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Abstract. This paper discusses the significance of quantum calculus in some mathematical fields. It
specifically investigates solutions’ existence, uniqueness, and stability for a system of n-nonlinear fractional
g-differential equations with initial conditions involving Caputo fractional g-derivatives. The paper utilizes
Schauder’s and Banach'’s fixed-point theorems and Ulam-Hyers’ stability criteria to explore the analytical
dynamics inherent in these solutions. Additionally, it provides two illustrative examples to demonstrate
the practical applicability of the obtained results.

1. Introduction

Fractional calculus, which extends differentiation and integration to non-integer orders, has gained
significant attention from researchers because of its broad applications in modeling a wide range of scientific
and technical phenomena. Fractional equations are utilized across various fields, such as blood flow
dynamics, electrical circuits, biology, chemistry, physics, control theory, wave propagation, and signal and
image processing, among others. For a more in-depth examination of the practical applications of fractional
calculus, readers can refer to works by Afshari et al. [2-4], Agrawal [5], Benchohra et al. [1, 6-9], Herrmann
[10], Hilfer [11], Kilbas ef al. [12], and Samko et al. [13].

In the 20th century, physicists sparked a scientific revolution in quantum mechanics, leading mathemati-
cians to develop quantum calculus. Jackson was the first to introduce a new concept in quantum calculus,
which later became influential in various disciplines, including mathematics, mechanics, and physics, see
[14, 15]. Recognizing the substantial applications of fractional g-calculus in many physical, biological, and
economic systems, Al-Salam and Agarwal proposed the concept of fractional g-calculus, see [16, 17]. The
effective role of quantum fractional differential equations (g-FDEs) in physics and mechanics has resulted
in numerous applications across different fields, as discussed in [18-22].
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In [23], Salim et al. investigated the following fractional g-difference problem:

(€D5E)(e) = 9(c, &) c € W =10, p],

&(0) =& €F,

where g € (0,1), C€ (0,1], $ >0, p : ¥ XF — F is a given continuous function, F is a real (or complex)
Banach space with norm || - ||, and CD% is the Caputo fractional g-difference derivative of order C.

In [24], the authors proved some existence of solutions for the following problem with implicit fractional
g-difference equations in Banach algebras:

‘D; (h(s f(l))) = ¢(g,§(g),€ D; (%)) ceWV:=1[0p]

5(0) = 50 € I[{/

whereg € (0,1), C€(0,1], >0, h: Y XR - R*, ¢ : ¥ X R? - R are given functions.
In [25], Basti and Arioua investigated the existence and uniqueness of solutions for a system of n-
nonlinear fractional differential equations with integral conditions of the form:

PNy (1) = fi(Ly (), POy (D), te[0,TI,
PRy (1) = fo (L y (1), P:D% 1), telo,TI,

POy () = fu(ty (), sz ya(®), tel0,T],
with the integral conditions
p[(l);aly(w) = PIé:“Zy(0+) — = P]'(l):“"y((ff) =0,

where y = (y1,Y2,...,Yn), forn e N,also T,p > 0,0 < ;i < @; < 1and f; : [0,T] x R" — R are continuous
functions.

Based on previous research, we investigate the existence, uniqueness and stability of solutions for a
system of n-nonlinear ¢g-FDEs of the following form:

DY) =fty®H), teloTI,
CDGZJ/z t=rf (t y(#), tel0,T],

1)
D;'{)+yn () = fu (t,y(t)), telo,T],
with the initial conditions:
yi(0") = €eR, foreachie(l,..., n}, (2)

where0 <o, <landy = (y1,Y2,.--,Yu), forn € N. Inaddition f; : [0, T] X R" — R are continuous functions
foreachie€ {1,...,n}. Here Cng is the Caputo fractional g-derivative of order o, with T > 0and 0 < g < 1.
The following are the primary novelties of the current paper:

¢ Considering the diverse conditions we applied to system (1), our work can be seen as a continuation
of the studies mentioned above.

e Our work continues upon the obtained results in [23, 24] by extending the fractional equations to
n-nonlinear g-FDEs. This will necessitate the use of more complex approaches with different spaces
and norms.

e Our findings expand upon those in [25] by considering n-nonlinear with g-fractional derivatives.

e We also address the qualitative aspect by investigating the Ulam stability of our system.
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2. Preliminaries and Fundamental Concepts

This section presents concepts of g-calculus and provides some definitions and lemmas that will be used
in this paper (see [26-29]).
The g-integer [0],, for 0 € R, given by

1-q°
[a]qz{ =7’ qii’
o, g=1

The definition of g-factorial [m]q! is

[m],[m—-1],---[1],, meN,
[m]q':{lr,nqm q q nm1:0.

We introduce the g-shifted as follows

t-9" =1, (t-9¥=]](t-s¢), forke N, and 0 <5 <t.

]

=~
—_

Il
[=}

The concept of the g-shifted is also introduced for 0 € R and 0 ¢ N

(t—s)(‘”—t“ﬁ t-q's 0<s<t
q = t—b]lﬁ'ksr -7 ="
k=0

The g-analogue of Gamma function for ¢ € R \ {—m, m € IN U {0}} is defined by

(-

r ,
q (G) (1 _ q)a—l

0<g<1

Obviously
=1 T;(m+1)=[m]!, and T,(c+1)=][0],T;(0).
The g-derivative of a function u is defined by

w(®) - u(gh)
DYu(f)=u(t), and Dyu(t)= (1_—17)2 £#0,

and D,u (0) = ltin(} Dgyu (t). Also, the g-derivative of higher order is given by
(Di'u) (#) = DD u(t), meN.

We have the following g-derivatives with respect to t and s
Dyt =" = T[ol,t-5) ",
Dy[t=9] = —[ol,(t—g5)"".

Definition 2.1 ([30]). Let ¢ > 0 and u be a function defined on [0, T], the fractional g-integral of the Riemann-
Liouville is defined by

1
Fq (0)

and Tu (t) = u(t).

t
Tu® = 5 [ =0 uds
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Definition 2.2 ([31]). Let o > 0and u be a function defined on [0, T], the fractional g-derivative of Riemann-Liouville
is defined by

Z)gu B =u() and Z)gu ) = qufqm_"u ®),
where m is the smallest integer greater than or equal to o.

Lemma 2.3 ([32]). Let 0, > 0, and u be a function defined on [0, T]. Then the next formula hold

L 130 () = 17 u ),
2. DiIu ) = u().

Definition 2.4 ([31]). Let o > 0, the fractional g-derivative of the Caputo type is defined by
Ci)gu BH=ul®) and CDf;u t) = I;”“’Dglu (t), tel0,T],

where m is the smallest integer greater than or equal to o.

Lemma 2.5 ([31]). Let 0 € R¥, then the following equality holds

m=1 Pk, (O+

(25 COgu®) =u® - f,:(uk—(if) k

k=0

If o €(0,1), we have
(25 CO5u(®) = u® - u(0).

Lemma 2.6 ([27]). Let 0 > 0, assume that u € C ([0, T],R), then

m=1 O+)

Cqyo — )
Dyult) =Dy« T, (k+1)

k=0

where C ([0, T],R) is a Banach space of all continuous functions from [0, T] into R, with the norm

llull = sup |u(t).

0<t<T

3. Main Results
Here, we provide several lemmas to demonstrate our main results.

Lemma 3.1. Let 0 < 0; < 1, for any y; € C([0, T],R) and continuous functions (f;)
solutions of problem (1)—(2) is equivalent to the n-fractional g-integral equations

() =0+ f‘{ Go, (t,95) f1 (s, v (s)) dys,
y2 (1) = G+ Jy Go, (£,45) f2 (s, y (5)) dgs,

([0, T] X R" — R, the

i=ln

3)
.
Yn () = Cu+ [ Go, (£,45) fu (5, (5)) dgs,
where G, are continuous functions, also called the Green’s functions written as follows
(t=g9)" "
Go, (t,q5) = ———F—, 4
(t,4s) T, () (4)

foreachie{l,...,n},s€(0,t]andt [0, T].
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Proof. Let0<0;<1,0<q<1,and y; € C([0,T],R) for each i € {1,...,n}. Starting applying I} on both
sides of system (1), we obtain

(Z5 o0y (1) =I5 /i (5, y ),
from Lemma 2.5, by using conditions (2), we get
v = G+ IO f Ly ). 5)
Otherwise, by applying ;' on both sides of the equations (5), utilizing Lemma 2.6, we find that
Dy (i (- C) = DY I3 ity (1)
Then,
DTy (1) = fi(ty (#).
Furthermore, from (5), we find
yi (0%) =, foreachie(l,..., n}.
O

Let us define E = X3 X X, X --- X X, where X; = {y;, i€ C([0,T], ]R)}i=171’ with the norm

Iyl = max]ly] -
Under this norm (E, ||-||g) is a Banach space.
Let us define the integral operators

Tiyt)=0C + j{; G, (t,45) fi (s, y (s)) dys. ©)

Since f; (t,y) and Gy, (t,gs) are continuous functions for each i € {1,...,n}, then 7; are continuous, i.e.,
77‘ (E) C Xl'.
Let 7 : E — E be a system of n-operators that defined by

Ty (t)
T2y (t)

Ty(t) = , 7)

Tn? (t)

where (77),_1. are the integral operators given by (6), characterized by the norm

M

73]l = max |73/

1<i<n

with ||7'ly|| = sup |‘/"iy (t)|-
0<t<T

3.1. Existence and Uniqueness Results of Solutions

This part discusses the existence and uniqueness of solutions, along with illustrative examples. We
impose the following hypotheses:



I. Aouina et al. / Filomat 39:21 (2025), 7383-7395 7388

(H1) For any y, 7 € R", there exist n X n nonnegative constants (A;x), ,_1, such that the functions f; satisfy

, forallte]0,T].

fit,y) - fi(t, )| < Z Aige |y = T
k=1

(Hz) For any y € IR", there exist two families of nonnegative continuous functions (¢;),_; and (wix); ,_15
such that

F ) <)+ Y wp®]y], forallteo,T].
k=1

Foreachie{l,...,n}, we denote

Ai = max{A;}, and C=max{|Cl},
1<k<n 1<i<n

and

Y; = sup ¢;(t), w;= sup {max{wi,k (t)}}-

0<t<T 0<t<T \1<k<n
Theorem 3.2. Assume the hypotheses (Hy) and (H») hold, if

nw’Te
1

m<1, foreachie(l,...,n}, (8)

then problem (1)—(2) has at least one solution on [0, T].

Proof. Firstly, we transform problem (1)—(2) into a fixed point problem.
Let the operator 7 : E — E defined by (7), with [7; (y) (t)] _ being the integral operators given by

i=1,n

t
Ti(y) ) =G +f0 G, (t,g8) fi(s,y(s))dys, te][0,T],

where Gy, (t, gs) defined in (4), for eachi € {1,...,n}.

We demonstrate that 7 satisfies the assumptions of Schauder’s fixed point theorem. This proof will be
completed in three steps.

Step 1: 7 is a continuous operator.

Consider the sequences (V),,cn = (y’ln, vy, .,y;”), such that lim y,, — yin E. For each i € {1,...,n} and
t € [0,T], we obtain

|y (8) = Ty (8)]

IN

fo Gor (1,5) | (5 v (9)) — £ 5, 7 (3))| dys

IA

t n
[ Gattg Y hslr - e 0las
k=1

LT”"” |
T, (o + 1) Wm = Yl

Since y,, — y, we get |‘7’iym H-Twy (t)| — 0,as m — oo. Hence lim ”‘Tym — TyHE =0,forallt € [0, T]. Then
m—oo
7 is continuous.
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Step 2: 7 is defined from a bounded, closed and convex subset into itself.
Foreachi e (1,...,n}, using (8), we consider r satisfies

YT T, (0;+1)
I“q (Oi+1) l”q (ai+1)—na);‘T”I ’

r (C +
Thus the subset 3, defined by

S={yek, |y, <7},

is clearly bounded, closed and convex in E.

7389

Let 7 : 9, — E be the integral operator defined by (7). Then 7 (8,) C ¥,. Indeed, by using (H>), for each

iefl,...,nfand t € [0, T], we get

fitby®) < v+ ox®|nl,
k=1
< Y+ nw; ||y||E
Thus
t
[Ty @] < ‘Ci + f Go, (t,98) fi (s, y(s)) dys|,
0
t
< max{|Gl} + fo G, (t,45) |fi (s, v (5))| dgs,
, i nai ol
- I;(0i+1) ’
YT [, (0+1)
(C + Fq(0i+1))(rq(aijl)*nw;T"i ) na);T"f
< + r,
( [y(oi+1) ) l"q (0;+1)
[y(oi+1)—nw; T
< r
Hence, 7',-y” <rforeachie€{l,...,n}, which implies that HTyHE < r. Consequently 7 (9,) C 9,.

Step 3: 7(9,) is an equicontinuous subset.
Letty, t, € [0,T], t1 <ty and y € 9,. Then, for eachi € {1,...,n}, we have

Ty (t2) - Tiy (11)]

- | f Gy, (b2,9) £ 5,y (9) dys - f Gy (b1,45) fi 5, y/(9)) dys
0 0

4

< fo [Go, (t2,45) = Go, (t1,35)] fi (5, v (5))| dys + ft G, (t2,95) |fi (5, ())| dgs,

1

tl t2
< (z,bj + na)jr) (f |Goi (t2,4s) — G, (tl,qs)| dys + f Gy, (t2,95) dqs).
0

51

As t, > t;, we obtain

|Go: (t2,45) = Goy (11, 45)| T . [(tr = 49)" 7" = (t2 = 45)" 7],

q (01)
l (7 (7
= m sDyg [(f2 —8)% — (= 5)! )]-
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Then,

h 1 o) Lo o
L |GG‘- (tz, qs) — Go,- (tl,qs)| qu < m [(tz - tl)( i) + (fz‘ — tli):l ,

and

2 23 1 (01
j; Gy, (t2,g5) dgs = T, ( n 1) [(tz ]tl = m (t2 —t)"“".

Thus, (9) gives

(1#* + na)’fr)
- _ Ny v 7 _ (07) a, _40;
Ty (t2) = Tiy (1)] < oD [2(02 = 1) + (57 - £7)].
Ast; — tp, the right-hand side of the above inequality tends to zero for eachi € {1, ..., n}. Combining steps
1 to 3 and applying the Ascoli-Arzela theorem, we conclude that 7 : 9, — 9§, is continuous and compact,
satisfies the assumptions of Schauder’s fixed point theorem [33]. Therefore, 7 has at least a fixed point
which is the solution of problem (1)-(2) on [0, T]. O

Example 3.3. Consider the following problem:

Co _ sin()(|y1 (O] +]y2()]) z
Dy ) ® =57 + = (L+|y O]+|v=0])” he [O’ 6]’

(10)
CD? o (12) () = exp (_nzt)(lo(}«f — <|y1 O+ |20 ))) te [0, %],
and
yi(0) =G eR, foreachie{l,2}.
We set
w0l +]u)
2\/5 M(1+q+|y1(+ )I

Lty y) = eXP(—ﬂzt)(me@GWHWZD)'

The functions f; are continuous for any y € R?. Also

Aty p2)

2

Aty ) = AL < Z L1 |}/k—~ /

=1 2 1+e
2

2y y2) = (b, 52)] < Zg)yk—

hence, (H) is satisfied for each i € {1,2}, with

k=

A1 = max{Ayx) =

5
1<k<2 8V1+te
Foreachie {1,2}and t € [O, %], we have

and Ay = max {Ay,} =
I<k<2

) < 2o 0

26 " e+ lel):
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exp (—nzt) exp (—nZt) tan (t)

|f2 (t,yl,y2)| < T00ve + - (1y1| + |y2|).
Thus, hypothesis (H2) is satisfied, with
sin (f)
t) = w11 () = w1 (f) = ,
U \/_ 11 12 N
and
2 2
br(h) = exp (—n t) w1 () = g (1) = exp (—n t) tan (t)
2 —100\/2 ;w21 2,2 o :
For each i € {1,2}, we obtain
2 1 1 V3
*:_, CL)*: lll’ld *:—’ CL)*:_-
A TN N Y27 0 27 an

Now, we show that

1

* ; 6 E
no T 2 > (3) ~0,395925 < 1
[y(01+1) Iy (% +1) / |

4
2
na);TGZ B 2 X ;/_ng X (%)% ~(),249391 < 1

Iy (o2 +1) ry(3+1) | |

It follows from Theorem 3.2, that problem (10) has at least one solution.
Theorem 3.4. Assume that the hypothesis (Hi) holds. If

ma AT <1,
1<1<n F (o; + 1)

then problem (1)—(2) admits a unique solution on [0, T].
Proof. Lety,j € E. By using (Hl) we obtain for all ¢ € [0, T] that

|‘77'J/ ) -Tij (t)l < m Hy yHE, foreachie{1,...,n}.

Consequently

- AT _
Iy=73l, < o { s o=l

1<i<n

7391

(11)

Based on statement (11), it follows that 7~ is a contraction operator. The Banach contraction principle [33]
leads us to conclude that 7~ has a unique fixed point. This fixed point is the unique solution of problem

(1)-2)on [0, T]. O
Example 3.5. Consider the following problem:

arcsin(t)(|y1 ()| +|y2(8)|+|ya(t)
CDfm(y)(t)_ (ll |1-|H; | |3 |), tE[O,%],
CDG (]/2) t) = eXP_an te [0 l]
1 0+ 271(1—I])(1+|yl(t)|+|y2(t)|+|y3(t)|), r2lr

Cas _ arccos(t)(2+|y1(t)|+|y2(t)|+|y3(t)|) 1
Dl 0+ (y3)(t) T @+ D)1y )]+ O] +ys0)]) 7 te [0’ 2]

(12)
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and

yi(0) =G eR, foreachie{1,2,3}.

We set

arcsin (t) (|y1| + )y2| + )y3|)

At yyys) = oy ,

exp—nzt
(t,y1,Y2,y3) ’

(b yLy2,y3 2n(1-q) (1 + )y1| + )y2| + (% )
arccos () (2 + + 4

Aty ypnys) = (2+ vl + e + [o])

7 (2 + 1) (1 + ] + [yl + [ys])

The functions f; are continuous for any y, i € R3. Also

3
1
|fi (v y28) - fi (b T T2,05)| < Z 3 |y = 7|,

|
[
N
A
~~~
[l =
N
=
~
=
>

|f2 (tyry2,y3) — f2 (8, }?1,]72,?3)|

IA
01
[SSERe
=
B
|
=
=

|f5 (b y1,2,93) = f5 (71,52, 75)|

Hence, the hypothesis (H1) is satisfied with A1 =
For each i € {1,2,3} we obtain

N
>~
N
1
1
AN
3
.
>~
W
1
I

1
1 1)\2
T 3XEX 1) ~0,383932 < 1
Iy(o1+1) r(i+1) ’
2
5
1 1)6
T 3xx(3) ~ 0,557904 < 1
T (02 +1) T, (g + 1) ’ ’
2
6
1 1\7
nAsT? 33 %(3) ~0,571772 < 1
I(03+1) P%(§+1) '

It remains to show that the condition (11)

.TOi
max ! M\ g 571770 < 1,
1<i<3 (I (0; + 1)

is satisfied. It follows from Theorem 3.4, that problem (12) admits a unique solution.

3.2. Ulam-Hyers Stability

Next, we use Definition 3.6 and 3.7 to study the Ulam-Hyers stability for our system of n-nonlinear
g-FDEs (1).
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Definition 3.6. The system (1) is Ulam-Hyers stable if there exists a real number n > 0, such that for all ¢ =

max {ei} > 0 and for any solution z € E satisfying the inequality
<isn

D82 () - filbz@)| < e, t€0,T], i€, n), )

there exists a solution y € E of system (1) satisfying

ly ==l < ne.

Definition 3.7. The system (1) is generalized Ulam-Hyers stable if there exists a function ¢ € C (IR*, R*) satisfying
@ (0) = 0, such that for any solution z € E of inequality (13), there exists a solution y € E of (13) satisfying the
inequality

lv ==l <o @.

Remark 3.8. A function z € E is a solution of inequality (13) if and only if there exists a function g € E and
(¢i);_15; > O, such that forall t € [0, Tl and i € {1,...,n},

L |gi ()] < &,
2. “Opzi(t) = fi(t,z(D) + g (8).

Lemma 3.9. If a function z € E is the solution of inequality (13), then there exists (¢;),_5, > 0, ensuring that z
remains the solution of the integral inequality

1 (" &To
e L Go, (t,99) fi(s,z(s)) dgs| < m.

Proof. If z is a solution of (13), by Remark 3.8, we have

zi (t) — z; (0) -

1

200 =20+

t
‘ﬁC%GMQM@J@D+%@H%&

and

7

zi (t) =z (0) -

1 t

1
I, (1)

1 t
—z; (0) — mfo G, (t,95) fi (s,z(s)) dys

t
=z (0) + fo Gy, (t,95) [fi (5,2(5)) + gi (5)] dgs

7

1 t
< G, (t,95)|9i ()| dgs,
rq(Uz‘)fo (t45)|: 0]
< _ el for eachi € {1 n}
ST (04D Lo, n).
|

Theorem 3.10. Assume that (Hy) and (11) hold, then system (1) is Ulam-Hyers stable and consequently generalized
Ulam-Hyers stable.
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Proof. Let ¢ = gnax{e,'} > 0, assume that z € E be a solution of inequality (13), and y € E is the unique
<i<

solution of system (1), with the conditions

yi(0) =z (0), foreachiel(l,..., n},

then
1 t
yi (1) =z (0) + I, ) fo Go, (t,99) fi (s, y (s)) dys,
and
1 t
i () -y = |z()—2z(0)- mj(; Go, (t,95) fi (s, y (5)) dgs|,

IA

t
40 =50) = o [ Gu ) fits @) ds
q \Oi

1 t
5 ) Go a6 z6) - G y@lds
Using (H;) and Lemma 3.9, forall t € [0,T]and i € {1, ..., n}, we get
T
i = il < T+ (e + i ly ==[l).
then

T
o=l < mox{ s e a2l )}

Since ¢ = max {¢;} > 0, we have
1<i<n

To
==l = pox{ s b+ Al =1,

with A = max{ﬂ} < 1. Then

1<i<n | Ta(0itD)
|y = [l < ne,

_ i
where 11 = {Qlas’,j {(17A)1"q(cr,'+1)}'

We deduce that system (1) is Ulam-Hyers stable and is consequently generalized Ulam-Hyers stable if we
seto(t)=nt. O
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