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Abstract. Using Schauder’s fixed-point theorem, we establish sufficient conditions for the existence and
uniqueness of solutions to the nonlinear fractional boundary value problem:

{CD5C(x) + f(x, C(x), "C(x)) =0, xeI=[0,1], 1<B<2, y>0, 1)

C0)=0, <1 =),

where ¢ is a functional defined on C(I, R). By constructing an appropriate Green’s function, we derive a
Lyapunov-type inequality for a special case of the problem (0.1):

{CDﬁC(x) FAMPIE) =, Cx), xel=[0,1], 1<f<2, y>0, 02)

C0) =0, ¢ =¢@©.

We further make an analysis for equation (0.2) by applying the inverse operator method and the Mittag-
Leffler function with illustrative examples demonstrating applications obtained. Finally, we construct
an analytic solution to the following generalized fractional heat equation with an initial condition in n
dimensions based on an inverse operator:

cDfult, x) = Dayey) ant(t, X) + f(£x), (Hx) e R"XR", 0<a<], 03)
u(0,x) = P(x), '

where

2 02
Aay (o) o) = M(X1) 5+ + 3u(X0) 5 -
B ox? ox3
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1. Introduction and Preliminaries

We will begin with some basic definitions given in fractional calculus, the multivariate Mittag-Leffler
function as well as several fixed-point theorems soon to be used. In addition, we present a survey on the
research closely related to ours.

Definition 1.1. Let f > 0 and C be a real function defined on [0, T] with T > 0. The Riemann-Liouville
fractional integral of order B is defined by (I°C)(t) = {(t) and

1 t
(IﬁC)(t):F‘B) fo (t—s)f'C(s)ds, pB>0, tel0,T],

where I is the Gamma function.

Definition 1.2. The Caputo fractional derivative of order g > 0 is given by (cD°C)(t) = ((t) and (cDPC)(t) =
(I"PD"C)(t), for B > 0, where n € N, n — 1 < B < n, is defined by

t
L 5 f (t—s)"P1L™W(s5)ds, te]0,T].
- 0

(D)0 = 1,

Lemma 1.3. Let § > O, then the differential equation (see [1])
cDPu(t) =0
has solutions u(t) = co + cit + cot? + -+ cut" 1, ¢; € R, i=0,1,--- ,n, n = —|-BJ.

Moreover, it has been established that I°cDPu(t) = u(t) + co + cit + cot? + -+ + c,t""! for some ¢; € R,
i=0,1,---,n,n=—|-p] (see Lemma 2.3 in [1]).
Leta;,f>0and z; € C,

S1 ., Sm

E ( ) Zm ) ’ o
72, ,8m ), Zl e Z =
(@12, ), P17 Em $1,52,-+ ,Sm)T(@181 + -+ + QS + P)

5=0 S1+5p++5,,=5

is the well-known multivariate Mittag-Leffler function [2, 3], which is an entire function on complex plane
c.

Theorem 1.4. (Schauder’s fixed-point Theorem [4, Theorem 4.1.1]) Let U be a nonempty and convex subset of a
normed space B. Let T be a continuous mapping of U into a compact set K C U. Then T has a fixed point.

Theorem 1.5. (Leray-Schauder’s fixed-point theorem) Let T be a continuous and compact mapping of a Banach space
X to itself, such that the set {x € X : x = 6Tx for some 0 < 6 < 1} is bounded. Then T has a fixed point.

Boundary value problems of fractional differential equations, including PDEs, are dominant topics
and have emerged as an important field of research due to their wide applications in various areas of
engineering and science, such as control theory, mechanics, wave propagation and biology (see [5-11]. In
2014, Tariboon et al. [12] studied the existence and uniqueness of solutions for the following fractional
differential equation:

cD%u(x) = g(x,u(x)), l<a<2, xe€[0,T],

subject to nonlocal fractional integral boundary conditions:

Yo Aw) =@, Y u(T) - Pu@) = w2, 1i,G € O,T),
i=1 j=1
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where g : [0,T] X R — R is a continuous function, A;, u; € Rforalli = 1,2,---,m, j = 1,2,--- ,n and
w1, w; € R, using Krasnoselskii’s fixed point theorem, Banach’s contractive principle and Leray-Schauder’s
nonlinear alternative.

Given a function u(x) € L1(RR), the Fourier transform is given by

00

00) = (Fa)E) = f e u(x)dx,

—00

and the inverse Fourier transform of F,u(k) is defined as

) = 7 a0 = 5 [ ek = - [ e

In 2019, Morales-Delgado et al. [13] studied the following fractional differential equation using the
Laplace and Fourier transforms:
2

cDfu(t, x) = ut,x) Lx)eR* xR, 0<a <1,

Hox (1.1)
u(0,x) = Y(x),
where u > 0 is the diffusion coefficient, and derived that
1 . ,
)= o [ Eanuledme i, (12)

where

) k
z
Ea,l(z) = kEO m, zeC.

Very recently, Li [5] considered the following fractional differential equation by the inverse operator
method:

%u(t, X) = Apy 2, Ut x) +g(tx), 1<a<2, 13)
u(0,x) = P1(x), u;(0,x) = P2(x), (t,x) € RXR",
where
P 2
DAy A, = Alﬁ_x% +oe+ /\na—xi, all A; are contants,

and obtained

u(t,x) = Z If‘k”‘Aﬁ],.‘.,Mg(t, x) + Z mAﬁwﬂ,ﬁbl(’()
k=0 k=0

a t(xk+1
+ —_— Ay, .. .
kZ:;) Tak+2)M A,P2(x)

in a subspace of C(R*, R").

The rest of the paper is structured as follows: In Section 2, we present a Lyapunov-type inequality that
provides a necessary condition for the existence of a non-trivial solution to equation (0.2) based on a Green’s
vector function. Further, we derive sufficient conditions for the existence and uniqueness of solutions to
equation (0.1) by Schauder’s fixed-point theorem in Section 3. Applying the inverse operator method and
the Mittag-Leffler function, we study the uniqueness and existence to equation (0.2) by Banach’s contractive
principle and Leray-Schauder’s fixed-point theorem in Section 4 with several illustrative examples. In
Section 5, we construct an analytic solution for a generalized fractional heat equation with an initial
condition using the inverse operator method and the multivariate Mittag-Leffler function. Finally, we
summarize the entire work in Section 6.
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2. A Lyapunov-type inequality

Proposition 2.1. C € C(I.IR) is a solution of equation (0.2) if and only if C satisfies the integral equation

1
C(x) = P(O)x + ](; G(x, t)A(7, Q)dr,

where

—x(1-7) 1 +(x—1)f!
— _ T'(p) / - -0 =
G(x,7) = G(x, D)[L,1], Glx,7) =
—x(1-1)f!
e

0<x<t<1,

(t—s) L 0<s<t<l

AR, = [n(x, L), B, O, HLQ=1:G@9%M& Gm@=—f;

Proof. Let us first rearrange equation (0.2) as follows:
X
cDPC(x) = n(x, () + f G'(x,0)C(v)dr, xel=[0,1], 1<p<2
0

where G*(x, 1) = —m/\(x)(x -7 for0<t<x<1,7>0.

From Lemma 1.3, we come to
C(x) = co + eax + (e, CR) + Iﬁ( f G'(x, T)C(’L’)d’t). 2.1)
0

Using the boundary conditions, we can easily find that ¢y = 0 and

1 1 1 1 S
— - _ o\l _ - _ o\p1 *
q@@rwﬁaﬂrmwmImﬁa@ | s s

Consequently,

C(x) = H(0)x — f (1 =) 1n(s, U(s))ds — 0] f (1 = s)f1F(s, Q)ds

f (x —s)fIn(s, U(s))ds + = f (x = s)f"LF(s, Q)ds

F(ﬁ) I'(B)
= P(O)x + fo G(x, s)n(s, L(s))ds + fo G(x, s)E(s, O)ds

1
=p(O)x + [) G(x, 8)A(s, C)ds.

Here, the vector Green’s function G(x,s) and vector function A(s, () are defined in the proposition’s hy-
potheses. This completes the proof. [

Lemma 2.2. The function G(x, s) given in Proposition 2.1 satisfies the following inequality:

9(B)

IG(x, s)| < — max {9(B), h(B)} < Tﬁ) onlIxI

- r(ﬁ)
where § € (1,2],

p1 1 _ —
h(p) = { B-1)77 a(ﬁ -1, 1 ;E; 2, 7(B) = (13‘8_?1 Be,2]. (2.2)
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Proof. Let us disregard the case f = 2, as the claim is easily proved in that scenario. Over 0 <s <x <1,
= 1
GG 9l < 75 max{x’™! —x,x(1 -2},

Finding the extremum points of the two functions x¥*~! — x, x(1 — x)#~!, one observes that they achieve their
maximums at x = (ﬂ - 1)7’%2 and x = 71, respectively. This implies that

IG(x, 5)| < F(ﬁ) max{g(B), h(B)}, 0<s<x<1,

where g, h are as given in the lemma’s hypotheses. Additionally, numerical observations show that & < g
over (1,2) (see Figure 1). Similarly, for 0 < x < s < 1, we derive

— 9B
— hp)

—— w(B) =g(B) - h(B)
0.8

06

04

Function values

02

0.0

Figure 1: Graph of g,h and w = g — h over (1,2)

Ia(x,s)l < @ 0<

, <x<
')
We completes the proof. [J

%)
IN
—

In the following theorem, we provide a necessary condition for the existence of a solution to equation
(0.2). To do so, we need to impose some certain conditions to the coefficients as follow:

(C1) A € C(I,R), which implies that [|All, = maIx [A(x)] < oo0.
X€E.
(C2) Letn e CI X R, R) and ¢ be a functional defined on C(I, R). We assume either

Inll, = sup InGy)l<eo, Ag= sup I$(Q)< oo,
(xy)elXR CeC(IR)

or satisfy the following conditions:

[lnll = inf{C,,; > 0, In(t, x)| < Cylxl, forall (t,x) € [ X R} < oo, 2.3)
llpll = inf{Cy > 0, Ip(0)] < CyllClleo, for all C € C(I,R)} < co. :

Theorem 2.3. Suppose there exists a nontrivial continuous solution to the nonlinear fractional boundary value
problem (0.2). Then
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(@) If ¢ and n satisfy (2.3), then

1 (B-1\7 1Al
o+ () (M meg) 2

equivalently,
9(6) [ oo
I+ Fgy I+ 55 ) 2 1
(b) If ¢ is uniformly bounded, that is Ay := Sup.cq g, IP(C)] < o0, and ||n||oo is bounded with
rgray +2
||/\”oo < M’
9(B)

then an upper bound for the solution C is given by

T(B)Ay + g(B)lInlleo
TRy +2) = gBlIAlls

Iicllo <T(y +2)-

Proof. Suppose C € C(I, R) is a solution of equation (0.2), then using Proposition 2.1,

1
a@=¢@n+l:qnﬂMLQw.

Case 1. For the case ¢ and 1) satisfy (2.3), by employing Lemma 2.2 we have

1
601 < 1601 e+ £ [ - e + 1, O
On the other hand,
7 01= | [ 6 0otes] < il e 5
Combining (2.4) and (2.5) yields that
7(9) Wl - 1
Gk < 16110k + Fas (Il 10 + Fe )

which as C is a nontrivial solution we derive

96) lIA oo )

1< gl + s+ 56 5)

as the desired consequence.

7408

2.4)

(2.5)

Case 2. Now let us consider 1]l < o0 and ¢ is uniformly bounded, that is, Ay := SUPrec(R) [H(0)| < oo,

then following the same argument as mentioned in previous case we get

9(6) Al - 11l
MMS%+WAMM_763T)
This implies
T'(B)A .
1l < Ty +2) - 0 + 96N

TBT(y +2) = gB)lIAlle”
which completes the proof. [
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3. Existence and Uniqueness to Equation (0.1)

In this section, we focus on the fractional boundary value problem (0.1), which is a generalization of the
fractional differential equation (0.2). The analysis of solutions is carried out using the integral representation
that forms the basis of the subsequent existence results.

Lemma 3.1. C € C(I, R) is a solution of equation (0.1) if and only if C satisfies the integral equation

1
C(x) = p(O)x + fo Golx,9)f(s,C(s), ' C(s))ds, (3.1)

where

x(1=s)P 1 —(x—s)P1
—Tp 0<s<x<1,

Golx,s) = (3.2)

"“r’(;)f*l, 0<x<s<l.

Proof. From Lemma 1.3, we convert equation (0.1) to an equivalent integral equation

C(x) = co + c1x — f (x;(;)) £(5,C(s), I'C(s))ds. (3.3)

Using the boundary conditions, we can easily find that ¢y = 0 and

-
=00+ [ LI . co s

Consequently,

-1
=0+ [ I o0, raens - [ OTI s conreons

= ¢(C)x+j; G_O(x, s)f(s, C(s), I"C(s))ds,

where the Green’s function Go(x, s) is defined in (3.2). [

Applying Schauder’s fixed point theorem, we are ready to establish sufficient conditions for the existence
of solutions to Eq. (0.1) in the space C(I, R).

Theorem 3.2. Assume that f : I X R X R — R is a continuous function, and ¢ : C(I,R) — R is a continuous
functional such that the norm ||Q|| as defined in (2.3), satisfies the inequality ||p|| < 1. In addition, suppose that one
of the following conditions is satisfied

(H1) There exist a non-negative function m(t) € L*(I), with 0 < p,q < 1 and constants C,, Cg > 0 such that
If(t,x, I <m(t) + Cplxl + Cylyl?, VtelVx,yeR;

(Hy) There exist constants p,q > 1 and C,, C; > 0 such that
lf(t,x, I < ColxlP + Cylyl’, VtelVx,yeR;

(H3) There exist constants C,C > 0 such that

9(p)

® L c+C) <1, (3.4)

llpll + ==

and

If(t,x,y)l < Clx| + Clyl, Vtel,¥x,yeR.
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Then Eq. (0.1) has a solution in the ball B C C(I, R), for an appropriate R > 0.
Proof. Suppose that T : C(I, R) — C(I, R) is the operator given by
TC(x) = p(O)x + f: Go(x,8)f(s, C(s), I'L(s))ds. (3.5)
First, assume that (H;) holds. Define the following ball in C(I, R),
Br = {C(x) € C(I, R) [ [|Cll- < R},

where

i (2 ()

where 0 < p,q < 1, and the positive constants a;, i = 1,2, 3, are sufficiently small to satisfy

R > max{ Tl

a1+ ar +a3 = 1—||¢||

Now we aim to prove that T : Bx — Bg is a self-map. For any C € Bg, utilizing Lemma 2.2, we derive

1
T = ey + fo Golx, 9)f(s, L(5), I Ue))ds

< [l9lIR + @(umnm +CR” + chﬂ), xel,

I'(p)
by noting that Go(x, s) = —G(x, s) previously defined in Proposition 2.1.
Hence,
9(B)
ITCe < IR + W3)(||m||m + G +CR)
< ”(PHR +a1R+ apR + asR = R.

Note that TCis continuous over C(I, R) because f and ¢ are continuous. Therefore, we claim that T : Bx — Bg
is continuous.

Under hypothesis (H;), taking

fiw) (e |7

where p, g > 1, and the positive constants &; and & satisfy

R > max {(

ar+adx =1-1¢l|,
and repeating the same arguments similar to that above we can arrive at

9(6)
ITCle < lIGIR + W)(CPRP +CR7)

<|IgplIR + &R + &R = R.

Finally, if (H3) holds, using (3.4) we easily find that ||T(||» < R and consequently, T : Bx — Bkg.
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In summary, we imply that T : Bg — Bg is a continuous operator.

In what follows we prove that T is equicontinuous. Let us set

L:= rg;%;({f(x, C(x), I"C(x))} < o0

xel

and assume that x1,x, € I and x1 < x, then for any C € Bg we have

1
ITC(x2) — TC(x1)l = '(P(C)(Xz -x1)+ fo (G_o(Xz, t) = Go(x1, t))f (¢, C(b), I”C(t))df‘

Go(xz, t) — Go(x1, 1)|dt

1
ﬂ@deh—mHLJ‘

B

<PlIR(x2 — x1) + [x —x +x— x1]

T(ﬁ 1

which infers the set TBr is equicontinuous. Additionally, TBr is uniformly bounded and closed. By Ascoli’s
theorem, TBp is compact. Using Schauder’s fixed-point theorem, we conclude that there exists a solution
within By for the fractional boundary value problem given in (0.1). This completes the proof. [

Theorem 3.3. Assume that f : C(I Xx R X R) — R is a Lipschitz continuous functional and satisfies
If(t,x2, y2) = f(t, x1, y)l < Gl —x1] + Colya —yal, VEELVx,yi €R, fori=1,2,
where Cy1,Cy > 0 are constants, and ¢ is a functional defined on C(I, R) and satisfies

|H(C1) — PO < CollGt = Glleo, G & € C(LR). (3.6)

In addition,

Co +

9(p) (c G ) <1 (3.7)

') I'(y+1)
Then Eq. (0.1) has a unique solution.

Proof. To prove the uniqueness, we suppose the converse is true, that means equation (0.1) has two distinct
solutions (i, ( in C(I, R). Then

1
mm—gmv*w@—wgm+jfhwq@Mﬂﬂwm—mwﬁww@m@

<Gl = Gilleo + ?Eﬁ; (C1||C2 Cilleo + CIII"Co = IVC1||oo)
g9(B) G
<|co+2 m@ rw+nm@—mm
which implies that
9(p) C
<Cot Tﬁ)( * r(y+1))

as (y,Cy are distinct functions on I, hence it contradicts with (3.7). Therefore, there is a unique solution.
This completes the proof. [
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In the following, we introduce a class of functions that play a crucial role in constructing f(t,x, y) as
defined in Eq. (0.1). This function class is essential for the subsequent example and is formally defined as

h(t
H = {h eC (IRB',]R) ‘ % is decreasing on R*, h(t) < ct”* over R*, for some ¢, pg > O}

where R} = [0, o0) and R* = (0, 00).
Clearly, H is non-empty, as it includes a variety of commonly used functions. For instance, the functions
h(t)y=att, h(t)=1-e", hy(t)=In(l+at), hy(t) = tan '(at),
all belong to H foranya >0and 0 <p < 1.

Remark 3.4. A key property of any function / in H is subadditivity, as shown below

h(t; + 1) =

tih(t + t2) N th(t + t2) < tih(t1) N tah(ts) = h(t) + h(ty), tth >0
tz s s = U.

h+t i+t T h

Example 3.5. Consider the following fractional differential equation:

{CD1'7C(x) +A(x) tan""a(IC@)| + () =0, x€l,a>0, (3.8)

L0)=0, (1) = [ wt)l(tyt.

Here, w € LY(I) is either non-negative or non-positive, and A : I — R is a bounded, non-trivial function
satisfying the condition

2097l _

A= ||w”L1(I) + F(17) < 1.

Define the functional

1
P(0) := f w(t)C(t)dt, for Ce C([,R),
0
where Co = [[w||;1y < 1, ensuring that the condition (3.6) holds.
To verify the required assumptions, we observe that

£t 2, y)] = |A(E) - tan™" a(lx] + [y))]
< Ao (tan_1 alx| + tan™? alyl)
< allAlleo (Ix] + Y1)

Thus, by Theorem 3.2, the fractional differential equation (3.8) admits at least one solution.

Furthermore, since

ag(1.7)|| A lleo 1
T(1.7) (1 T4

|leoll: + )<AS1

the uniqueness of the solution follows from Theorem 3.3.
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Example 3.6. Consider the fractional differential equation

c@p II4C(x)P
1+alC(x)7 1+ b|IL4C(x)

Q0)=0, (1) = wt)(hat.

Here, A and w are defined as in the previous example. The exponents satisfy the constraint max{1,g} <p <
g + 1, while the constants 4, b, p, g and the function w are chosen to ensure that the condition

CD1'7C(9€) +A(x) + sin( ) =0, x€l,ab>0,

3.9)

_ g(1.7) Ap
A= ||ZU||L1([) + 1_,(17) (Aa + 1_,(2‘4)) <1, (3.10)

is satisfied, where

P+ a(p — g)aPt11
Ay = max P ) < 00,
xeR* (1 + ax1)?

px L+ b(p — q)aP !

Ay = < o0.
b= R (1 + bxi)? 0
To estimate the nonlinear term, we observe that for any t € I, and x, y € R, the function f(¢, x, y) satisfies the
bound
. |x[P [yl
t = [A(H) + +

x|P | |,U
Iy

<
WO T+ T oy

1 1
<A+ =277 + —ylP 1,
<A+~ P~ + Sy

Moreover, given t € I and any x1, X2, y1, ¥2 € R, we establish the Lipschitz continuity property
P P p P
sin 2o N 12| _sin |1 N |yl
1+alxolT 1+ blysl 1+alxq|7 1+ blyl?

P Il
T+l 1+ byl

£t %2, v2) = F(t, %0, 91)| =

‘ ol al
“|1+alx 1+ alxqlt

< Aglea = x1l + Aplyo — 11l

By applying Theorems 3.2 and 3.3, we conclude that equation (3.9) admits a unique solution.

As a concrete illustration, let us consider the parameter valuesa = b = p = 2,4 = 1.5, and define
A(x) = w(x) = tanx. Under these settings, we obtain

0.3161

Ay=Ay~04079,  A=lnsecl+ ol (0.4079 +

0.4079

m) ~ 08717 < 1.

This confirms the existence and uniqueness of a solution to equation (3.9).

4. Uniqueness and Existence for Equation (0.2)

In this section, we are going to use the inverse operator method to study the uniqueness and existence
to equation (0.2) based on the Mittag-Leffler function and several notable fixed-point theorems.
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Theorem 4.1. Let 1 be a continuous and bounded function over [0,1] x R, A(x) € C[0,1], ¢ : C(, R) = R be a
functional, 1 < <2 andy > 0. Then Cis a solution of equation (0.2) if and only if it is equivalent to the following
implicit integral equation in C(I, R):

Cx) = 2( DF (AP P, ) + OZ( D (FAP) x

k=0
+IP_ A(x) D'C(x) Z(—l)k (Iﬁ/\(x)p’) x=1°_ n(x,C(x) Z(_l)k (pg/\(x)p)k N an
k=0 L
In addition, if
- lIA oo
w=1- mEﬁ+%1(lMllm) >0,

then

1
Illleo < W (Eﬁ+y, p+1(IIA o) 17lleo + 1P(O)] Epsy, 1(][Alle0)

i 1)Eﬁ+) 1<||A||m>||n||m) < oo,
Proof. For1<p <2,
IP(cDP)C(x) = C(x) = C(0) = T'(0)x = C(x) = C'(0)x,
since C(0) = 0. Applying the integral operator If to both sides of the equation,
cDPL(x) + A(x) I'C(x) = n(x, (%)),
we get
C(x) = C'(0)x + A C(x) = IPn(x, C(x)). (4.2)
Letx=1
GQ) =T O) + I A@PTE) =I_n(x,((x)),  (since {(1) = $(0)),
then
C(0) = (O + I, AP C(x) — I_ n(x, {(x)-
From equation (4.2), we come to
1+ IPA@I) C(x) = Pr(x, C(x)) + T (0)x.

We will show that the inverse operator of 1 + IPA(x)I” is
- k
V= Z(—l)k (FA@D)
k=0
in the space C(I, R). Indeed, for any function ¢ € C(I, R),

< Ul Y AL, [[1EE+

k=0

IVolleo =

(integral operator norm)

Z —D(FPA@I) ¢>
k=0

< ||q>||mZ||A||o<,F T = 10l Epoa(l) < oo
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Therefore, V is a continuous mapping from C(I, R) to itself and the series is uniformly convergent. Further,
we prove that

VA +PAXI) = (1 +PA(x)[)V =1, (identity operator).

In fact,

V(1 + PAR)D) = V+Z —1)k IﬁA(x)p' —1+Z( 1)k IﬁA(x)IV) i(—nk(lﬁux)ﬂ)k”
k=0

k=0

—1+2( 1 (AP +Z( 1 (FA@P) " =1,

Similarly,
A+ IPAX)D)V =1,

and the uniqueness follows easily. This implies that
L) = (1+ PA@D)™ [P, C)) + x (6(0) + I A@DC(x) - I n(x, C(x)))]
Z ~1)F (PA@)I) “Prx, ) +¢(<;)Z ~1)¥( Iﬁ/\(x)IV)
k=0

+ 1P A@P ) Z(—1)’< (IﬁA(x)IV) x = I_nx, Cx) Z(—1)’< (Iﬁ)\(x)ﬂ)k x

k=0 k=0

Hence, C is a solution of equation (0.2) if and only if it is equivalent to the implicit integral equation (4.1),
since all the above steps are reversible.
Moreover,

Il I
Il < Z ST S |q>(c>|kZ=6 RCGESIES))

4 Sl 11Clls Al A
r(ﬁ +y+1) Z T(k(B +7)+1) + TE+1) kZS ThG+)T 1)Ilnllm

lIA oo [IC]l
< Eﬁﬂ/, ﬁ+1(”A”oo)”n”oo + |¢(C)| Eﬁﬂ/, 1(“)\”00) + WEﬁ_W’ 1(”/\”00)
F(‘B 1)Eﬁ+7/ 1A o) 1Moo -
Since
w=1 TrB+y+ 1)Eﬁ+% 1(IIMleo) > 0,
we get
1
IClleo < W Egsy, pr1(IMleo)lInlleo + (O] Epty, 1(1IA lle0) + TG+ 1)Eﬁ+), LAl | < +oo.

This completes the proof. [
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Theorem 4.2. Let 1) be a continuous and bounded function on [0, 1] X R, satisfying the following Lipschitz condition
for a non-negative constant Ly:

NG, y1) =@yl < Lilyn =2l yi,y2 €R, and x €[0,1]

and ¢: C(I,R) — R be a functional satisfying the condition for a non-negative constant L:
1p(C1) = P(C)l < L3 111 - Calles,

for Gy, & € C(I, R). Furthermore, if

Me L
F+y+1) TE+1)

then equation (0.2) has a unique solution in C(I, R).

Q = L1Epry, pr1(llAlle) + (-Ez + )Eﬁ+y 1(IMle) < 1,

Proof. We first define a nonlinear mapping M over C(I, R) as

(MO)(x) i —DFIEA)D Y TP n(x, L(x)) + H(0) Z( DIPA)D Yo x
k=0

+_ A I'C(x) Z(—l)kuﬁuxw)kx ~ 1 n(x, C) Z(—l)"(lﬁA(x)mkx

k=0 k=0

It follows from the proof of Theorem 4.1 that
IMClleo < +00,

which claims that MC € C(I, R).
Next, we show that M is contractive.

e8]

MG = MG = Y (DA (n(x, & () - n(x, C2(0)

k=0

+(B(C) = $(@) Y (DA x + E_ AW (G() = L) Y (D EPA@P
k=0 k=0

1, (@, G (x) = (@, Calx)) Z D P AT .

Hence,
IMC — MGolleo < L1Egy, pr1(lIAlleo) 181 — Calloo + L2Eg+y, 1(lIAe0) [IC1 — Callo
I leo 1C1 = Colloo L
Ty ey B Uk + Eg EpeaIAlle) 10— Gl
< Q|G = Glleo-

Since Q) < 1, equation (0.2) has a unique solution in C(I, R) by using the Banach contraction principle. [

Example 4.3. The following nonlinear fractional integro-differential equation with variable coefficient and
a functional boundary condition:

1
2+ 1) 1“C(x> o508 ((* +2)c)), xe[o,1],

(=0, V)= % fo L,

cDC(x) +
(4.3)

has a unique solution in C(I, R).
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Proof. Clearly,

1

=15 [Ale= 5 V= 1.1,

and

N, Q) = o= COS((x +2)0)

is a continuous and bounded function on [0, 1] X RR, satisfying
1
In(x, C1) — n(x, G)l <55 |C05((x3 +2)(;) — cos((x® + 2)C2)| (by noting that |cosx — cos y| < |x — yl)
5n |C1 (| |since max |x3 + 2| =3],
x€[0,1]

_20

which infers that £; = —
On the other hand,

1
60 =35 [ e

is a functional satisfying

P(C1) — D)l < 75 ‘f (8 ()] = [C(x)dx

<15 | [Poawi- el (since [ - | < x-
< E Cl(x) — Co(x)|dx
< E [1C1 — Calleo
which implies that £, = 11_8 Thus,
Mloo
Q = L1Egy, pua(IMllo) + (1:2 " r(ﬁ”+ ! il r([‘f; 1))E{3+y H(A)

3 (1) 1, 1 .3 (1)
20 ***°\22) " \18 " 22r(3.6) ' 20r(2.5) E261(53

230 (0.753881) + (0.180622)(1.01224)

~ 0.29591496328 < 1.

By Theorem 4.2, equation (4.3) has a unique solution in C(I, R). O

7417

Theorem 4.4. Let 1 be a continuous and bounded function on [0,1] X R and ¢ : C(I, R) — R be a functional

satisfying the condition for a non-negative constant Ly:

lp(C1) — PGl < Lo |G — Calleo,
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for Cq1,Cp € C(I, R). In addition, if

[ oo

R N (S

Eg+y,1(lIAMe0) > 0,

then there exists at least one solution to equation (0.2) in the space C(I, R).

Proof. Clearly,

PO < 16(C) = P(0) + PO < [D(C) = PO)] + P(O)] < L [IClleo +1P(O)] < +00,

if C € C(I, R). We define the nonlinear mapping M over C(I, R) again as

)

ML) = Y (DR AP TP, C(x)+¢(C)Z( DA PACOD ) x

k=0

AW P Y DD - s, cmZ( DHIA@D .
k=0

It follows the proof of Theorem 4.1 that the mapping M is from C(I, R) to itself.
We first show that (i) M is continuous. In fact,

IMC1 = MCalleo < gy, pr1(1Alleo) sup In(x, &) = n(x, C2)l

x€[0,1]

+ L2161 = Collew Epay 1(1A1le) + Lo 161~ Cole

rg+y+1)
1
F(ﬁ+ 1)Eﬁ+y 1[I oo )xseléli] In(x, C1) — n(x, &)l

Egsy, 1(IIAl)

This implies M is continuous since 7 is continuous.

(ii) M is a mapping from bounded sets to bounded sets. Let S be a bounded set in C(I, R). Then for
Ces,

(O] < L2 [IClles + 19(0)] < C,
where C is a positive constant. From the inequality,

lIA oo NIClloo

IMClleo < Egay, pr1(llAlloo)lIlleo + CEgay, 1(lIAlle0) + TG + 1)Eﬁ+)/,l(”A||oo)

+ E T (A,

which implies that MC is uniformly bounded if C € S, as 7 is bounded.

In order to show thar M is equicontinuous on every bounded set S of C(I,IR), we first define the
following:

ox(1) = AL (PADI) " P, ()

and

(@) = AL, (FA@P) x,
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fork > 1. Then,

k
il 1) Al
llprlleo < ALl lIFP1 < TG +7) + 1)|| Nlloo,

AL
il < IAI DB <
Y (k-1 +n)+y+1)

(iii) M is completely continuous from C(I, R) to itself. By the Arzela—Ascoli theorem, we need to show
that M is equicontinuous on every bounded set S of C(I,R). For 0 < t; < f; <1and C € S, we have

(MO)(t2) ~ (MO)(tr) =
110 C@) = I, n(x, c<x>>+Z D (000~ I, (D) (=1)

+¢(C)(t2—f1)+¢(C)Z(—1)k By — I, ¢u(0) (= h)

k=1
+If=1A<x>P'c<x>[(tz—t1>+Z(—1>’< I, yi(x) - Mwm))l (=1I)
- I n(x, c:<x>>[t2—t1 +Z< D (I, ve(0) - If hwkm)l (=)

As for I3,
h= 1, n(e, C) = I, e, C) + Y (<D (I, 0x(r) - I, (D))
k=1

= 112 + 113.
Clearly,
Lo = I, nx, C() - IL_, n(x, C(x)
to t
= %ﬁ) (fo (t, — T)‘B_lrl(’(, C(t))dt — f(; (t1 — T)ﬁ_lT](T, C(T))d’(),

and

f (b2~ 0P (L) = f (b — 0P (e, L) + f (b2 — 0P, L)
0 0 ty

Thus,
ty 1
f (b2 — D (x, L)t ~ f (t — O (L)
0 0

tl tZ
= fo (2 = D' = (b = DF ") (x, L)) + f (b2 = D (x, (D)
5]

= Iio1 + i,

and

t
[l < fo (2= = = ) e

AEPRVEN £
(52 R <3 -5l
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by the mean value theorem. On the other hand,

f
12| < f (- 0ol < (2 - 1) [l
t

Regarding I;3, we have

I tz(Pk(T) I t1¢k(T l"(ﬁ) (f (t —1)f" 1<Pk(’f d’f—f (t —1)f~ 1¢k(’c dt|,

and
) t1 t
fo (12— oyt = fo (2 — O i) + f (2 — O i)
Hence,
tr t
f (t2 -yt — f (t — o ()
0 0
t 15)
- [(t= 0 = - ) outre+ [ - 0 gutorie
0 t
= I131 + L,
and
t
I131] < Pt =P Yt -
hal < [ (=0 = (= 0P e
B 8 g
[% ﬁz ﬁ]H(Pk”oo—[E_E]”(Pk”oo<(t2_t1)“¢k”m/
as well as

15}
[Ii32] < f (t — DF ' dl|prllo < (f2 = t1) llokllco-
ty

In summary,

- IS
|Il3 Z x= tquk(’r) x t2¢k(T))| T(ﬁ) 1)2 F(k(ﬁ + .y) + 1) || ||oo '

k=1

Therefore,

il < ol + sl £ =—

- Iﬁ(ﬁ)

ALK
= w0l (1 ’ Z TRE +))+ 1)]’

A,
2=l + 50 tl)Zr(k(ﬁwm)” s

7420

which is equicontinuous on every bounded set S of C(I,R). It follows similarly that I, I3 and I are

equicontinuous on S.
(iv) Finally, we prove that the setfor0 < 6 <1

={CeC(LR): C =M}
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is bounded. Noting that
lIClleo < [IMClleo < Epey, g1 (llAlleo)1lleo + (Lz lIClleo + 19(O)) Epsy, 1(1IAle0)

% 1A+ 1)% 1Al linlles,
and
Q=1- (1;2 , %) Epey, 1(IAlle) > 0.
Then,

1
lICllee = (Eﬂﬂ/ p+1([IA o) lleo + 1P(O)] Epy, 1(11Alle0) + Eﬁ+y,1(||/\lloo)||nlloo) < 400,

1
re+1)

which indicates that Y is bounded. Using the Arzela—Ascoli theorem, we claim that M is compact. By
Leray-Schauder’s fixed point theorem, equation (0.2) has at least one solution in C(I, R). This completes
the proof. [

Example 4.5. The following nonlinear fractional integro-differential equation with variable coefficient and

functional boundary condition:
cDVC(x) + (o + 1) I'¢(x) = ¥* cos C(x), x€[0,1],
4.4
C0)=0, ¢(1)= —COS C(3/4), &4

has at least one solution in C(I, R).
Proof. Comparing equation (4.4) with equation (0.2), we get for A(x) = x* + 1 that
B=17, |Alle = max ¥ +1=2, y=14,
and
n(x, y) = x* cos y*
is a continuous and bounded function on [0, 1] X R. However, it is not a Lipschitz function with respect to

y.
On the other hand,

P(C) = 7 cosC(3/4)

isa functlonal satisfying
B0 = HE)I < 7 eos Ti3/4) = cos L (3/4)

< E IC1(3/4) — C2(3/4)| (lcosx —cosy| < |x—yl)

< E IC1 = Colleo

1
where (5, ; € C(I, R), which implies that £, = T Thus,

Q=1-\L* e 16 ' T(@1)

~ 1 - (0.356073)(1.29739) = 0.53803445053 > 0.

Allso 1 2
M VE (o) = 1 ( )Em(z)

By Theorem 4.4, equation (4.4) has at least one solution in C([, R). O
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5. The generalized fractional heat equation

In this section, we will find an analytic solution to the generalized fractional heat equation (0.3) given
in the abstract based on an inverse operator and the multivariate Mittag-Leffler function to illustrate an
application of the inverse operator method in PDEs.

Theorem 5.1. Let a;(x;) be a continuous function over R, f(t, x) and \ be in Wy defined by

Wy = {f € C(R* x R") : Aa constant My, ... ., > 0 such that

[a (1) 9% ]kl (a ) 92 )k,, 0| < Mtk
1 1 e n 7 — 7
ax% n 8x%l f/”l 7 A

where (ky,--- ,k,) € IN U {0})". Then equation (0.3) has a unique solution

sup
(t,x)eR*xIR"

o oo tak
— k k k
u(t’ x) - Z I? +OlAlh()q),"-,[ly,(xn)-f(t’ x) + Z F(O(k + 1)Aal(xl)/'"/an(xn)ll)(x)'
k=0 k=0

Proof. Let the partial integral operator I} (@ > 0) be defined as

1 t
ft,x)=— | t-0*" dr, teR".
00 = i [ -0 e, e
Applying the operator I} to both sides of equation (0.3), we have

u(t, x) - IP(X) - I‘tXAﬂl(h),'",ﬂn(xn)u(t/ x) = I?f(t/ JC),

which claims that
(1= I Bay e ) 14 ) = (2, 2) + (). (.1)

We are going to show that the inverse operator of 1 — I} Ay (x,),- 4, (x,) 1S

k=0 \ i=1 i
0 ki k,
k 9’ *\"
=) I ( )(al(xl)_z] "'(an(xn)_z)
kZ=O kl‘*';fn:k kl/ e /kn axl axn
in Wy. Indeed, for any f € Wy we get
VA,
o k1 k
k (92 82 n
< Z (k ok )”[;"k” sup [a1(x1)ﬁ] ..-(gn(xn)&—z) f(t,x)
=0 ki tkymk VL7 (tX)eR* XR" Xy X
kl a kn
< - ( k )(taMf:ﬂlr"‘run) e (t Mflﬂlr'“/un)
- =T ki, ky Tlaky + -+ ak, + 1)

=E( )1 (t“Mf,ﬂll,..,un, ‘e ,t“Mf,ﬂl,..,u”) < 400, te€ any closed interval of R*,

which indicates that V is a well-defined operator over Wy. Furthermore,

V(1= 8 aen) = (1= 1 Bay o) V = 1.
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In fact,
) o0 k+1
V(1= I B0y ax) Z[ZI“H () 2] Z[ZI’*& e ] =1
k=1 \i= k=0 \ i=
Similarly,

(1 - I?Aﬂl(xl),"-,an(xn)) V= 1,

and the uniqueness follows easily. From equation (5.1), we derive that

>\ 2 \b
u(t,x) = Z Z (kl/ , )I“’”“(a (xl)ax%] "'(“n(xn)a_x%) f(t,x)

k=0 kyi+-+k,=k
=k k 2\ 2 \"
* Z T(ak + 1) kl+; :k(kl,--' ,kn) (al(xl)a_x;] (””(x”)a ) Y
sl R tak
ak ap k k
Z " al(\/l)/"',ﬂn(v\”n)f(t' x) + 2 r(ak + 1) Aal(xl)r'"run(xn)lp(x),
k=0 k=0
by noting that
ki k,
k 22 P\
k
Aul 1), () ( )[al(xl)_) cee (an(xn)_) .
(1), () kl+§”_k ki, ky ax% ox2

The uniqueness of solutions follows from the observation that the differential equation

cDiu(t, x) = Doy et x), (Hx) € R*XR", 0<a <1,
u(0,x) =0,

admits only the trivial solution u(¢, x) = 0. This establishes the uniqueness of the solution and thus completes
the proof. O

In particular, equation

cDfu(t,x) = Aq,.. qu(t,x) + f(x), (Hx) e R"XR?, 0<a<l, (5.2)
u(0,x) = P(x), '
where
Af,..1 =4,

has a unique solution

R s ak
ut, )= Y 1A (0 + Y mﬁw).
k=0 k=0

In particular for a = 1,

u(t,x) = Y I akf( 0 + ) Ii—}jAkl,b(x).
k=0 k=0 "
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Example 5.2. The following differential equation

cDfu(t, x) = Ault, x) + Pxixo--x,, (HX)€eRTXR", 0<a<l, (53)
u(0,x) = sinx, ’
has the solution
pak
ak+a g2 Ak
u(t,x) = kZO‘ LA (xxp - xy) + Z —F(ak 1)A sinxy
pak
= Pxxy - i ( ZkE)
FITX1X2 Xn+kZ_; I‘(ak+1) sm|(x; + 5
ta+2 ) tak(_l)k
= F(a n 2)x1x2 s Xy +SINXq é m
Forn=1,a1(x1) = -+ = a,(x,) = u > 0 and f(¢,x) = 0, then equation (0.3) turns out to be equation (1.1)

with the solution given in (1.2), which coincides with our results. Indeed,
1 * 20\, —ikx
u(tx) = 5 | (e ak
o taf w ~ tigl g2
_ i1.2j ikx
Zr(a]+1 2nf DRk dk = Zl“oc]+1)dx2]¢()

using the inverse Fourier transform

d2i
dx2i

T = o [ e

6. Conclusion

Applying several well-known fixed-point theorems and the inverse operator method, we studied the
uniqueness and existence of solutions to equations (0.1) and (0.2) by the implicit integral equation and the
Mittag-Leffler functions. In addition, we derived an analytic solution to the generalized fractional heat

equation with an initial condition. This new approach works for a wide range for differential equations
including PDEs, with variable coefficients and various initial or boundary conditions.
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