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Some combinatorial identities via Riordan arrays
and k-order Fibonacci matrices

Liming Zhang?, Xiqiang Zhao*"

?School of Mathematical Science, Ocean University of China, Qingdao

Abstract. In this paper, we investigate interesting relationships between Riordan arrays and k-order
Fibonacci matrices, which offer a unified approach to studying some lower triangular matrices, including
Fuss-Catalan matrices, harmonic matrices, and others. We present factorizations of Riordan arrays via k-

order Fibonacci matrices. Furthermore, based on matrix representations, we derive various combinatorial
identities.

1. Introduction

The Riordan arrays, first introduced by Shapiro et al. [9], have numerous applications in combinatorial
matrices and identities. Since their introduction, the theory of Riordan arrays has emerged as a major
research focus in combinatorial mathematics. Sprugnoli et al. [12] explored Riordan arrays and demon-
strated their utility as a practical tool to solve combinatorial sums through generating functions and the
Lagrange inversion formula. Wang and Wang [13] further advanced the field by introducing the concept
of generalized Riordan arrays. Subsequently, the relationships between generalized Riordan arrays and
generalized Sheffer sequences, as well as matrix factorizations of generalized Riordan arrays and their
applications, have been extensively studied. Numerous works have since expanded on these ideas, as seen
in [1-5, 15].

Let f(f) = Y.iso fit' be a formal power series in indeterminate £. A Riordan array (g(t), f(t)) is a pair of

formal power series with g(t) = Y.io git', f(t) = Lis1 fit', and go, fi # 0. It defines an infinite lower triangular
array [d; ;]; jen according to the rule

dij = [Flgt) f(tY.

Denote the set of all Riordan arrays by R. This set forms a group under matrix multiplication, where the
product of two Riordan arrays (g(t), f(t)) and (h(t), I(t)) is given by

(9(0), FONRE, 11) = (9(OCFE), 1F(E) (L1)

2020 Mathematics Subject Classification. Primary 05A15; 15A09; 15A15.

Keywords. Riordan array; k-order Fibonacci matrix; Combinatorial identities; Fibonacci numbers
Received: 30 December 2024; Accepted: 26 March 2025

Communicated by Paola Bonacini

* Corresponding author: Xigiang Zhao

Email addresses: 1mzhang330@163. com (Liming Zhang), xqzhao62@163. com (Xiqiang Zhao)

ORCID iDs: https://orcid.org/0009-0007-9617-6738 (Liming Zhang), https://orcid.org/0009-0007-7646-4855 (Xigiang
Zhao)



L. Zhang, X. Zhao / Filomat 39:21 (2025), 7427-7438 7428

The identity element of this group is I = (1,t), and the inverse of (g(t), f(t)) is (g(?l(t» , f(t)) . The Riordan array
(g(t), f(t)) can also be characterized by two sequences: the A-sequence (4;)ien and the Z-sequence (z;)ieN, as

follows (see [5]):

dop =1, dO,j =0 forj>1,
d,‘,]' = aod,'_l,]'_l + ald,‘_L]‘ + ﬂzdi_1,]‘+1 +--- for i,j >1,
d,‘,o = ZOdi—l,O + Zldi—l,l + sz;‘_Lz +--- fori>1. (12)

If A(t) and Z(t) are the generating functions for the A-sequence and Z-sequence, respectively, then it follows
that

f() = tA(f()),

g(t) = (1.3)

1
1-tZ(f()
Thus, (g(t), f(t)) is uniquely determined by A(t) and Z(t).
The Fibonacci number is one of the most well-known sequences and has numerous applications in
mathematics, computer science, statistics, and other fields. In recent years, Fibonacci numbers and their
various generalizations have been extensively studied in works [6-8, 14, 16].

The k-order Fibonacci numbers {Fﬁ,k)}neN are defined by
(k) _ (k) (k) (k)
F/=F_ +F.,+-+F", fornx2,
and F(lk) = 1,F£,k) = 0forn < 0. For example, when k = 2, {F;Z)},,E]N corresponds to the Fibonacci sequence

A000045 in the OEIS [10] and when k = 3, {Ff? )}HGN corresponds to the Tribonacci sequence A000073 in the
OEIS [10].
For any positive integer n, the (n + 1) X (1 + 1) k-order Fibonacci matrix F¥ is defined by

O ifi>
7:(’(),,: i—j+1 =7 i,7=0,1,...,n),
[F71ij 0 otherwise, & )
that is,
1 0 0 0 0 0]
1 0 o0 0 o0
PR 1 0 0 o0
ﬁk) = F(k) P(k) F(k) 0 0
4 3 2
: : 1 0
(k) (k) (k) (k)
| F n+1 F" anl F2 1 -

For example, the 3-order Fibonacci matrix and 5-order Fibonacci matrix are as follows:

(1 0 000 0 0] (1 0 000 0 0]
1 100000 1 100000
2 1 10000 2 110000
Fl=4 2 11000]| FP=[4 2 11000
7 4 21100 8 4 21100
13 7 42110 16 8 42110
24 13 7 421 1| 31 16 8 4 2 1 1|
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For any positive integer n, the (n + 1) X (1 + 1) inverse matrix L,Sk) = [li ]i jen of the k-order Fibonacci matrix
is

1 ifi=j,
(L9 =4-1 ifi-k<j<i-1, (,j=01,---,n).
0, otherwise,

Lee et al. [7] studied factorizations of the generalized Pascal matrix, the Fibonacci matrix, and the
Pell matrix. Zhang and Wang [16] presented a factorization of the Pascal matrix and derived various
combinatorial properties using the Fibonacci matrix. Kéme [6] investigated relationships between the Pascal
matrix, the Stirling matrix, and the k-order Fibonacci matrices. It is well known that many combinatorial
matrices, such as the Pascal matrix, Stirling matrices of both kinds, Fuss-Catalan matrices, and harmonic
matrices, are special cases of Riordan arrays. Therefore, by studying Riordan arrays through k-order
Fibonacci matrices, we obtain a unified approach to analyzing various combinatorial matrices.

The article is organized as follows. In Section 2, we explore the relationships between Riordan arrays
and k-order Fibonacci matrices. In Section 3, we derive several interesting identities related to k-order
Fibonacci numbers.

2. Factorization of the Riordan array

In this section, we investigate the factorization of Riordan arrays using k-order Fibonacci matrices. Let
(9, f)n denote the submatrix consisting of the first # + 1 rows and columns of the Riordan array (g, f).

Definition 2.1. Let R, = (g(t), f(t))» = [di;lij=01,...» be a Riordan matrix. For n € N, the (n + 1) X (n + 1)
matrices quk) = [mj;lij=01,..n and ij‘) = [nili j=01,..,n are defined by

k

M)y = myj = dij — Z di-sj, (2.1)
s=1
k
NP = nij=dij— ) dijes. (2.2
s=1

Lemma 2.2. We have

n k

quk) = {Z (di,O - Z dis,O] ti/ f(t)] ’ (23)
i=0 s=1 n
n k

N = [Z (di,o -y di,s] t, f(t)) : (2.4)
i=0 s=1 n

Proof. The generating function of the first column of MY is
k
Z (di,o - Z di—s,o] .
i>0 s=1
For i, j > 1, the recurrence relation holds:
Mij = A1Mi-1,j-1 + axMi—1,j + -+~ + Bix jy1Mi-1,i-1,

where (a9, a1, . . .) is the A-sequence of the Riordan array (g(t), f(¢)). Using (1.2), quk) is a Riordan matrix and
satisfies (2.3).



L. Zhang, X. Zhao / Filomat 39:21 (2025), 7427-7438 7430

Similarly, the generating function of the first column of N is

Z (d,',o — i d,‘,s] £,
s=1

20
For i, j > 2, the recurrence relation holds:

Njj = A1Mi-1,j-1 + A2Ni-1,j + - -+ + Biy j+1Mi-1,i-1-
Applying (1.2) again, we obtain (2.4). [

Now, we can give the factorization of the Riordan arrays via the k-order Fibonacci matrices by the
following theorem.

Theorem 2.3. Let MY and N be the matrices defined in (2.1) and (2.2), respectively. For the Riordan array R,
and the k-order Fibonacci matrix 7—“,,(}‘), we have

R, = 7MY,
R, = NOFD)

Proof. Since the matrix ij‘) is the inverse of Tn(k), let us prove the equation quk)Rn = M;k). Since lp; = do; = 0
fOI‘j > 1, then ZZ:O lo/sds,o = l0,0d0,0 = do,o = mo,, ZZ:O lo/sds,]' = lo/odo/]' =0= Mo, j fOI'j > 1. Since 11,]' =0 for
j=2,lp=-1and iy =1, we have Y.._ i sdsp = dig — dop = m1p. By (2.1), we have Y."_ I;sds o = m;g for
i=2,3,---,n.

Next, we consideri > 2and j > 1. From (2.1) and the recurrence relation of m; j, we have Y.\_ l; s j = m; ;.
Therefore, we have LR, = M®.

Similarly to the preceding process, we can also prove R, = N,(f)?‘n(k). O

Using Theorem 2.3, we have the following corollary.
Corollary 2.4. For 1 < j <1, we have

i k
— (k)
dij = Z L (dlrf - Z dl—SJJ ’ (2.5)
=

s=1

i

k
— (k)
dl,] - Z [dl,l - Zl di,l+5 Fl_]'+1' (2.6)
s=

I=j

Let I, be the identity matrix of order n + 1, and let Ly be the (k + 1) X (k + 1) lower triangular matrix as
follows:

10 0 0 0
110 0 0
101 0 0
L=|11 0 0 1 0
100 - 0 1]

SetS; = Li1®1,1=0,1,2,---. LetGo = 1, G1 = [,-1®L1, Gy = I,0®Ly, G3 = [,_3®L3, - - - Ggy1 = L—j—1®Lgs1,
and, fork+2 <1 <n, G = I,.; ® Sj_k-1. In particular Sg = Li41 and G, = S,—¢—1. In [8], the authors gave the
factorization of the k-order Fibonacci matrix as: ﬁk) = GyG1GyG3 -Gy,
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For k > 2, we define (n + 1) X (n + 1) matrices H,Sk), ,(qk) and E,Eby

doo 0 0 0 -~ 0 0]
di,0 —dop fi O 0 0 0
dro—dio—doo fo S 0 0 0
H® = : R 0 0
do-Yi dio fi fir fia
: : : S fi 0
| do—Yiadio fu fo fa2 0 o fil
doo 0 0 0 0 0
dio—dia An 0 0 0 0
dro—dr1—dop fo fi 0 0 0
® _ : A 0 0
do-YE d Ko o fio
: : : Do fi 0
| do-Yilidi fu fia fa2 o fo fil

Hi=loHYandJ; =, & J".
Lemma 2.5. We have
quk) = ITInITIn—l " ‘Hzﬁlﬁo, (2.7)
N:(qk) = 7n7n-1 e ‘727170- (2.8)
Proof. We obtain (2.7) and (2.8) by using Lemma 2.2 and the definition of the quk) and Nf,k). O

Theorem 2.6. For the (n + 1) X (n + 1) Riordan matrix R,,, we have

R, = ﬁ G; ﬁﬁn—i = ﬁjn—i ﬁ Gi.
i=0 =0 i=0 i=0

Proof. By virtue of Lemma 2.5. [

Example 2.7. The Catalan numbers, C; = ﬁ(m;’l), a sequence of integers that occur in many counting
situations. The generating function of the Catalan numbers can be written as C(t) = Y.;5o Cyt' = 1_2— ‘}_‘”.
The Fuss-Catalan numbers [4] are defined by

Foli,r) = — (mifrr).

mi+r i

For m = 2,r = 1, the Fuss-Catalan numbers are Catalan numbers. The generating function F,(t) for the
Fuss-Catalan numbers {F,,(i, 1)} satisfies

r o (mi+r)
Fm(t)rzzmﬂr( i )tl'

i>0

The Riordan arrays (F,,(t), tF,,(t)") are called Fuss-Catalan matrices. Particularly, (F»(t), tF2(t)) = (C(t), tC(t)),
(Fa(t?, tFa(t?) = (C(t)2, tC(t)?) and (Fa(t), tFa(t)?) = (C(t), tC(t)?). Setting k = 3, from Theorem 2.3, we have
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5, we have

Setting k

0
0
0

0
0
0

0
0

0
1

[ 42 90 75 35 9 1

14 28 20 7

}

coo0 o O —
| S —
cCoOo OO — OO OO
co oo w® cCo o A — A
I~ OO —H — N <H
coo—vy
O — — N <f ®©
co—-w X
— — — <09
012559 _—
14 5_|_
o coocoo—
oo —1& &
O OO0 O — ®
~~—
| e | ~
0, To)
cococo— X oo =0
—
OO OO + [ =)
S oco==+dg
coo——A 18
+ &
Co- A o OTNOoq
~,~—
o~ = oo T o
— NS ae
112481@5 [ |

(corcar),=| 2 5 3 9

= (1-22 - 10 - 42¢* - 168¢°, tC(t)2)5 7

The general element of the (F,,(t)7, tF,(t)") is F;u(i — j, p + jr). By Corollary 2.4, we have

|

k
Full=jp+jr) = ) Full=s—j,p+jr)
s=1

|

i—-1+1

(k)

Y
=

Fu(i=jip+jr)
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i
= [ m(i—1Lp+Ir)— ZFm(z—l—sp+lr+sr)] js1°
I=j s=1
In particular, if m = 2,p = 1 and r = 1, we obtain

j+1 2i—j+1_zi:F(k) jt1 (A1) ¥ j+1 [20-s)-j+1
2i—j+1\ i-j ) & 2A-j+1\ I-j = 2l=s)—j+1\ I-s5—j

I=j
=i I+1 (2i-1+1 Z l+s+1 (2i-1-s+1\) 0
= 2i—1+1\ i+1 2i—-1-s+1 i+1 =

Ifm=2,p=1andr =2, we have

2j+1(2i+1\ o o (27+1(20+1) v 2j+1 [(2(0-s)+1
2i+1(i—j)_IZ_;F”” 20+1\1—j Z2l—s)+1 I-s—j

s=1

v (2e1p2ien Zk‘21+2s+1 2i+1 )| oy
= 2i+1\i-1 2i+1 \i—=Il-s]| Fi+1

s=1

If m=3,p=1and r =1, we obtain

. . . i . k .
.]+.1 31—‘2]‘+1 =ZF(-I:) ]+'1 -2j+1 Z ]+1 3(l—s)—2].+1
3i-2j+1\ i-j S il 31—2]+1 l— 3(l-5)-2j+1 I-s—j

I=j
_Z I+1 (3i-2[+1 Z l+s+1 3i-2l-2s+1 20
3i—20+1\ -1 3i—-21-25+1 i-l-s l=j1t

Example 2.8. The harmonic numbers are defined by
n

1
HO:OandHn:ZT, forn=1,2,---,
1=1

and the generating function of the harmonic number is W The following generalization of the harmonic
number can be found in [3, 11, 15].

n
k k 1
HY = 0and HY = 2 5 form k=1,
=1

1 n
0_ k _ k-1
H, = - and H; = ZE_l H™, forn, k> 1,

H(n, k) = Z 1 forns1k>o0.

n n ... n
1<no+ny+--+m<n 0™ k

Letting A = (#1;;), —In(1 - t)) and B= (%, ﬁ) be two Riordan arrays. Then, the general element of

the Aand Bare H(i + 1, j) and H respectively. Setting k = 3, from Theorem 2.3, we get

+1’
1 0 0 0 0 0
3/2 1 0 0 0 0
A | 16 2 1 0 0 0
7| 25/12 35/12  5/2 1 0 0
137/60 15/4 17/4 3 1 0
49/20 203/45 49/8 35/6 7/2 1
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1 00 0 0 0 1 0 0 0 0 0
1 1.0 0 0 O 1/2 1 0 0 0 0
1211000 ~2/3 1 1 0 0 0
14 2 1 1 0 0 -27/12 -1/12 3/2 1 0 0
7 4 2 1 1 0 -47/15 -13/6 3/4 2 1 0
13 7 4 2 1 1 || -45/12 -187/45 -13/8 11/6 5/2 1
:T;3)(1+%t %tz %9—%#—?—29 ~In(1 - t))5
1 0 0 0 0 0 1 0 0 0 O
1/2 1 0 0 0 0l 1 1000
_ -7/6 1 1 0 0 0 2 1 1 0 O
- -13/3 -7/12 3/2 1 0 0 4 2110
-523/60 -9/2 1/4 2 1 0 7 4 2 1 1
| —5047/360 —3941/360 -101/24 4/3 5/2 1 13 7 4 2 1
=(1+%t—£t2—§t —% —%407#”’ ln(l—t))sfff).
If k = 5, we obtain
1 0 0 0 0 0
3/2 1 0 0 0 0
B —| 1/6 5.2 1 0 0 0
57| 25712 13/3 72 1 0 0
137/60 77/12 47/6 9/2 1 0
| 49/20 87/10 57/4 37/3 11/2 1
1 0 0 0 0 0 0 0 0 0
1 10000 1/2 1 0 0 0
211000 -2/3 3/2 1 0 0
14 2110 0| -27712 5/6 5/2 1 0
8 4 2 1 1 0| -62/15 -17/12 10/3 7/2 1
| 16 8 4 2 1 1 || -75/12 -111/20 -23/12 41/6 9/2
s 1, 2, 275 62, 755 t
=R (14557 5 5 B Tk
1 0 0 0 0 0 1 000
1/2 1 0 0 0 0 1 100
| -5/3 3/2 1 0 0 0l 2 110
“| -27/4 -1/6 5/2 1 0 0l 4 211
-262/15 —-83/12 7/3  7/2 1 01| 8 4 21
-118/3 -1463/60 -55/12 35/6 9/2 1 || 16 8 4 2
B 1, 5, 27, 202, 1185 t o)
_(Hzt 3t 1! 15 3t’1—t)59r5'

By using Corollary 2.4, we have

H(i+1,j) = Z
:Z
)

I=j

j+1
Hz j+1

k
B [H(l +1,0)= Y Hl=s+1, j)]
s=1

k
[H(i +1,0)- Y Hi+1,1+ s)]Pl(k)]+1,
s=1

k
(k) j+1 j+1
Fz 1+1 [Hl —j+1 ZHZ 5— ]+1}

s=1

__, 0000

_ 0O o0 oo

_ o OO oo

7434
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i
_ I+1 T+s+1 (k)
- [Hz 1+1 ZHZ I- s+1]FI j+1°
I=j

In particular, if j = 0 get

His = Z Fz I+1 (HIH - Z H- S+1] -
I=j
i k
_ 1+1 J+s+1 (k)
Hi+1 = Z [H,+1+1 - Z Hz+?+s+1]Fl+1

I=j s=1

i

k
(H(z+1l Y HG+1,1+9)|FY,
s=1

The generalized Riordan array with respect to the sequence {cilien is a pair (g(t), f(t)), where g(t) =
Yisogit'/ci and f(t) = Y., fit'/c; with go, fi # 0. It defines an infinite lower triangular array (d;;); jen
according to the rule

i j
dij = [Z—] g(t)&,

i Cj

where g(t)f(t)//c; is the generating function of the j-th column. By definition, the classical Riordan arrays
correspond to the case ¢; = 1, and the exponential Riordan arrays correspond to the case ¢; = i!.

It is straightforward to verify that Theorem 2.3 and Corollary 2.4 also hold when the Riordan array is
replaced by a generalized Riordan array with respect to c,. Consequently, a broader class of combinatorial
matrices can be factorized using k-order Fibonacci matrices. Asaspecial case, the Riordan arrays (1, log(1+t))
and (1,¢' — 1) with respect to ¢; = i! correspond to the Stirling matrices of the first kind and second kind,
respectively. Matrix factorizations of these have been studied in [6]. Additionally, similarly to Example
2.7 and Example 2.8, we can derive numerous combinatorial identities from their matrix representations.
However, we have chosen not to present them here.

3. Identities related to the k-order Fibonacci matrix

In this section, we derive some identities involving the k-order Fibonacci numbers. By setting the
Riordan matrix (g(t),t) = [d;;] and j = 0 in (2.5), we obtain the following theorem.

Theorem 3.1. For a sequence {g,} = {go,91,---,Gn,- ..} with g, = 0 for n <0, the following identity holds:

k
In —ZFW 1 {91 Zgz-s]- (3.1)
s=1

By choosing different sequences in (3.1), we can derive interesting identities related to k-order Fibonacci
matrices. For example, if g, = 1, we obtain

n-2
1=F0 =Y @+ DFY . <k, (32)
=0
k=2 "
k k K
L= E, - Y0 k) Y L s -
1=0 I=k+1

Corollary 3.2. We have the sum of the first n terms of k-order Fibonacci numbers are

n F(k ZF(k) -1
Zpgk) n+1 Z‘lkl 171 —k+i+1 , (Tl > k) (34)
=1
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In particular, setting k = 2,3,4,5, we have

n
Y Fi=Fia-1, (n22),

d S
ZF§3) % (n>3),

1=1
" FO +2FP + FY -1
ZF§4) n+2 3 n—1 . (>4
=1
n FO 4+ 3F +2FY + FO 1
Z F§5) _ T n2 : n—2 , (n>5).

1=1
Setting g,, := n" in (3.1), where 7 is a nonnegative integer, we derive the following theorem.

Theorem 3.3. For each integer r, we have

q -1
g = Z r=Y i |E9, q<h), (3.5)
I=1 i=1
k -1
q = Z l’—zl’ ;)m + Z (zr Z(z ]F‘q Ly @>5), (3.6)
=1 i=1 I=k+1
n n -1 (k) k=1 (k)
F + iF -1
q = Z I — i | =2 Liz1 o ln —k+i—1+2 <k, 57)
q=1 I=1 i=1
k (k) (k)
y ’:er— i’ F”I+2+Z’11Fnk+zl+2 1
q=1 7 =1 i=1 k-1
n k (k) (k)
+ Z LiF -1
+ Z [lr Z r] n=I1+2 1k1 1n —k+i—142 ) (1’[ S k) (38)
I=k+1 =1

Proof. (3.5) and (3.6) are direct consequences of (3.1). We now prove (3.7) and (3.8) by using (3.1) and (3.4).
If n <k, we have

n

=

9

-1
r_ r 7| )
= E [l - zJFq_lH
q=1 g=1 I=1 i=1

n-1 n-2
F® 42 -1 Z O+ -27-1)) O+
= =1

-1 (k) (k)
Ir— Z lr] Fn [+2 Z‘l 1 ZFn k+i—1+2 -1
i=

I
I =
—_
P
=
N
|
- =
1 |
- —_
~.
3
N——or
g
—_

n

k-1

11
N

I=1

If n > k, we have

n k q -1 n k -1 k
qu ZZ( lr] q-1+1 Z [Z[ erJ q-1+1 Z [lr - Z(l_i)r]F;k—)m]
q=1 g=1 I=1 i=1 g=k+1\ I=1 i=1 I=k+1 i=1

n+k n+k—1

FO 42 -1) Z F® 4 Zk:
=1

=1
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k=1 n+1 k n n-1
+ [k’ -y i*] F® 4 [(k +1y -3 ir] Y FO 4t [(n)f -y i’] F®

i=1 i=n

1
k 1-1 (k) k=1 (k) k=1 (k)
— Z Ir— i Fn 142 Z‘ ZFn k+i-l+2 + Z Z r n l+2 +Z an k+i—1+2 -1
- k-1 k-1 ’

I=k+1 i=

This completes the proof. [
Setting k = 3,4 in Theorem 3.3, we have the following corollary.
Corollary 3.4. We have

g =2FD +@ -2, + FO, + Z —(=1y =(-2 -(-3FY, ., (G23), (3.9)

=

3 -1\, ® n I I
g = Z[ly 3 i’] ne143 Zn 41— + [lr Z(l 1)] n-l+3 2”‘l+1 , @m=3), (3.10)

1=4
4
qrzzrp(4> +@3 - 2r)p4)2+(4r 3 _ 22)1:(4) +p(4) Z[ Z ] o417 (g=4) (3.11)

i=1
4 -1 (4) (4) (4)
r Z = i Fn 1+3 + 2Fn I+1 + Fn—l —1
3

=

n—1+3 n—I+1

3 7

n 4 FO L +2FY +FY -1
' i (n > 4). (3.12)

Corollary 3.4 gives the following special case.
Corollary 3.5. For n > 3, we have
(3) ®) ’ ()
g=F) +F + ;(6 -2FY (3.13)
=4

n-3 ®) (3) ®) (3) (3
F +4F" +F +7F” +3F", —6n—14

1=1

Proof. (3.13) follows from (3.9) by letting r = 1.

(3.14)

O F(s) _ o e _q

n (3) (3)
_ n(n + 1) n+2 +F, -1 Fn+1 n 1+3 Fn—l+1
Z qg= 5 5 + + 2(6 21) 5

g=1

FO L9 _1 O F(3> _

_ n+2 n+1 3)
= 5 + + 3 Z o

(3) (3)
Zl(Fn s HE) = ) B =)
1=4

F(3) +4F® + FY) +7F® 43k —en-14 5 -1
_ Tuea n n-1 T 903 _Z(l+3)(F;(13-)z-z VEO 4 n(n—-1)

2

Hence we have (3.14). O
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Conclusion

In recent years, matrix factorizations of combinatorial matrices have become an attractive topic in
mathematics. Several authors have studied relationships between combinatorial matrices, such as Pascal
matrices, Stirling matrices of both kinds, and Fibonacci matrices. In this context, our study provides a new

generalization of some results in the literature. For example, when the Riordan array (g(t), f(t)) = (ﬁ, ﬁ),
we recover the results in [6]. If we set k = 2, we obtain the results in [14]. Therefore, this study contributes
to the literature by offering a unified approach to combinatorial matrices and identities.
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