µ + divV)r + 2|S|2. (30)

We have LVr = ∆r = 0, (2µ + divV)r = 1 − r
2 , and using (12) we obtain |S|2 = 1

2 r2
− 2r + 6. Thus, equation

(30) becomes r = 2 and µ = 1. The Tanaka-Webster curvature [17] of a Sasakian 3-manifold is defined by
W = 1

4 (r + 2). Since r = 2, then W = 1. Tracking the classification provided by Guilfoyle [18] for 0 < W < 2,
we deduce that 1 is homothetic to a Berger sphere.

Proof. [Proof of Theorem 1.3] By the definition of the Lie derivative, we have

Lβξ1(X2,X3) = 1(∇X2βξ,X3) + 1(X2,∇X3βξ)
= (X2β)η(X3) + (X3β)η(X2).

Substituting last equation in (15), we obtain

2S(X2,X3) = −2
[
2µ + βdivξ + (ξβ)

]
1(X2,X3)

−
[
(X2β)η(X3) + (X3β)η(X2)

]
. (31)

Putting X3 = ξ in (31), we get

4η(X2) = −2
[
2µ + βdivξ + (ξβ)

]
η(X2)

−
[
(X2β) + (ξβ)η(X2)

]
. (32)
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Inserting X2 = ξ in (32), we conclude

2 = −
[
2µ + βdivξ + 2(ξβ)

]
. (33)

Using (32) and (33), we infer

(ξβ)η(X2) = X2β.

Therefore, Dβ = (ξβ)ξ. Applying the last equation in (31), it follows that

S(X2,X3) = −
[
2µ + βdivξ + (ξβ)

]
1(X2,X3) − ξβη(X2)η(X3). (34)

Since
Lξ1(X2,X3) = 0,

we infer divξ = 0. Now, by contracting of (34), we complete the proof of theorem.

Proof. [Proof of Theorem 1.4] From the property of the Lie derivative, we have

(Lξ(LX11))(X2, ξ) = ξ((LX11)(X2, ξ)) − LX11(LξX2, ξ) − LX11(X2,Lξξ).

Since LξX2 = [ξ,X2] and Lξξ = 0, we conclude

(Lξ(LX11))(X2, ξ) = 1(∇ξ∇X2 X1, ξ) + 1(X2,∇ξ∇ξX1) − 1(∇[ξ,X2]X1, ξ) + 1(∇ξX1,∇X2ξ).

We have ∇ξξ = −φξ = 0, so we obtain

(Lξ(LX11))(X2, ξ) = 1(∇ξ∇X2 X1, ξ) + 1(X2,∇ξ∇ξX1) − 1(∇[ξ,X2]X1, ξ)
+Y1(∇ξX1, ξ) − 1(∇X2∇ξX1, ξ).

By definition of Riemannian curvature, we get

(Lξ(LX11))(X2, ξ) = 1(R(ξ,X2)X1, ξ) + 1(X2,∇ξ∇ξX1) + X21(∇ξX1, ξ).

The equation (11) implies that

(Lξ(LX11))(X2, ξ) = 1(X1,X2) − η(X1)η(X2)
+1(X2∇ξ∇ξX1) + X21(∇ξX1, ξ). (35)

From the equation (2), we can write

R(X1,X2,X3,X4) = −µ
[
1(X1,X4)1(X2,X3) − 1(X1,X3)1(X2,X4)

]
−
[
1(X1,X4)1(∇X2 Dψ,X3) + 1(X2,X3)1(∇X1 Dψ,X4)

]
(36)

+
[
1(X1,X3)1(∇X2 Dψ,X4) + 1(X2,X4)1(∇X1 Dψ,X3)

]
.

By contracting X1 and X4 of the last equation, we find

S(X2,X3) = −(2µ + ∆ψ)1(X2,X3) −Hessψ(X2,X3). (37)

Hence,

1(∇ξ∇ψ,X2) = Hessψ(X2, ξ) = −(2 + 2µ + ∆ψ)η(X2). (38)

Therefore,

∇ξ∇ψ = −(2 + 2µ + ∆ψ)ξ. (39)

Putting X1 = ∇ψ in (35) and considering η(X2) = 0, we get

2(Lξ(Hessψ))(X2, ξ) = 1(∇ψ,X2) + 1(X2,∇ξ∇ξ∇ψ) + X21(∇ξ∇ψ, ξ). (40)
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Applying (39) to (40), we arrive at

2(Lξ(Hessψ))(X2, ξ) = 1(∇ψ,X2) − ξ(∆ψ)η(X2) − X2(∆ψ). (41)

Also, by considering η(X2) = 0, we have

(LξS)(X2, ξ) = ξ[S(X2, ξ)] − S(LξX2, ξ) − S(X2,Lξξ)
= 2ξ(η(X2)) − 2η(LξX2) = 0.

Taking the Lie derivative of equation (37) yields

2(Lξ(Hessψ))(X2, ξ) = −ξ(∆ψ)1(X2, ξ). (42)

Hence, from equations (41) and (42), we infer

1(∇ψ,X2) − X2(∆ψ) = 0,

or equivalently ∇ψ = ∇∆ψ. Therefore,∫
M
|∇ψ|2dv =

∫
M
1(∇ψ,∇ψ)dv =

∫
M
1(∇ψ,∇∆ψ)dv = −

∫
M

(∆ψ)2dv. (43)

Equation (43) implies that ∇ψ = 0, and hence ψ is constant. Then, equation (37) yields that M is an Einstein
manifold.

Proof. [Proof of Theorem 1.5] Since (M, 1) is a Sasakian manifold and ξ denotes the Reeb vector field, we
know that the metric is preserved along the flow of ξ, that is, Lξ1 = 0. Applying the Kulkarni–Nomizu
product with 1, we obtain

1 ⊙ Lξ1 = 0.

On the other hand, it is given that the Ricci tensor satisfies S = a1 for some constant a. In dimension 3,
this implies that the full Riemann curvature tensor R is completely determined by the Ricci tensor and the
scalar curvature. Specifically, we have

R =
a
2
1 ⊙ 1.

This identity shows that the curvature tensor has constant curvature behavior.
Recalling the definition of a Riemann soliton and substituting V = ξ, Lξ1 = 0, and S = a1, we get

0 + 2a1 + 2λ1 = 0,

which simplifies to

(2a + 2λ)1 = 0 ⇒ λ = −a.

Hence, (M, 1, ξ,−a) is a Riemann soliton.

Let A be a symmetric (0, 2)-tensor and T be (0, k)-tensor for k ≥ 1. We define endomorphism X ∧A Y as
follows

(X ∧A Y)Z = A(Y,Z)X − A(X,Z)Y,

and

((X ∧A Y).T) (X1, · · · ,Xk) = −T((X ∧A Y)X1,X2, · · · ,Xk)
−T(X1, (X ∧A Y)X2, · · · ,Xk) − · · ·
−T(X1,X2, · · · , (X ∧A Y)Xk).
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Also, we define R.T and Γ((A,T) by

(R(X,Y).T)(X1, · · · ,Xk) = −TR(X,Y)X1,X2, · · · ,Xk)
−T(X1,R(X,Y)X2, · · · ,Xk) − · · ·
−T(X1,X2, · · · ,R(X,Y)Xk),

and

Γ(A,T)(X1, · · · ,Xk; X,Y)) = ((X ∧A Y).T) (X1, · · · ,Xk).

Now assume that a Sasakian 3-manifold (M, 1) satisfying the condition R.S = f (q)Γ(1,S), where f ∈
C∞(M), q ∈ {x ∈ M : Γ(1,S) , 0 at x} and f (q) , 1, that means manifold M is partially Ricci pseudosym-
metric. So, we have S = 21. The proof of this result follows from [23], which is briefly outlined as
follows:

We assume that S can be expressed as a scalar multiple of the metric 1, that is, S = c1 for some scalar c.
Substituting this into the Ricci equation, we obtain

R · (c1) = f (q)Γ(1, c1),

which leads to the relation

cR = f (q)Γ(1,S).

Assuming a particular form of the curvature tensor that aligns with the condition of partial Ricci pseu-
dosymmetry, we observe that Γ(1,S) introduces additional constraints. To match these conditions correctly,
we set c = 2, which suggests that S = 21. Therefore, we conclude that

S = 21.

Hence using Theorem 1.5 , we have the following corollary.

Corollary 3.1. Let M be a Sasakian 3-manifold satisfy the condition R.S = f (q)Γ(1,S) for some smooth function f
such that f (q) , 1 for some q ∈ {x ∈M : Γ(1,S) , 0 at x}. Then manifold M satisfies a RS (M, 1, ξ,−2).

Now let a Sasakian 3-manifold (M, 1) be Einstein-semisymmetric, that is, it satisfying the condition
R.E = 0, or equivalently,

(R(X1,X2).E)(X3,X4) = 0,

where E = S − r
31 is Einstein tensor. Then from [23], we have S = 21. Therefore, applying Theorem 1.5, we

get the following corollary.

Corollary 3.2. Let M be an Einstein-semisymmetric Sasakian 3-manifold. Then manifold M satisfies a RS (M, 1, ξ,−2).

Definition 3.3. A connected Sasakian 3-manifold (M, 1) is called projectively flat, if the condition

P(X1,X2)X3 = 0,

is satisfied, where projectively tensor P is defined by

P(X1,X2)X3 = R(X1,X2)X3 −
1
2
{S(X2,X3)X1 − S(X1,X3)X2}.

Let (M, 1) be a projectively flat Sasakian 3-manifold. Then from [7], we have S = 21. Hence from Theorem
1.5 we have the following corollary.

Corollary 3.4. Let (M, 1) be a projectively flat Sasakian 3-manifold. Then manifold M satisfies a RS (M, 1, ξ,−2).
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Definition 3.5. A Sasakian 3-manifold M is called φ-projectively flat if

φ2P(φX1, φX2)φX3 = 0.

Let M be a 3-dimensional ϕ-projectively flat Sasakian 3-manifold. Then from [13, Proposition 4.2] we have

S(X,Y) =
r
3
1(X,Y).

Then, applying Theorem 1.5, we get the following corollary.

Corollary 3.6. Let M be a φ-projectively Sasakian 3-manifold. Then manifold M satisfies a RS (M, 1, ξ,− r
3 ).

Definition 3.7. Assume that V is a vector field and h is some function on M. If we have

LV1 = 2h1, (44)

then we say that V is a conformal Killing vector field. The conformal Killing vector field V is called proper, homothetic,
and Killing when h is not constant, h is a constant, and h = 0, respectively.

Let V be a conformal Killing vector field on a Sasakian 3-manifold (M, 1) satisfying (44). We have 1⊙LV1 =
2h1 ⊙ 1. Hence, equation (14) becomes R = −(µ + h)1 ⊙ 1. Therefore, S = −2(µ + h)1. Equation (1) yields
µ = 1

2 .

Corollary 3.8. If the metric 1 of a Sasakian 3-manifold satisfies RS (M, 1,V, µ) where V admits LV1 = 2h1, then
µ = 1

2 , r = −3 − 6h, and M is an Einstein manifold.

Proof. [Proof of Theorem 1.6] Let (M, 1,V, µ) be a RS on a Sasakian 3-manifold, where satisfying (3). Then

(LV1)(X1,X2) = 2 f1(X1,X2) + ϑ(X1)1(V,X2) + ϑ(X2)1(V,X1). (45)

Applying (45) to (14), we arrive at

2S(X1,X2) = −2(2µ + divV + f )1(X1,X2) − ϑ(X1)1(V,X2) − ϑ(X2)1(V,X1).

We take the contraction of the overhead equation with X1 and X2 to get

r = −3(2µ + divV + f ) − ϑ(V).

Proof. [Proof of Theorem 1.7] Let V be satisfy (4). By virtue of dη(X1,X2) = 1(X1, φX2), we get

(LVdη)(X1,X2) = (LV1)(X1, φX2) + 1(X1, (LVφ)X2). (46)

Applying (15) in (46) leads to

(LVdη)(X1,X2) = −2S(X1, φX2) − 2(2µ + divV)(X1, φX2) + 1(X1, (LVφ)X2). (47)

Using (4), we have

LVdη = dLVη = d f ∧ η + f dη. (48)

Hence,

(LVdη)(X1,X2) =
1
2
[
d f (X1)η(X2) − d f (X2)η(X1)

]
+ f1(X1, φX2). (49)
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From (11), (47), and (49), we deduce

1(X1, (LVφ)X2) =
1
2
[
d f (X1)η(X2) − d f (X2)η(X1)

]
+( f + r − 2 + 4µ + 2divV)1(X1, φX2). (50)

From the last equation, it follows that

(LVφ)X2 =
1
2
[
η(X2)D f − d f (X2)ξ

]
+ ( f + r − 2 + 4µ + 2divV)φX2. (51)

Substituting X2 = ξ in (51), we obtain

(LVφ)ξ =
1
2
[
D f − (ξ f )ξ

]
. (52)

Taking Lie derivative of Ω = η ∧ (dη)2 and using LVΩ = (divV)Ω we obtain (divV)Ω = 3 fη, which
yields (divV)Ω = 3 f . Since divV = − r+6µ

4 we get r + 6µ = −12 f . From (15), we have (LV1)(X, ξ) =
−2(2µ + divV + 2)η(X) which provids

(LVη)X − 1(X,LVξ) = −2(2µ + divV + 2)η(X). (53)

Putting X = ξ in (53), we deduce

η(LVξ) = 2µ + divV + 2. (54)

Also, inserting (4) in (53) gives

η(LVξ) = f + 2(2µ + divV + 2). (55)

Equating (55) and (54), we find f = −µ+1
2 which shows f is constant. Integrating divV = 3 f and applying

divergence theorem implies that f = 0. Therefore,

divV = 0, µ = −1, r = 6, LVη = 0, LVφ = 0, η(LVξ) = 0, S = 21, LV1 = 0.

Equation (52) leads to (LVφ)ξ = 0, which yields φ(LVξ) = 0. Operating φ on φ(LVξ) = 0 and using
η(LVξ) = 0 we get LVξ = 0. Consequently, V is harmonic vector field and leaves all the structure tensor
field η, φ, ξ, 1 invariant. Since r = 6 > −2 the transverse geometry of M is Fano.
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