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Abstract. This paper establishes sharp bounds for Hermite-Hadamard inequalities within the framework
of g-calculus by employing g-integrals. To achieve this, the Jensen—-Mercer inequality, a generalization of
Jensen’s inequality, is utilized with multiple points to derive new and more precise bounds for g-Hermite—
Hadamard inequalities. Previous results in classical calculus focused on convex functions and were limited
to two points in Jensen’s inequality. By extending the analysis to general points, this work broadens the
applicability of these inequalities. The inclusion of left and right g-integrals presents challenges due to
the generalized values in the Jensen-Mercer inequality, which are addressed by dividing the analysis into
distinct cases. The ability to refine bounds using general points in Jensen-Mercer inequality is a significant
outcome, as it unifies and extends many classical results by taking the limit as ¢ — 1~. Numerical examples
highlight the effectiveness of this approach, demonstrating that utilizing more points in Jensen-Mercer
inequality produces sharper bounds for different values of g-parameter lies in (0, 1) .

1. Introduction

The Jensen’s Inequality (JI) has a big role in pure and applied mathematics. Particularly probability
theory, JI is useful in establishing bounds for variances and expectations [1]. In optimization theory, JI
is useful in algorithms involving gradient descent method [2] and in information theory is helpful in
establishing inequalities involving mutual information and entropy [3]. The applications of JI can be found

in mathematical analysis and economics [4H7]. The ]I is defines for convex function over an interval [, M]
as:

f Zw]-x]- Sijf(xj), (1)
=1 =1

where w; € [0,1], Z'}zl wj=1and x; € [m,M], j =1,2,3,...,n. An extensions of inequality (1) can be found
in [8].
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Mercer [9] also extended to inequality (1) and give the following inequality for convex function defined
over an interval [m, M] :

f[m+M—ijxj]sf(m)+f(M)—Zw]-f(xj), 2)

=1 j=1

where w; € [0,1], Z]’Ll wj=1and x; € [m,M], j =1,2,3,..,n. The inequality @ is known as Jensen—-Mercer
inequality and some extensions of this inequality are also given for convex and general convex functions
in [10, 11].

In [12], the authors gave a new extension of the single inequality (2) in the form of double inequality for
a convex function f over an interval [m, M] which is defined as:

=1

Famy+ £ M) =Y wif (x)),

=1

IN

where g* = Z’;:l wix;, wj € [0,1], 2}7:1 wj=1landxj€[mM],j=1,2,3,.,n

From inequality (3), one can observe that there is another term lies between left and right part of the
inequality (2). These findings are very interesting and significant in the field of convex analysis. The
inequali may get more sharp bounds a compare to the inequalities (I) and (2).

InJI(l),if wesetn =2, wy =w, = ;, x1 = mand x, = M, then we have the following inequality:

M
A2 < s [ poe< L TOD @

The inequality (4) is know as Hermite-Hadamard inequality. This inequality has many applications in
different areas of mathematics particularly in the field of error analysis of numerical integration [6} [7].

The following extensmn of the inequality (#) was given in [13] by using the Jensen-Mercer inequality
.w1thn =2,w =wy =5 Landx; < x;:

©)

F - 122) 1 f’”M )+ f )

) S L f@dus fom s f .

The inequality (5) is convertible to @) if wesetx; = mand x, = M.

In [12], the authors used the double inequality (3) and proved the following more general Hermite—
Hadamard inequality:

m+M—x;

fm+M-a)< Y wj f fluydu < f m)+ £ (M) = ) wif (x). 6)
j=1

=1 a - x] m+M-a*

The inequality (@) is convertible to ifwesetn =2, w =w, = % and x; < x. One can easily understand
that the double inequality (6) is generalization of both inequalities (#) and (5).
The authors of [12] also proved the following inequalities by using the double inequality (3):

fm+M-a) < Zw]f(m+M—a+x]) )

ZU] m+M-x;

n

< ),
a —x;
j=1 !

f(w)du

m+M-a*
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< fom+ =) wif(xy),

=1

and

T B s
j=1 j=1 ] % j=1

The inequalities (7) and (8) are very interesting because with the help of these inequalities we can get more
sharp left bound as compare to the (#)-(6) which is the main motivation of establishment of (7) and (8).

On the other hand, g-calculus, also known as quantum calculus, is a generalization of classical calculus
that eliminates the concept of limits, replacing them with g-differences and g-integrals. It is built on the idea
of g-numbers, which depend on a parameter 0 < g < 1 that interpolates between discrete and continuous
mathematics. Widely applied in number theory, combinatorics, and mathematical physics, g-calculus
provides a flexible framework for analyzing systems with non-uniform scaling or fractal-like structures.

We have the following two widely used g-integrals:

Definition 1.1. [14] [15] Let f : [m,M] — R be a continuous function, the left and right quantum integrals for
g€ (0,1)are

ETaf @) = (1=q)(c—=m) ) q"f (g"x + (1 = q")ym), x € [m, M]

n=0
and
FTnf = A-q) M=) ) " (@"x+ (1= q")M), x € [m,M]
n=0
respectively.

g-calculus finds different applications in many areas of mathematics and physics. The application of
g-calculus has given in numerical integration formulas. The error bounds for midpoint and trapezoidal
formulas for convex functions in g-calculus are proved in [16H19]. The error bounds for the Simpson’s
formula for convex functions are established in [20, 21]] and the error bounds for the Newton’s formula for
convex and general convex functions can be found in [22}23]. For more results regarding the error bounds
for numerical integration formulas, one can consult [24H26] and references cited therein. A g-version of
Hermite-Hadamard inequality can be stated as:

f(m) + f (M)
5 .

f(m+M

2 )S 2(M1— ) [75.f ) + RT3 f (m)] <

©)

The following two g-variants of Hermite-Hadamard-Mercer inequality (5) are proved by Kara and
Budak in [27]:

f(m P M- q"f:q"z) (10)
1
= H L‘j(qm+M—xz)f (m +M - xl)
< fom+fon - LD
f (m M- xlliqf) (11)
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1
= X2 — X1 R]fm+M—xl)_f (m+M—x7)
< fon+ g - LD

Remark 1.2. For the limit of g — 1~ in (10) and (T1), we obtain the inequality (5).

To the best of our knowledge, Hermite-Hadamard-type inequalities in the context of g-calculus, derived
using g-integrals and generalized through the Jensen-Mercer inequality (7), have not been established so
far. The newly proposed inequalities not only generalize existing results but also provide sharper bounds
compared to their classical counterparts. These inequalities allow for improved lower and upper bounds
by incorporating varying g-parameters and the number of points 7 in the Jensen-Mercer inequality (7).
Numerical examples for different values of n and the g-parameter highlight the validity and efficiency of
the proposed approach.The motivation for these results lies in the growing importance of g-calculus as
a versatile tool in mathematical analysis, particularly in extending classical and fractional frameworks to
more generalized settings. Traditional Hermite-Hadamard inequalities are often restricted to convex func-
tions and specific points, limiting their applicability. By employing the Jensen-Mercer inequality @ with
generalized points, this work aims to address these limitations and provide sharper, more comprehensive
bounds. The refined inequalities not only unify existing results but also offer new insights into error analysis
and numerical integration, demonstrating the practical relevance and mathematical elegance of g-calculus.

The organization of the paper as follows: The Section 2 derives three new inequalities of Hermite—
Hadamard type inequalities for Riemann-Liouville fractional integrals via double inequality (3). In Section
3, we establish an integral identity firts and then prove the general error bounds of numerical integration
formulas for convex functions. Section 4 devoted for the numerical examples to show the validity and
efficiency of newly established inequalities in Sections 2 and 3. We conclude the whole work in Section 4
and give some future directions.

2. Main Results

In this section, we derive new Hermite-Hadamard and Mercer-type inequalities for general values of n
using a modified version of the Jensen—-Mercer inequality with g-integrals. These results hold substantial
importance in g-calculus, as they necessitate careful attention to the definitions of left and right g-integrals,
which are influenced by the relationship between a* and a’s. A detailed discussion of these relationships and

their implications will be presented in this section to provide a deeper insight into the proposed inequalities.

Theorem 2.1. Let f : [m,M] — R be a convex functons, then we have the following double inequalities:

1. Fora; < a* < ajy witha* # a; foranyi = 2,3, ..., n—1. Next, we get the following inequalities for a; < a* < a1

1

fm+M-a) < Z _Y [Lj(qurM_w)f (m +M-— ﬂj)] N
j=1 (zz* - g]-)
n w] . B
+j;1 (a]- — a*) [ j(m+M_a*)f (m + M ﬂ]>]
< f(M)+f(M)_ijf(11]-),
j=1

2. If wj1 = wj for every j and a* = a;, which is only feasible for odd n when a;s has same distance, then

f(m+M—a*)—wnT+1f(m+M—a*) (13)

n=1

R

= (- )
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n L - -
+J’=Z”:§3 (“j —a*) [ Tnim-enf (m+M a])]

< f(m)+f(M)—w%lf(m+M—a*)—waf(af)/
j=1

n n
wherea” = Y, wjaj, a,a; € [m,M] witha; > aj1, w; € [0,1] and }, w; = 1.

=1 =1

Proof. With the convexity of f, we have

f Zn:wj (m + M- ((1 —Ha* + taj))

fm+M-a") =
=1
< iwjf<m+M—((l—t)a*+taj))
=1
= iw]-f((l—t)(m+M—a*)+t(m+M—aj))
j=1
< Zn:wj[(l—t)f(m+M—a*)+tf<m+M—aj)]

—_

j

=

< Y [A=D(F o+ FO)= @)+t (F )+ £ )= £(a)].

j=1

By the definition of a*, we have

=

fm+M-a) < wjf<m+M—((l—t)a*+taj))

—.
—_

= |

= w]-f<(1—t)(m+M—a*)+t(m+M—aj))
j=

Fm)+ £ (M) = Y wif (a)).
j=1

—_

IA

Applying g-integral on both sides of (I5), we have

n

fm+M-a)

IA

=1

f(m) + f (M) - ijf(ﬂj)-
=1

IA

Because of the definition of a*, we have the following cases:

1
ijfo FA=D0m+M=a)+t(m+M=a))) dyt

7199

(14)

(15)

1. Itis usually the case that a, is more than a* and 4, is smaller than a* but for any i = 2,3...n — 1, there is

a chance that a* # ;. In this situation, for a; < a* < a,,1, we have
i w;
fm+M-a) < ) | ET0 oo (m+ M = a))

= (v -a)
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n w]
j=it1 (ﬂj - 11*)

< fm)+ fF) =Y wif (a).
j=1

+

[R (m+M—u*)f (m +M- a])]

2. When a’s has uniform mesh with w;_; = w; for every j, there is a chance for a single value a* = a; for
odd n. That specific value is 4.1, then

f(m+M—a*)—w%f(m+M—a*)

n-1
2

w:
< ; (a* _]g].) [Lj(qurM_W)f (m +M— ﬂj)]
n w:
+ ]:Z:% (a]- _] a*) [RJ(C’WM,W) f (m F M- aj)]

IA

£ )+ f M) = was f (m+ M=) = Y i f (a))
j=1

Thus, the proof is completed. [J

Remark 2.2. Withn =2, w; = w, = % withay = x1 and a; = x; in Theorem we have

f(m+m——x1+x2) (16)
1
2(x2 —x1) [ngmeM—%)f(m M=)+ Rjgmwf—%)f(m + M- XZ)]
< fom+ pony - LOEIW),

These inequalities are already proved in [27, Theorems 5 and 6].
Remark 2.3. With q — 17 in Theorem 2.1} we reattain the inequality (6).

Remark 2.4. It is important to mention here that one can establish different new inequalities for different values of n

and w}s in Theorem

Example 2.5. Consider the function f : [1,5] — R such that f(x) = X3 and let n = 3 with wy = wy = w3 = % and
a1 =2,a; = 3 and a3 = 4. Then we have a* = 3. Unther these assuption, we obtain

f(m+M—a*)—w%f(m+M—a*)
= fB)-waf@)

2
= 3/
= 18

and

F(m) + £ (M) = wass f (m + M =) —ijf(a]-)
j=1

= fD)+fG)-wfB) - wa'f(“f)
j=1
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27 8+27+64
= 126-L -T2 1T
2 3
_ 1
= =

We also have

n=1
2

.
]
—_
P

a* —{Il]‘)

[ T (M)

+ Y S Ry f (m+ M=)

7 (=)

- W Lqigg_ ws R ape
= (3_61) j3f(6 a1)+(ﬂ3—3) jgf(6 ﬂ3)
1
= S|+ "gir @)
1 27 9 1 27 9 1
= |2+t 2 - — - —
2 [ (21, 8], [4] (21, 3], [4]q]
9
= 27+ —.
(3,
Then the inequality reduce to
9 159
18 <274+ — < —.
Bl, = 2
That is,
-9 < i < E
Bl, ~ 2

It is obvious that the inequality is satisfied.

Theorem 2.6. Let f : [m,M] — R be a convex functons, then we have the following double inequalities:

7201

(17)

1. Fora; < a* <ajq witha* # a; foranyi=2,3,..,n—1. Next, we get the following inequalities for a; < a* < a1

w:
Z Z(a*—iaj) [LJZ,HM_W)f (m +M - aj) + RjgnﬁM—aj)f (m+ M — a*)]

+M—n”)f (m +M - a]) + ngm+M7ai)f (m +M-— {Il*)]

fm+M-—a’)
< Zn:w;'f(m+M—a“2raj)
=1
g i
=1
- wj R
+j=i+12(”]'_“*)[j(m
f(m+M—a*)+iwjf(m+M—aj)
< ]:21
< f(m)+f(M)—Zw/’f(ﬂj)-
=1

(18)
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2. Ifa* = aj which is only possible for odd n when a;.s has equal distance and w1 = w; for every j, then

fm+M—-a’) - A%UW+M—M+f@+M mﬂ] (19)
< Zw]f(m+M—a+a]) T1[f(m+M u)+f<m+M—aTl)]
- w; )
< jzlm[jm+Mu)f(m+M—aj)+Rjgm+M_aj)f(m+M—a)]
n w;
' J'=Z§3 W [ j"“fM -a )f (m +M - aj) + ngm+M—af)f (m + M = a*)]
f(m+M—a*)+iwjf(m+M—a,)
< ]=21 %[f(m+M—a)+f(m+M a%)]
< f(m)+ f(M) - EZwJa] — W [fm+ M=a)+ f(m+M=au)],

n n
wherea* = Y, wjaj, a*,a; € [m,M]witha; > a;_1, w; € [0,1] and }, w; = 1.
i=1 =1

Proof. From convexity of f and a*,a i € [m, M], we have

f@+M—f;%) (20)
S f(m+M—(ta*+(1—t)a]~));-f<m+M—((1—t)a*+taj))

f(m+M—a*)+f(m+M—aj)
< 5 .

g-Integrating over [0,1], we have

o= T52) < 4] sl 0-00) s

+j(; f(m+M—((1—t)a*+ta]-)) od,,t]

f(m+M—a*)+f(m+M—aj)
5 .

Because of the definition of a*, we have the following cases:

<

1. The a, is always greater than a* and a; is always less than a* but there is possibility of a* # a; for any
i=2,3..n—1, then for a; < a* < a;;1, we have

a+a;
Zw]f(m+M— ) (21)

i w;
* Do [ s1-0) e

fW+M—ﬂ]
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S L TR

* m m+M-a
j=i+l 2(ﬂj —a )

fm+M—-a")+ iw]f(m+M—a,~)
j=1

i)f(m+M—a*)]

<

2
2. For the case a; = a*, we follow the same method used in Theorem 2.1]and we have
- a+a;
Zw]-f m+M - > (22)
j=1
—Wia [f(m+M—a*)+f(m+M—a%)]
n=1
S .
: 2 ( * . [Lj(qmﬂ\/f—ﬂ*)f (Wl +M- ﬂ]) + qum+M—ﬂj)f (m tM-a )]
A a])
- wj R A *
+ —2(11- —a*) [ j(m+M_at)f(m+M—a]) + jm+M_aj)f(m +M-a’)
= 20
fn+M=-a)+ Y wif (m+M-a))
j=1 .
< > —wnTu[f(m+M—a)+f(m+M—anT+1)]
Now, it is easy to understand for a convex function f
(m+M—a’) = Z Mo 23
f(m a) = f L wj|m > (23)

1 a+a;
< Zw]-f(m+M— 5 ])

=1

and by definition of a*, we have

fm+M—-a")+ iw]-f(m+M—aj)
j=1

: 24)
Fm) + £ (M) ilef (a)) + f () + £ () - il w,f (a))
j= j=

IA

2
Fomy+ f =Y wif (a).
j=1

Thus, we obtain the required results by combining the above inequalities. [
Remark 2.7. If we set the limit as q — 17 in Theorem 2.6} then we recapture the inequality (7).

Corollary 2.8. Ifwesetn =2, wy = w; = % witha; = x1 and a, = xp in Theorem then we have the following
new inequality:

X1+ X2
f(m+M > )

Ll
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b g i
- Z(xz—xl)[j(m+M,¥)f(m+M x1)

qu

(m+M-

X1+ X2
jm+M X1) f(m+M_ 2 )]

;1+x2 f(m+M_x2)+ qu

X1+ X2
m+szf(m+M_ )

2

IA

%[f(m_i_M_x1;—xz)_l_f(m+M—x1);f(m+M—x2)]

< fom+fon- 120

These inequalities are also new in the literature and extend the results of [15]27]].

Example 2.9. Consider the function f : [1,5] — R such that f(x) = x* and let n = 3 with wy = 3, w, = w3
and a1 = 2, a, = 3 and a3 = 4. Then we have a* = % Unther these assuption, we obtain

D=

o1 -1(3)-%

Z“w]f(m+M—LZ +a])
- §f (Z)+8f (Z)*%f (14—1)
595

48”7

fm+M—-a)+ iwjf(m+M—aj)
=1

2
- Pl Crws o+ o)
- % S(Gars o0
301
SEEUY

and
Flmy+ £ M) =Y w;f (a)
j=1

2 1 1
= 1425- (3 Q@+ f O + 21 @)
15
=
On the other hand, since a; < a* < ap, we have

i

Z L) [qum+M —a) f(m +M- 11]) qu

]12(&1 —a; (m+M-a))

fm+M—m]
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n

ZU' *
+]l+1m[jm+M a)f<m+M—ﬂj)+Lj(qm+M_a/)f(m+M—g)]
- W[L i 01+ M=)+ KTD L F e M=)

L *
*ﬁ K77 oo f o+ M=)+ BT+ M= )]

2((13 a)[R (m+M— u)f(m+M az) + j(lim+M_a3)f(m+M—a*):|

- 3o i)

R 1 Lgq
[J N 73 (3 )
7
+35 | >f @+ 73 (3)
211 1
- 5[5( mq Tl)*é(“ o, %)]
111 14 1 1 12 1
6[5(9‘ﬁ @)*é(% ﬁ*@)]
cafafo- e 2]
18 |8 B3l,] 8 (2], [3],
1 1 2 2 1 18 18
- _z[ 21q W] T[SS‘W+[31J [65 2, ﬁ}
1 14 14
= ﬂ[301 o @]

Then, from the inequality (I8), we have the inequality

49 595 <1 1 [ 1 14 14 ] < 301 < 115 (25)

———t—|<— < —.
FI T 2, Bl,]~ 24~ 6

It is obvious that the first and the last inequalities in are satisfied. One can see from Figure[I|that the second ans
the third inequalities in (25) are also satisfied.

12.56

1254 1

12.52 -

1248 -

12.46 -

1244 -

1242 -

12.38 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1: Comparison of third, fourth and fifth terms in li
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Theorem 2.10. Let f be a convex function over a real interval [m, M], then the following double inequalities hold:

1. Fora; < a* <ajq witha® # a; foranyi=2,3,..,n—1. Next, we get the following inequalities for a; < a* < a1

f(ll*) < Zn:w]f(g* ;_a])
=1

W ey b
j:le(a*_aj)[ij( ])+ Ju,vf( )]

n w
+ ) s [ )+ "I @)
j=i+l 2(“] a )
f@rs Luf)
]_
< 7 < ; wjf (aj) .
2. Ifa* = aj which is only possible for odd n when a;.s has equal distance and wj_y = w; for every j, then

F@)=w [f(an)+ f@)]

IA

< Vo[- lrles) @)
e wj R L £ (gt

< ]=12(a*—a,)[jf() T f @)
N n qu a Rju,f(a

3 o) s

f(a’*)+i1 w;f (a))

< ]‘2 — Wt [ f (2us) + £ (@)]

<

Y o) - [rloss) + £@0),
j=1

n n
wherea* = Y, wjaj, a*,a; € [m,M]witha; > a;_1, w; € [0,1] and }, w; = 1.
=1 =1

Proof. The proof of this theorem is same as the proof of Theorem d
Remark 2.11. If we set the limit g — 17 in Theorem then we recapture the inequality (8).

Corollary 2.12. Ifwesetn =2, wy = wy = % withay = x1and a, = x, in Theorem then we have the following
new inequality:

P )
: [ijm)f(m) + ngxl;rxz)f(.XQ)

2(x2 — x1)

() ()

F(E2) + 3F () + f (2] )+ f )
2 2
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3. Conclusion

This study successfully extends the Hermite-Hadamard inequalities to the framework of g-calculus,
providing sharper and more generalized bounds through the application of the Jensen—-Mercer inequality
with multiple points. By addressing the challenges associated with g-integrals and leveraging a case-based
approach, the findings unify and enhance existing results in classical calculus. The numerical examples
validate the significance of this approach, highlighting the potential of g-calculus in refining mathematical
inequalities and advancing error analysis in numerical integration. This work opens new pathways for
further exploration of g-calculus in various mathematical and applied contexts.
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